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SUMMARY

The detection phase in computational contact mechanics can be subdivided into a global search and a local
detection. When potential contact is detected by the former, a rigorous local detection determines which sur-
face elements come or may come in contact in the current increment. We first introduce a rigorous definition
of the closest point for non-differentiable lower-dimensional manifolds. We then simplify the detection by
formulating an optimization problem subject to inequality constraints. The formulation is then solved using
different techniques from the field of mathematical optimization, for both linear and quadratic finite element
meshes. The resulting general and robust detection scheme is tested on a set of problems and compared with
other techniques commonly used in computational geometry. Copyright © 2013 John Wiley & Sons, Ltd.

Received 18 April 2013; Revised 10 July 2013; Accepted 25 July 2013

KEY WORDS: contact mechanics; contact detection; collision detection; constrained optimization

1. INTRODUCTION

Mechanical contact comprises an important class of engineering problems, for which the mathemat-
ical formulation and analytical/numerical solutions encounter considerable difficulties. Extensive
work in the field has allowed to partly overcome these difficulties, which include the strong non-
linearity of the contact problem, its non-differentiability, and the inequality nature of the contact
constraints [1, 2]. With a formulation based on rigorous energetic considerations, the finite ele-
ment method (FEM) is at the backbone of contact numerical simulations. Widely used in structural
mechanics, the FEM may provide accurate approximate solutions of specific boundary value prob-
lems including contact interactions. The use of the FEM allowed the field of computational contact
mechanics to find applications in a wide range of disciplines, including the locomotive industry
(e.g., vehicle crashworthiness analysis [3], assembled structures such as engines [4], tire-road,
and wheel-rail contact [5, 6], breaking systems [7], bearings [8]), metal-forming [9, 10], struc-
tural mechanics (e.g., buckling of shells [11], failure of masonry walls [12]), impact [13, 14],
tectonics [15–17], and even biomechanics through the study of human joints [18].

Nowadays, the general numerical treatment of the contact problem can be divided into two stages:
the contact detection and the contact resolution. The latter draws attention from the applied mathe-
matics [1, 19] and computational mechanics [2, 20, 21] communities. Due to the complexity of the
mathematical formulation and the unsatisfactory results of the early methods [22], the field of com-
putational contact mechanics presents a very active area of research. Several methodologies have
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been proposed in the literature for the contact resolution stage. They are distinguished by discretiza-
tion type (e.g., node-to-node, node-to-face, face-to-face [23, 24], contact domain method [25, 26])
and the resolution method behind (e.g., penalty, Lagrange multipliers and augmented Lagrangian
[27–29]). Recently, particular attention has been paid to face-to-face based Nitsche [30] and mor-
tar [31–33] formulations, which provide an accurate integration over the contact interface. Every
contact discretization operates on different components of the contacting surfaces (nodes, integra-
tion points, faces, and segments), so the detection phase has to be adjusted accordingly. All in all, the
contact resolution phase is in general preceded by a detection stage, whose robustness and efficiency
determine the accuracy and promptness of the entire resolution scheme, respectively.

The contact detection phase can in turn be decomposed into two distinct sub-stages: (i) a global
search that roughly determines potential contacting solids; and (ii) a thorough local detection that
takes into account the actual solid discretization primitives, that is, nodes and faces. The global
search relies on representing the solids using bounding volumes for which the overlapping tests are
fast to compute. In this way, the local detection phase is only performed over the intersection region
of global bounding volumes, if any. Both global and local searches behave differently whether an
implicit or an explicit integration scheme is used. Within an implicit integration, the contacting parts
have to be known before the contact occurs in order to construct the proper data structures that are
able to treat the contact within the resolution stage [2]. Consequently, the bounding volumes used to
roughly represent the objects or primitives are extended to take into account their expected locations
at the end of the current increment. In contrast, an explicit integration scheme does not require any
a priori knowledge of contacting pairs and relies on the detection of penetration within the cur-
rent configuration. Although the global search is completely independent on the employed contact
discretization, the local detection should be adapted to the discretization used. We will confine our
discussion to the case of node-to-face discretizations, but the underlying ideas can be readily applied
to face-to-face discretizations. As it is common practice, the determination of a node’s closest point
is based either on the search for its closest mesh nodes with further projection tests on adjacent
faces, or just by testing for projections on closest mesh elements. However, such procedures are not
robust [11, 34, 35] because (i) the closest point does not always belongs to the face attached to the
closest node; and (ii) the normal projection used to determine the closest point does not always exist.
The latter is due to the inherent non-smooth FE representation of the contacting surfaces [36]. This
article proposes an alternative robust approach to establish the correct contact elements and location
of the closest point within the local search. For that we formulate a specific constrained optimiza-
tion problem and solve it using techniques from the field of mathematical optimization. A similar
approach to the one outlined in this paper was first proposed in the field of computer science for
the development of game engines [37, 38]. The proposed formulation does not rely on normal pro-
jections and can therefore be applied to non-smooth contacting surfaces. Several techniques from
the field of mathematical optimization are investigated for solving the proposed formulation, and
they are compared with other procedures based on computational geometry. Recommendations are
given for an efficient implementation of the local detection depending on the polynomial order of the
FE discretization.

This article is organized as follows: a brief summary of previous work is given in Section 2.
Section 3 introduces the contact mechanics problem. Section 4 reviews the procedure traditionally
used to obtain the closest point to a piece-wise smooth surface and provides an alternative approach
based on constrained optimization. Finally, the results of applying the described techniques to a set
of problems are given in Section 5.

2. PREVIOUS WORK

First attempts to solve the contact boundary value problem, in the context of finite element (FE)
formulations, were confined to the case of matching discretizations and their infinitesimal relative
motions [27]. The associated contact discretization, called node-to-node, did not require a contact
detection phase as all possible contacting node pairs were known a priori and were not allowed to
change with deformation. The use of a contact detection phase emerges with the need of treating
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finite relative motions or non-matching meshes. With significant changes in the configurations of
the contacting bodies during loading, the detection phase may become the bottle-neck of contact
simulations. When performing a simulation of n contacting bodies/elements, the excessive O.n2/
complexity of the simple all-to-all detection algorithm led to the development of more efficient
strategies [11].

Traditionally, the numerical treatment of contact problems introduces geometrical asymmetry,
that is, one contact surface is treated as master and another as slave. This asymmetric treatment is
then used in both detection and resolution stages. For example, in node-to-face discretizations, the
assignment of master and slave surfaces is determined by their corresponding mesh densities and
by their relative stiffness. In many problems it is possible to assign master and slave surfaces in
advance. Nevertheless, there are cases where this designation is hard or even impossible to discern,
as for example in the analysis of self-contact problems (e.g., post-buckling behavior of thin-walled
structures), complex geometries (e.g., foams under high pressures, hair-like assemblies), and large
relative displacements of heterogeneous meshes. Benson and Hallquist [11] first introduced a proce-
dure for the analysis of self-contact, naming it the single surface contact algorithm. The algorithm
used a bucket-based search, which was borrowed from hidden-line algorithms used in computer
visualization [39]. By dividing the search space into buckets, the time complexity of the contact
detection is significantly reduced compared with the naive all-to-all algorithm. The bucket search
is also described thoroughly by Heinstein et al. [34], who further describe an alternative search
methodology based on binary sorting of nodes, and by Fujun et al. [40], who used a node-to-surface
discretization for local detections and linked-lists for the placement of nodes into buckets. Malone
and Johnson describe a detection methodology based on search planes of the faces of FEs [41]. In
a recent publication [42], Yang and Laursen presented a contact detection methodology based on
bounding volume hierarchies defined by discrete orientation polytopes (k�DOPs) in the context of
large-deformation mortar formulations.

The detection phase increases its importance as the problem size increases, and in large problems
its computational time accounts for a vast portion of the total time spent in the simulation, specially
in explicit integration FE codes [42, 43]. Contact detection methodologies for large-scale simula-
tions have also been proposed for distributed memory architectures [44, 45]. Malone and Johnson
[44] conveyed the problem of load-imbalance and non-optimal efficiencies when applying their pro-
posed volume checking algorithm based on the determination of bounding boxes resulting from a
static mesh decomposition. Plimpton et al. [45] used a dynamic decomposition during the contact
detection phase in order to achieve load balancing across processors, using recursive coordinate
bisectioning (RCB) [46]. Yet, Attaway et al. [47] have reported that even with dynamic decomposi-
tion for load balancing, the contact detection phase takes between 30% to 60% of the computational
time in the Cray Y-MP vector machine in transient solid dynamic simulations that combine the FEM
with smoothed particle hydrodynamics. Some technical aspects of the bucket sort implementation
for self-contact and distributed memory architectures are discussed by Yastrebov et al. [48].

3. PROBLEM DESCRIPTION

Contact problems in continuum mechanics are treated in a special way due to their geometrical
discontinuous nature, as the contact interface transfers efforts between separate solids. This spe-
cial treatment is also due to the strong nonlinearity, as the contact status and accompanied weak
form may change abruptly, and also the friction force, which depends on the contact pressure, that
is unknown before the solution is found. The contact conditions prescribed on surfaces are given
as inequalities and rigorously, cannot be replaced by ordinary boundary conditions. The complex-
ity comes from the reciprocal interaction between separate solids and the strong interconnection
between kinematic and force quantities on both sides of the contact. For instance, the conditions of
non-penetration and non-adhesion, also called the Hertz–Signorini–Moreau contact conditions [2],
are formulated in terms of the contact pressure and the normal gap (or normal penetration)‡.

‡These conditions are equivalent to the Karush–Kuhn–Tucker conditions in the field of mathematical optimiza-
tion [49, 50], but called differently in the context of contact mechanics.
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(a)

(b)

Figure 1. Example of two discretized solids in contact: finite element mesh, tangent matrix K and residual
vector f for the cases (a) without contact, and (b) with contact constraints and additional degrees of freedom
(node 8). Lower indices s and c refer to structural and contact parts, and indices 1 and 2 refer to upper and

lower solids, respectively.

Thus, the interaction between deformable surfaces requires a coherent geometrical framework, that
becomes even more important when contact problems are formulated within the FEM, where the sur-
faces are discretized and mutual penetrations are possible during the convergence of the resolution
step. In the case of the numerical treatment, the geometrical similarity between surfaces is lost and
different roles are assigned to them. This is performed in a way that the contact problem is formu-
lated with respect to the penetration and sliding of parts of one (slave) surface with respect to another
(master) surface.

A FE formulation can be obtained from the principle of virtual work, which is formulated as a
weak (or integral) form of the balance of momentum. There are different ways to integrate the con-
tact and friction conditions in this weak form. The particular form of the contact conditions that are
included in the weak form, depends on the optimization method (e.g., penalty, Lagrange multipliers
or augmented Lagrangian). For a detailed description the reader is referred to monographs [2,35]. It
is important to note that the contact conditions should be fulfilled locally at the level of the so-called
contact elements, at which the normal gap, contact pressure, tangential traction, and the relative
tangential displacement, can all be deduced during the convergence process.

The contact is incorporated into the system of equations via the change of the tangent matrix
and the residual vector, as shown in Figure 1. Note that contrary to the penalty method, the method
of Lagrange multipliers introduces additional degrees of freedom (the multipliers themselves) (see
node 8 in Figure 1(b)). Contact elements are created based on the result of the detection procedure.
In node-to-face discretizations, this translates to linking slave nodes to master faces, which may
enter in contact during the resolution step (see element spanned by nodes 2-4-5 in Figure 1(b)).
Therefore, it is crucial for the correct resolution step to possess a robust detection technique, which
must link slave nodes with master faces correctly.

As explained in the introduction, the closest-node approach may fail in assigning the closest ele-
ment to the contacting node. We recall that in a traditional master–slave approach, for each slave
node �s of one surface, we first find the closest node �m on the opposite master surface, then we
verify the faces adjacent to �m for proximity to �s . However, the closest face may not be connected
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(a)

(b)

Figure 2. (a) Failure of the closest-node approach, the closest point lies on a face, which is not attached
to the closest node; and (b) an example of so-called blind spots: regions where a normal projection on the

master surface does not exist.

Figure 3. Schematic of the problem of finding the closest point from a point r to a face 'i .

to the closest node (Figure 2(a)), and thus, the closest-node approach is not recommended for the
general case. A more robust solution relies in finding the normal projections of nodes onto faces.
Still, the closest element may be missed as the normal projection on faces does not always exist
(Figure 2(b)). To improve the detection one should verify the proximity of the node not only to
faces but also to edges and nodes of another surface [35]. In the following section, we suggest to
combine these separate verifications (faces, edges, and nodes) in a single procedure, which results
in a constrained optimization problem.

4. DETECTION OF THE CLOSEST POINT

A piece-wise smooth contact surface � of a FE mesh can be considered as an assembly of smooth
open faces 'i and their closures @'i , that is, � D [i .'i [ @'i /. Each face is parametrized by the
natural coordinate �, as illustrated in Figure 3 for a quadrilateral face. For a given point r 2Rd , the
problem is to find the closest point (or points) xi .�/ 2 'i on the surface � .

First, we consider a single smooth face 'i and construct a distance functional

Fi .r ,xi .�//D
1

2
Œr � xi .�/�

2 , xi .�/ 2 'i . (1)
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A normal projection x?i � xi .�
?/ of the point r on the open face 'i exists, if and only if there is at

least one coordinate �? that satisfies the following system of equations (dropping the dependency
of xi on �):

@Fi .r ,xi /

@�j
D .r � xi / �

@xi

@�j
D 0, (2)

where j D 1, : : : , d � 1. This system may have a unique solution, but it may also have no solutions
or even an infinite number of them. If a unique solution exists, the corresponding normal projection
is equivalent to the closest point if and only if

det
�
r�r�F .r,xi /

ˇ̌
�?

�
> 0, (3)

and the shortest distance between r and the i th face is given by

d .r ,'i /D
��r � x?i �� .

Let us denote by X D[i x?i the set of all points (finite or infinite) corresponding to the faces 'i of
the contact surface � that satisfy conditions (2) and (3). Then, the global shortest distance from the
point r to the surface � is given by

d .r , �/D min
8x?

i
2X

��r � x?i �� ,

and the closest point is determined as

x? D argmin
8x?

i
2X

��r � x?i �� . (4)

4.1. Projection on faces, edges and vertices

Equation (4) does not always provide us with a solution because it obtains the closest point by
only considering projections on separate faces. In general, the closest point does always exist for a
surface � but it does not always correspond to the solution of the minimization problem given by
Equations (2) and (3). Nevertheless, even though the latter may not be unique, the probability to
encounter an equally distant r from several points of the surface � is negligible from a practical
point of view. The problem with Equation (4) arises when the closest point is not located on a face
but on an edge or a node. In this case, we cannot determine this point by solving Equation (2) as on
edges and vertices r�x is not defined. To avoid this incompatibility, edges and nodes are accounted
for when computing the closest node [35]. Thus, in addition to the distance functional for faces
given by Equation (1), let the distance functional defined over edges be

Eij
�
r ,xij .�/

�
D
1

2

�
r � xij .�/

�2
, xij 2 "ij � 'i , (5)

where � is the natural coordinate over the j th edge of face 'i . As before, we drop the explicit
dependence of xij on �. The normal projection x?ij � xij .�

?/ of a point r over edge "ij is obtained
by solving

�
r � xij

�
�
@xij

@�k
D 0. (6)

Again, we denote by Y D [i
�
[jx

?
ij

�
the set of all points that solve Equation (6) on all edges.

Finally, let Z denote the set of coordinates corresponding to all nodes in the mesh, that is,
Z D ¹[ xikº where xik � �ik � 'i � � . Considering the contact surface � as an ensemble
of its faces [i'i , together with their corresponding edges [i [j "ij and nodes [i [k �ik , that is,

� D[i
�
'i [j "ij [k �ik

�
,
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the shortest distance from a point r to � is given as

d.r , �/D inf

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

min
8x?

i
2X

��r � x?i �� ,

min
8x?

ij
2Y

��r � x?ij�� ,

inf
8xik2Z

kr � xikk .

(7)

The closest point is determined according to the shortest distance, that always exists and can
be obtained by Equation (7). Though, a separate consideration of faces, edges, and vertices may
complicate the implementation of a program.

4.2. Constrained optimization approach

To avoid the separate consideration of lower dimensional manifolds, as outlined previously, the
closest point for a given face ' may be given as the solution of the following minimization problem

x?i D argmin
g.�/�0

Fi .r ,xi .�// , (8)

where g .�/ is a vector of constraints that depends on the type of element outlined over the natural
coordinate �, for example, g .�/ D ¹�1C 1, 1� �1, �2C 1, 1� �2º for the quadrangular element
shown in Figure 3. This problem has at least one solution for any r and any given face 'i , and we
again denote by X D [i x?i their ensemble. Considering the piece-wise smooth contact surface �
as an ensemble of closed-set faces, that is, � D[i'i [j @j'i , the shortest distance to the surface

d.r , �/D inf
8x?

i
2X

��r � x?i �� ,

can be shown to be equivalent to the shortest distance found according to Equation (7).
The optimization problem stated by Equation (8) can be solved by defining the Lagrangian

Li .�,�/D Fi .r ,xi .�//C�
|g .�/ , (9)

where � is a vector of the Lagrange multipliers [51]. For a given point r , the combination
�
�?,�?

�
is said to be a local solution to the optimization problem if it satisfies the Karush–Kuhn–Tucker
conditions [49, 50]:

rLi
�
�?,�?

�
D 0,

gi
�
�?
�
> 0,

�?i > 0,

�?i gi
�
�?
�
D 0.

(10)

The first and the second gradients of the Lagrangian are given by§

rL .�,�/D

	
r�L
r�L



, rrL .�,�/D

	
r�r�L r�r�L
r�r�L r�r�L



, (11)

where the first gradients, dropping the dependence of x and g on �, are

�
r�L

�
i
D .r � x/ �

@x

@�i
C�|

@g

@�i
,

r�LD g.
(12)

§Some optimization methodologies may require the computation of the second gradient of the Lagrangian to obtain the
search direction.
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and the second gradients, considering � D .�1, �2/¶, are given by

r�1r�1LD .r � x/ �
@2x

@�21
�

�
@x

@�1

�2
,

r�1r�2LDr�2r�1LD .r � x/ �
@2x

@�1@�2
�
@x

@�1
�
@x

@�2
,

r�2r�2LD .r � x/ �
@2x

@�22
�

�
@x

@�2

�2
,

r�1r�LDr�r�1LD
@g

@�1
,

r�2r�LDr�r�2LD
@g

@�2
,

r�r�LD 0.

(13)

The second gradient of the constraint function vanishes because all constraints are linear. This is
because the FE has straight edges in natural coordinate space regardless of its polynomial interpo-
lation order. It is also worth noting that the first right-hand term in expressions for r�1,�2r�1,�2L
vanishes for linear FEs.

Note that the computation of the Hessian matrix rrL .�,�/ may be avoided for many opti-
mization methodologies. A quasi-Newton approximation that is obtained by Broyden–Fletcher–
Goldfarb–Shanno (BFGS) updates can be used instead [51]. Even though this technique increases
the number of iterations needed to obtain an optimal solution with respect to using the consistent
Hessian, the optimization algorithms are more robust as they guarantee the use of a positive-definite
approximation of the Hessian matrix in the search.

The optimization problem stated by Equation (8) could be solved by an active-set strategy that
identifies the active constraints at the solution. Starting from a feasible point, the active-set method
finds an optimum solution by solving a series of quadratic subproblems where some inequality
constraints may be treated as equality constraints (and are therefore identified as the active-set).
In a primal active-set strategy, new iterates are guaranteed to remain feasible by the aid of a step-
length parameter. Interior-point methods provide yet another technique for solving Equation (8).
The original problem is transformed into the following equally-constrained optimization:

x?i D argmin
´�g.�/D0

Fi .r ,xi .�//��
X
i

ln .´i / , (14)

where � > 0 is the barrier parameter, and ´i are positive slack-variables. Finally, Equation (8) could
also be solved by sequential quadratic programming (SQP), where a solution is also determined
by replacing the original problem into a sequence of quadratic subproblems. The SQP implementa-
tion chosen for this work uses a merit function to determine the new iterates through a line search
and BFGS approximations of the Hessian matrix. For more details on the different optimization
techniques and their implementations, the reader is referred to Nocedal and Wright [51], and the
references therein.

5. NUMERICAL EXPERIMENTS

The results of applying the proposed methodology to two scenarios are reported next. First, the for-
mulation based on mathematical optimization is investigated with a single FE of varying polynomial
interpolation order. A comparison is carried out between the different optimization methodologies.
The starting guess used in the optimization is also examined. Then, the procedure is investi-
gated in the context of a large-scale problem involving two rough surfaces in proximity. In the

¶This formulation corresponds to a three-dimensional surface, where the contact faces are parametrized by a two-
dimensional coordinate.
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latter, the methodology is compared with more traditional techniques borrowed from computa-
tional geometry. The computational times reported henceforth are obtained running the MATLAB

(The MathWorks, Inc., Natick, Massachusetts, USA.) implementation of the considered methods on
a computer with a 2.6 GHz Intel Core i7 processor and 16 GB of RAM memory.

5.1. Single element optimization study

This section summarizes the optimization tests performed on FEs of both linear and quadratic inter-
polation functions. Each result reported is the outcome of 10,000 optimizations, as the position of
point r is moved over a 100 � 100 square lattice outlined on ‚ � R2 on the same plane of the
FE. The domains are ‚ D Œ�2, 2� � Œ�2, 2� and ‚ D Œ�6, 6� � Œ�6, 6� for linear and quadratic ele-
ments, respectively. A comparison of the different methodologies available for the optimization is
also performed.

The effect of the starting guess �0 is also investigated, by selecting it from either of the following
alternatives:

(I) all corners and the center of the element are tested for the proximity to the slave node, and
the closest one is chosen as the initial guess,

(II) the center of the element is chosen as the initial guess.

For both linear and quadratic triangular elements, the center is � D .1=3, 1=3/. Similarly, for the
quadrangular elements, the center is � D .0, 0/. Yet, for the computations that use the interior-point
method, only option II is used.

The constraints could be taken into account as linear or nonlinear functions, or as bounds on
the variables. For the triangular elements, the constraint vector is g .�/ D ¹�1, �2, 1� �1 � �2º
regardless of the interpolation order. However, two of these constraints can be imposed as lower
bounds because �1 > 0 and �2 > 0. The vector of constraints for quadrangular elements is given in
Section 4.2, but the four constraints can be imposed as bounds �1 6 �i 6 1. Yet another way to
impose the constraints takes advantage of their linearity, thus g .�/> 0 can be written as A� > b.

Figure 4 shows the results of the optimization for different types of FEs using SQP [51], even
though other methodologies are investigated later on. Each plot in Figure 4 shows the number
of iterations that the algorithm requires to converge to a local optimum, that is, the solution to
Equation (8). The results for a three-node triangular element are illustrated in Figure 4(a), where
dashed lines show the mapped equations �1 D 0, �2 D 0 and �1 C �2 D 1, thus delineating the
location of the triangular element. As seen in the figure, there are regions within the plane of the tri-
angular element that require a single iteration to converge. These regions correspond to the Voronoi
regions of the triangle’s vertices. Given a triangle 'i �Rd , the Voronoi region (also called Dirichlet
region) of its vertex �ik (with coordinate xik) is defined as

V .�ik/ WD ¹xj kx � xikk6 kx � yk ,y 2 'i n xikº .

The number of iterations increases to 2 or 3 in locations that have an orthogonal projection to one of
the edges of the triangle, to a maximum number of eight iterations in some locations laying within
the triangle. The starting guess for the plots in this figure is chosen as the point within the parent
element closest to r , taken between the element center and each of its corners (option I). As a result,
an average of 1.6 iterations is executed for each optimization on the linear triangle case when con-
sidering all 10,000 optimizations. By choosing only the center of the element as the starting guess
(option II), the average number of iterations needed to converge increases to 2.8 iterations per opti-
mization. Similar results are shown in Figure 4(b) for a four-node bilinear quadrangular element,
where the dashed lines correspond to �1 D ˙1 and �2 D ˙1. As in the previous figure, a single
iteration is sufficient in those locations outside the element that do not have a normal projection to
its edges. The number of iterations is again maximized in locations within the element. For the lin-
ear quadrangular element, the average number of iterations increases from 2.4 to 4.7 when choosing
only the center of the element as the starting guess (i.e., going from option I to II).

Figure 4(c) and (d) correspond to the results obtained with 6-node quadratic and 8-node bi-
quadratic elements, respectively. Dashed lines are now curved because of the higher polynomial
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(a) (b)

(c) (d)

Figure 4. Results for the optimization problem stated by Equation (8) to find the minimum distance from
a point r 2 R2 to an element of type: (a) three-node linear triangle, (b) four-node bilinear quadrangle,
(c) six-node quadratic triangle, and (d) eight-node bi-quadratic quadrangle. Each figure shows a color map
of the number of iterations required by the sequential quadratic programming algorithm to converge to a
local optimum, and it is the result of 10,000 computations, as the point r moves on a 100�100 square lattice

laid out on the same plane of the element.

order of the elements||. The results show that concave edges reduce the number of locations that
contain a normal projection on edges, thus they increase the region where the algorithm converges
in a single iteration. On the contrary, convex edges increase the number of locations with a normal
projection, as shown by the right edges of both elements. As with the case of linear elements, the
starting guess influences the number of iterations that the algorithm takes to converge to the opti-
mum. For the quadratic triangular element, the average number of iterations increases from 1.8 (I)
to 3.2 (II), consequently raising the computational time by 12%. Likewise, this number increases
from 1.7 (I) to 3 (II) for the quadratic quadrangle, but this time with only 2% additional computa-
tional cost. The extra time spent in computing the closest point in the parent element balances the
additional time spent per iteration. Option I is used henceforth for the remainder of the results.

Figure 5 presents a comparison with other methods used in constrained optimization. The plots in
the figure are to be compared with those for the SQP optimization given for the quadratic triangular
and quadrangular elements of Figures 4(c) and (d), respectively. In the latter, the SQP optimization
run on an average of 6.5�s for the triangular and 6.7�s for the quadrangular element, both with a
standard deviation s D 1.5�s. Figure 5(a) and (b) show similar results by using the interior-point
method. As the results of the optimization illustrate, this method takes considerably more iterations
to converge than the SQP. An average of 10.8 iterations is obtained for the triangular element, with

||And because the nodes over edges are not aligned in the current configuration.
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(a) (b)

(d)(c)

Figure 5. Comparison with interior-point (a and b) and active-set (c and d) methods.

an average time of 24.4�s per iteration. Likewise, for the quadrangular element an average of 9.8
iterations is obtained, with a slightly lower average computational time of 22.8�s. The interior-point
method does not only take more time to converge, but there is also a region where the algorithm had
difficulties in converging to the solution. Finally, Figure 5(c) and (d) show the results of yet another
method, the active-set methodology. This method gives similar results to those obtained by SQP, as
there is an average of 1.7 iterations for each quadratic triangle optimization, with an average time
of 5.5�s. With the same number of average iterations, the average computational time for the quad-
rangular element is 5.4�s. This method requires roughly 20% less computational time than the SQP
implementation.

Table I summarizes the results hitherto for both linear and quadratic FEs. Each reported result is,
as explained before, the average obtained over 10,000 optimizations. It is worth noting that compar-
isons between the different methodologies cannot be drawn between linear and quadratic elements,
as their corresponding computational domains are different.

For the three-dimensional optimization results given in Figure 6, the point r is laid out on a subset
of the plane x3 D 2, that is, ‚ D Œ�4, 4� � Œ�4, 4� � 2 � R3. This plane does not correspond to
that of the triangle, as the right-most nodes of the triangular element used to obtain the results in
Figure 4(a) now have a coordinate x3 D 1, and the left node a coordinate x3 D 0. The schematic of
the problem is presented in Figure 6(a). The optimization results of Figure 6(b) show similar results
as those presented in Figure 4(a), where the locations with the most number of iterations correspond
to those that contain a normal projection laying within the face of the element.

The average computational times are 6.7�s and 5.8�s for the SQP implementation and active-set
implementations, respectively.
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Table I. Summary of the comparison between the different
optimization strategies applied to both linear and quadratic
finite elements. The table lists the number of iterations and the
computational time in�s, as averages of 10,000 optimizations.

(a)

(b)

Figure 6. (a) Configuration of the problem in three-dimensional space, where the point r 2 R3 moves on
a 100 � 100 square lattice laid out on a different plane (subset of x3 D 2) than that of the three-node linear
triangular element. For this problem, the right-most nodes of the triangle in Figure 4(a) are moved to the

plane x3 D 1. (b) SQP results of the optimization.
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5.2. Rough surface example problem

The proposed formulation is now tested with a large-scale problem consisting of two interpenetrat-
ing rough surfaces as shown in Figure 7. Even though this configuration is not physically feasible,
interpenetrating thin layers are used to ensure that there is a number of slave nodes that have in
their immediate neighborhood one or more master elements to which a distance computation can be
performed. Figure 7 shows the discretization consisting of linear tetrahedra, but we also examine a
quadratic discretization.

For the linear case, the performance of the proposed optimization-based methodology will be
compared with more traditional approaches based on computational geometry. The first one uses
proof by exhaustion, that is, brute force. The slave node is projected to the plane of a triangle on the
master surface and if the projection does not lay within the triangle bounds, we then proceed to deter-
mine the closest point to each of the triangle edges. The second approach, taken from Ericson [52],
uses Voronoi regions to find the closest point to a triangle. The algorithm quickly determines if the
location of a slave node can be found to lay within the Voronoi region of one of the triangle vertices,
thus assigning the corresponding vertex as the closest point. When vertex Voronoi regions do not
contain the slave node, the algorithm then determines if the latter can be found in the regions that
have projections to the edges. Finally, if all precedent cases are ruled out, the closest point is com-
puted as laying within the face of the element. For these two computational geometry approaches,
the distance computation for each slave is performed 10 times during the complete contact detection,
and its average is reported.

Figure 7. Three different rendered views of the finite element discretizations of the two interpenetrating
rough surfaces used in the example of Section 5.2. The meshes comprise of a total of 149,162 linear

tetrahedra and 48,426 nodes.
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The linear discretization of the thin layers that represent the two rough surfaces contain a total
of 48,426 nodes and 149,162 linear tetrahedra. The seed used to create the meshes is such that a
single tetrahedron is contained through the thickness. In order to avoid the O.n2/ time complex-
ity associated with checking a slave node against every element on the master surface, a simple
grid space decomposition is used to reduce the search region to those elements in the neighbor-
hood of the slave node. Details of this technique, which is referred in the literature as a bucket
search, can be found in [11,34,40]. The survey zone consists of 211�211�9 buckets, with 20,589
and 115,499 non-empty node and element buckets, respectively. Coincidentally, there is a total of
20,589 slave nodes for which the closest distance is computed. For each slave node, master elements
in the resulting neighboring buckets are obtained, resulting in an average of 7.8 master elements
(with minimum and maximum of 1 and 37 elements, respectively). A total of 161,450 distance
computations are performed for this mesh. The Voronoi region strategy turns out to be the most
efficient for finding distances to linear triangles. The average distance computation time consid-
ering all slave nodes is Nt D 0.18�s, with a standard deviation of s D 0.03�s. The brute force
approach yields Nt D 0.7�s and s D 0.06�s, with an increase in time by almost a factor of four.
From the optimization techniques investigated in the previous section, only the SQP methodology
is used here due to its robustness, resulting in an average computational time of Nt D 10.8�s and
s D 4.5�s. Overall, it took an average of 4.6 iterations per slave node. The optimization-based
method takes 62 times more time than that of the Voronoi regions. Therefore, for linear elements,
this latter computational geometry approach clearly outperforms any other method. Nevertheless,
the proposed methodology is general and can be used regardless of the polynomial interpola-
tion of the mesh, whereas the brute force and Voronoi region approaches are applicable only to
linear meshes.

The discretization that uses quadratic elements contains a total of 195,035 nodes, four times the
number of nodes of the linear mesh. The bucket array structure now contains 209�209�9 buckets,
with 76,052 and 135,370 non-empty node and element buckets, respectively. With a total of 628,017
distance computations, the proposed technique results in an average computational time Nt D 12.3�s
and a standard deviation s D 6�s, which are only slightly larger than the values for the linear mesh.
There is an average of 8.26 master elements per slave node, with bounds [1, 38], resulting in an
average of five iterations per distance computation.

6. CONCLUSIONS

An optimization-based formulation has been presented for local contact detection. The procedure
does not rely on orthogonal projections so it can be used correctly for non-smooth surface geome-
tries, common in FE analysis. It has been shown that the formulation takes a single iteration to
converge when slave nodes are located within the Voronoi region of a point of the master element.
The formulation is general in the sense that it does not change with increasing polynomial order, and
the constraints remain always linear. Several techniques from the field of mathematical optimization
were investigated for the given formulation, and SQP was the methodology of choice in Section 5.2
due to its robustness. The initial guess was also investigated, showing that it is worth starting from
element vertices than from its center. Even though general and robust, the main drawback of the
proposed methodology is its computational time when comparing it to other computational geom-
etry strategies for linear elements. This was demonstrated in the example of two interpenetrating
rough surfaces, where bucket sort was used to decompose the space and reduce the local search to
elements intersecting with the slave’s neighboring element buckets. Numerical results indicated that
the proposed technique takes excessive computational time for linear meshes, resulting in roughly
sixty times the time required for a closest-node computation based on Voronoi regions. Nevertheless,
the approaches based on computational geometry cannot be used for quadratic meshes, for which
the optimization-based distance computation did not increase significantly in cost. The proposed
constrained-optimization method thus appears robust and efficient for meshes where the polynomial
interpolation is higher than linear.
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