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Abstract The local contact detection step can be very time consuming for large con-
tact problems reaching the order of time required for their resolution. At the same
time, even the most time consuming technique all-to-all does not guarantee the cor-
rect establishment of contact elements needed for further contact problem resolu-
tion. Nowadays the limits on mesh size in the Finite Element Analysis are largely
extended by powerful parallelization methods and affordable parallel computers. In
the light of such changes an improvement of existing contact detection techniques
is necessary. The aim of our contribution is to elaborate a very general, simple and
fast method for sequential and parallel detection for contact problems with known a
priori and unknown master-slave discretizations. In the proposed method the strong
connections between the FE mesh, the maximal detection distance and the optimal
dimension of detection cells are established. Two approaches to parallel treatment
of contact problems are developed and compared: SDMR/MDMR – Single/Multiple
Detection, Multiple Resolution. Both approaches have been successfully applied to
very large contact problems with more than 2 million nodes in contact.

1 Introduction

By local contact detection we mean a procedure which detects elements (nodes, sur-
faces) of one part of a finite element mesh which potentially come in contact with
another part of the mesh on a current computational step. In the context of the node-
to-segment discretization (NTS) [15] the contact detection is an establishment of the
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closest opposing master segment for each node of the slave surface which will po-
tentially come in contact. Further these nodes and the corresponding surfaces form
abstract contact elements which contribute consequently to the weak form associ-
ated with the finite element problem. Therefore, wrong contact detection results in
incorrect solution or even in its failure.

It should be distinguished two contact search phases [11]: spatial search and con-
tact detection. The first notion is used for search between separate solids coming in
contact, i.e. rather between separate geometries than discretizations. Contact spa-
tial search methods are of big importance in multibody systems and the discrete
element method where interaction between more or less identical particles such as
crashed stone, sand, snow is considered to analyse mud flows, opencast mines, ava-
lanches, etc. It is worth mentioning that previously the particular attention of the
scientific community has been paid mostly to this phase of contact search, because
the local discretization of solids remained rather moderate and the bucket detec-
tion method [1] in its very general form or even the simplest all-to-all approach
remained rather efficient and fast enough techniques; especially in case of small slip
when only one execution of the detection procedure is required. Recent progress
in parallel computing makes possible extremely large implicit and explicit contact
simulations between just a few but very finely meshed solids. The phase of local
contact detection becomes crucial and time consuming part of the computational
process, especially in case of finite slip and large deformation.

The detection phase consists in establishment of contact elements which by-turn
in NTS discretization consist of one slave node and a master surface of another ele-
ment. The simplest and straightforward detection method is all-to-all: each master
segment is checked for proximity to each slave node. The growth rate of the method
is O(Ns ×Nm), where Ns and Nm are numbers of slave nodes and master segments
respectively. If one considers second order master surface each check of projection
requires the solution of nonlinear equation which takes several iterations. For ex-
ample, let us estimate the time needed to perform the simplest contact detection
procedure within two surfaces consisting of 1024× 1024 elements each. If each
search of projection requires 5 iteration and the computer performs the detection
with 106 flops, then the detection will be achieved in more than two months(!). This
time surpasses considerably the time needed to a parallel resolution of a FE problem
possibly associated with such a FE mesh.

The first simplification of the detection is to start from node-to-node detection
in stead of node-to-segment. For further improvement let us imagine a set of spa-
tially distributed points. The problem is to detect for a given point the closest one
from this set. Human vision accomplishes this task easily analyzing just few close
points. It does not need any analysis of the whole point set while the simple detec-
tion algorithm does, because it is “blind” and needs to “touch” all the points one by
one and compare distances between them. The techniques which have been worked
out for contact detection are aimed at the reduction of quantity of points to “touch”.
Among these methods there are the bucket method [1,4], the heapsort and the octree
method [10] and others. The two last algorithms have been developed mainly for
the multibody simulations, i.e. for spatial contact search, however they can be ad-
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apted for the local contact detection as well. But these methods lack for generality
(self-contact, parallel detection) and more elaborated analysis (optimal parameters),
moreover several of them require facilities to handle tree data structures. Recently
a new powerfull detection algorithm [13] has been proposed. It accounts the links
between nodes and that is why it is more adapted for local contact detection. The
method is based on the bounding volume trees associated with sets of segments.
However it is designed for mortar based contact formulations and apparently for the
NTS discretization its rapidity is inferior to the method proposed here.

Even if a fast enough node-to-node detection procedure is worked out, many
problems remain, such as optimal bounding box construction, challenging detection
of nodes in blind spots and as a particular case – detection of passing by nodes.
These difficulties appear from the fact that the finite element discretization of con-
tacting surfaces is continuous but not smooth. Finally it can be affirmed that the
robustness of the detection and its rapidity depends strongly on the way the men-
tioned difficulties are overcame as well as on the carefulness of coding.

In this contribution the bucket or grid detection method [1] will be improved and
adapted for a very general case. Its sequential and parallel implementations will be
discussed in detail for very large finite element simulations in the framework of the
node-to-segment discretization.

First, the principal notions are introduced and all the steps of the method are
considered in details. Optimal detection parameters (proximity criterion, detection
distance and cell size) are derived based on the numerous large scale detection tests.
Efficient procedures for bounding box construction, neighbouring cell detection and
verification of “passing by” nodes are proposed. The performance of the method is
demonstrated on several extremely large contact problems containing up to 2 million
nodes in contact. Further the method is extended for a very general case of unknown
a priori master-slave contact surfaces, which is of a great importance for self-contact
treatment. The last part is devoted to the detection phase in case of parallel treatment
of contact problems, different approaches are considered.

2 Method Description

The grid (bucket) detection method [1,4] is natural and simple. But its implementa-
tion and choice of the internal parameters should be discussed in more details. First,
a short description of the method is given, then each stage of the procedure is dis-
cussed in detail, the optimality of parameters is analyzed and finally some numerical
examples both artificial (contact between two curved surfaces) and real engineering
(tyre on road contact) are given to demonstrate the performance of the method. The
ultimate aim is an improvement of the grid method and determination of detection
parameters which would reduce the required CPU time.

First of all the master-slave approach and the associated node-to-segment (NTS)
discretization have to be shortly explained. Two contacting surfaces in the master-
slave approach are distinguished: one is called slave or impactor and the other is
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called master or target. For clarity the slave-master notation will be used. Such dis-
tinction comes both from the node-to-segment discretization and from geometrical
description of contact, precisely from the asymmetry of the closest distance defini-
tion between contacting surfaces. The slave surface manages nodes of the first sur-
face and neglects their connections, i.e. all the interpolations between slave nodes
are not taken into account. The master manages segments of the second contacting
surface and its description is closely connected with the order of the elements and
consequently with the interpolation functions. It is worth mentioning that the use of
nonlinear interpolations with many discretization techniques (including NTS which
is considering here) leads to incorrect results of contact analysis (see e.g. [11]).

“Contact element” (here NTS contact element) is an abstract (not structural) ele-
ment consisting of a slave node and several master nodes united by a master surface
segment. All the geometrical quantities such as normal gap gn and tangential ve-
locity ġt are evaluated in the master reference frame, i.e. the geometry of contact
is described by an interaction of a slave node with a master surface segment. Such
contact elements take care of the local contact interaction between two bodies in
the resolution phase and hence they have to be created before the slave node slides
on or penetrates the master surface. Thus the slave nodes which are close enough
to the master surface have to be detected and included in consideration before the
resolution step.

Before discussing particular details let us derive a short description of the grid
detection method. Two phases can be distinguished: preliminary phase and detection
phase. In the preliminary phase the optimal size of the grid is evaluated, further a
potential contact area is determined and divided with an enumerated regular grid.
That allows to reduce locally the area of closest nodes search. Finally all slave and
master nodes situated in the detection area are distributed in the cells of the grid.
In the detection phase for each slave node we check for the closest master node
in the current cell. And if necessary we check one or several neighbouring cells for
possible proximal master nodes. As the closest master node is found the existence of
the slave node projection onto all segments attached to the master node is verified.
If at least one projection exists then a contact element will be established otherwise
the verification if the node is in a blind spot or is a “passing by node” is needed.

2.1 Preliminary Stage of Contact Detection

First of all a key parameter for the contact detection procedure has to be introduced
– maximal detection distance dmax. In case of node-to-segment detection dmax de-
termines the following: if a slave node is closer to the master surface than dmax, then
it is supposed that this node can come in contact during the following time step, oth-
erwise not. The method considered here is based on the node-to-node detection, so
the meaning of the maximal detection distance is different. If the distance between
two nodes di j = dist(ri,r j) is smaller than the maximal detection distance, then the
corresponding slave node ri and one of master surfaces containing the mentioned
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Fig. 1 Maximal detection distance dmax: on the left not correct on the right correct choice.

node r j are considered to be potentially in contact during the following time step
otherwise not. This difference naturally results in a limitation on the minimal value
of the dmax. Here the dist(ri,r j) denotes Euclidian metric in the global reference
frame dist(ri,r j) = |ri − r j|. The value of the key parameter dmax for the detection
procedure can be determined automatically accordingly to the discretization of the
master or self-contact surface, to the loading and deformation rate. First, it should be
mentioned that the maximal detection distance in proposed method has to be unique
for the entire contact area and greater than one half of the maximal distance between
master nodes attached to one segment

dmax >
1
2

i=Nm, j=Ni
n−1, k=Ni

n
max

i=1, j=1, k= j+1
dist(ri

j,r
i
k), (1)

where Nm is a total number of master segments, Ni
n is a total number of master nodes

attached to the i-th master segment, ri
j is a coordinate of the j-th node of the i-th

master segment. If the condition (1) is not fulfilled, then some slave nodes coming
in contact with master surface can be lost (see Figure 1, here and further for the
sake of simplicity and clarity all figures represent two dimensional cases but can be
easily extended to three dimensions).

For a reasonable number of time steps for geometrically or physically nonlin-
ear problem the maximal detection distance can be determined as dimension of the
biggest master segment, i.e. accordingly to the discretization of the geometry

dmax =
i=Nm, j=Ni

n−1, k=Ni
n

max
i=1, j=1, k= j+1

|ri
j − ri

k|. (2)

Such estimation is reasonable in case of a regular discretization of the master sur-
face. On the other hand if the distribution of the master nodes is very heterogeneous,
i.e. fine surface mesh in one contact region and rough in another, the value of dmax

appears to be highly overestimated for certain regions. This fact decreases the effi-
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ciency of the method, but in general for an adequate finite element mesh the increase
of the detection time is not so high. The influence of the maximal detection distance
on detection time will be discussed later.

In the case of linearly elastic material and frictionless contact, the geometry can
change significantly during one time step. So the analysis of discretization can give
only lower bound for dmax and that is why its value should be augmented manu-
ally or automatically accordingly to the deformation and/or displacement rate, for
example in the following way:

dmax = max

{
i=Nm, j=Ni

n−1, k=Ni
n

max
i=1, j=1, k= j+1

|ri
j − ri

k|; 2
Nc

max
i=1

|∆ri|
}

, (3)

where Nc is a total number of slave and master nodes and ∆ri is an estimation of the
maximal displacement of the i-th node, 2 takes care of possible opposite translations
of master and slave nodes. In case of remeshing or sufficiently large deformations
of the master, the detection parameter dmax should be recomputed at each remeshing
or at each N-th time step.

Before carrying out any detection the spatial area where contact can take place
during the following time step has to be chosen. It has to contain as few master
and slave nodes as possible but on the other hand it has to include all the nodes po-
tentially coming in contact on the following step. If needed this area has to be fre-
quently updated. We propose to confine this area by a bounding box (parallelepiped)
defined in the global reference frame.

The determination of the bounding box differs for known a priori and unknown
master-slave discretizations. In case of unknown master-slave the bounding box
should include all possible contacting surfaces. But frequently the discretization
is known a priori even if contact occurs within one body (self contact). In this case
the construction of an optimal bounding box allows to exclude from consideration
some nodes which cannot come in contact during the following time step (Figure 2)
and consequently it results in acceleration of the detection procedure. It is worth
mentioning that here the very general case is considered: any slave node can poten-
tially come in contact with any master segment during the loading. Often it is not
the case and for each slave node the set of possible master segments is limited and
partly predefined. But in order to take it into account the detection technique should
be tuned for each particular case. The consideration of such techniques is out of the
scope of this contribution.

First of all the dimensions of master and slave surfaces are estimated. Note than
even if the master surface consists of several independent zones in the grid detection
method it can be considered as one set of master nodes with associated segments.
It is proposed to construct two independent bounding boxes Bs : {r1

s ,r
2
s} and Bm :

{r1
m,r2

m} containing all slave and master nodes respectively, where r1 and r2 are
the vectors in the global reference frame of two opposite corners determining the
bounding boxes. Note that each bounding box confining master and slave nodes
includes also a node free margin zone of the size of maximal detection distance at
each side.
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Fig. 2 Determination of the
bounding box for the contact
detection procedure in case of
simple master-slave contact.

r1 : r1
{x,y,z} =

Nb
min
i=1

{e{x,y,z} · ri}−dmaxe{x,y,z},

r2 : r2
{x,y,z} =

Nb
max
i=1

{e{x,y,z} · ri}+ dmaxe{x,y,z}, (4)

where Nb is a number and ri is a vector of nodes to be included in the bounding
box and e{x,y,z} are orthonormal basis vectors in the global reference frame. The
margin of ±dmax is introduced to avoid any loss of possible contact elements. Some
improvements can be introduced in order to reduce the time of bounding box con-
struction. The user can precise that one or several contact surfaces are rigid and do
not move, then permanent bounding boxes can be assigned to these surfaces and
there is no need to update them. Another possible feature is the prediction by the
user that the deformation and displacement of a contact surface is connected to the
displacement of certain nodes. It allows to avoid the verification of all nodes in (4).
Since the nodal coordinates are kept in memory in the global reference frame it
is much more faster to work directly with these coordinates so no rotation to the
bounding boxes must be applied. The resultant bounding box B : {r1,r2} is taken
as the intersection of master and slave bounding boxes B = Bm ⋂

Bs. The practice
shows that a further contraction of the bounding box does not reduce significantly
the detection time.

When a bounding box is determined, an internal grid should be constructed in
a proper way. In the grid detection method this grid should be regular and the cell
size dc should be optimum: not too large in order to keep the number of slave and
master nodes in the cell as small as possible and not too small at least greater than
the maximal detection distance dc ≥ dmax. For smaller cells, the determination of
the neighbouring cells which should be investigated is not evident; moreover, the
growth rate of their maximal number Nc is cubical

if dc =
dmax

n
,n > 1 ⇒ Nc = (3 + 2n)3 (5)

233



Fig. 3 Example of finite element meshes used to determine the optimal cell size. Proximal meshes
with homogeneous (left top) and heterogeneous (left bottom) spatial node distribution and convex
meshes (right).

The smaller the cell size, the higher the total number of cells and consequently
the smaller the number of contact nodes per cell. But on the other hand small cell
size increases the necessity to carry out the detection in neighbouring cells. It can
be shown analytically by means of probability methods that for homogeneous node
distribution both in 2D and 3D cases the minimal detection time is unique and cor-
responds to the minimal cell size. Such simple analysis predicts quadratic growth
of the detection time in 2D case and cubic in 3D. To demonstrate it for real cases
let us analyse the dependence of the detection CPU time t on the cell size dc. Sev-
eral finite element problems have been considered, each problem consists of two
separate finite element meshes curved in a different way. Slave and master surfaces
consist of over 10200 nodes. Three sets have been considered: proximal meshes
with homogeneous (Figure 3, left top) and heterogeneous (Figure 3, left bottom)
node distribution and convex mesh with heterogeneous node distribution (Figure 3,
right). Each set is represented by 5 different realizations of curved surfaces. By ho-
mogeneous node distribution we mean that the maximal segment dimension does
not exceed 200% of the minimal one, otherwise the node distribution is considered
to be heterogeneous.

In Figure 4 the dependence of the average detection CPU time and the average
number of investigated neighbouring cells on the normalized cell size dc/dmax is
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Fig. 4 The dependence of the detection time and the average number of neighbouring cell invest-
igated during the detection on the normalized cell size.

represented for different sets. As shown in the figure, the detection time increases
nonlinearly with higher slope for heterogeneous mesh than for homogeneous, be-
cause of initially higher maximal detection distance for such type of mesh. As ex-
pected, the detection time for convex meshes is smaller because of the smaller asso-
ciated bounding boxes. Different discretizations (256× 256, 512× 512) have been
tested and in all the cases the same dependence takes place. Accordingly to the ana-
lytical estimation and carried out tests, the optimal grid size is the minimal one, i.e.
equal to the maximal detection distance

dc = dmax. (6)

For such a choice, each grid cell contains the minimal number of nodes, but on the
other hand it is necessary to carry out the detection procedure in many neighbouring
cells: on average 12–16 cells (of 26 surrounding cells in 3D) (Figure 4).

When the maximal detection distance is determined and the bounding box is
constructed, the internal grid has to be established in the bounding box and all the
slave and master nodes have to be distributed in the cells of the grid. Since the
optimal cell size is dmax the number of cells in each dimension of the grid is defined
as

Nx,y,z = max

{[
r2

x,y,z − r1
x,y,z

dmax

]
; 1

}
, (7)

where [x] stands for the integer part of x. Such choice of cell numbers provides the
grid sizes ∆x, ∆y and ∆z not smaller than the maximal detection distance in the case
of N > 1

∆{x,y,z} =
r2

x,y,z − r1
x,y,z

Nx,y,z
≥ dmax. (8)
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Each cell of the grid has to be enumerated, the unique integer number N ∈ [0; Nx ×
Ny ×Nz − 1] is given to each cell with spatial “coordinates” ix, iy and iz, where
ix,y,z ∈ [0; Nx,y,z −1]

N = ix + iyNx + izNxNy. (9)

Now the growth rate of the method can be estimated roughly as O(NsNm/NxNyNz).
If number of master and slave nodes per cell is supposed to be constant ρ = N/Nc,
where Nc = NxNyNz and N is an average number of master and slave nodes, then the
growth rate of the method can be rewritten as O(N). However, in practice the distri-
bution of nodes is not homogeneous and this value appears to be underestimated.

Slave and master nodes situated in the bounding box have to be distributed in the
cells. For this purpose two arrays As and Am corresponding to slave and master nodes
respectively are to be created. They contain slave and master node identification
numbers (ID). For example element As

i j keeps the ID of the j-th slave node in the i-
th cell of the grid, i∈ [0;NxNyNz−1], j ∈ [0;Ns

i ], Ns
i being the number of slave nodes

in the i-th cell. In average the number of integer (32 bits) elements in array does not
exceed the number of contact nodes and so even for extremely large problems it
makes just a minor contribution in memory requirement. However, the arrays can
be replaced by linked-list storages as in [4].

For each node with coordinates r : {rx,ry,rz} inside the bounding box, the cor-
responding cell number is easily determined as

Ncell =
[

rx − r1
x

∆x

]
+

[
ry − r1

y

∆y

]
Nx +

[
rz − r1

z

∆z

]
NxNy. (10)

2.2 Contact Detection

All steps described previously represent the preliminary part of the detection al-
gorithm which demands in general 7–10% of the total detection time. The next
steps correspond to the closest node detection, the determination of projections for
the slave nodes onto the corresponding master segments and the establishment of
contact elements. Let us discuss this stage in details.

For each grid cell ci and for each slave node rs
i j in this cell, i.e. for each node

As
i j we look for the closest master node rm

ik in the current cell, i.e. the closest node
among Am

ik if Am
i is not empty. Among all master nodes in the cell the distance to the

closest one is ds
i j ≤ dmax:

ds
i j = min

{
dmax,min

k
{|rs

i j − rm
ik|}

}
. (11)

It is obvious that master nodes situated in neighbouring cells (maximum 8 cells in
2D, 26 in 3D) have to be checked as well. Not all the cells are considered, but only
those that are sufficiently close to the slave node. The criterion of the proximity is the
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Fig. 5 Detection of the closest master node in current and neighbouring cell. Slave and master
nodes represented by triangles and circles respectively.

following: if any boundary of the current cell (face, edge or vertex) is closer than the
closest master node found up to the moment, i.e. closer than ds

i j, then the detection
procedure has to be carried out in neighbouring cells attached to this boundary one
by one (Figure 5).

For example, let us consider a vertex of the i-th cell rv
i . For instance, after check-

ing all master nodes in the current cell it was determined that the closest master
node is situated at the distance of ds

i j from the slave. If the considered slave node is
closer to the vertex than this distance rv

i : |rs
i j −rv

i |< ds
i j, then all master nodes in one

of neighbouring cells attached to the vertex rv
i have to be checked and consequently

ds
i j has to be decreased or kept the same (if no closer master node was found in this

cell). And so on for other cells attached to this corner. In general the same procedure
has to be performed for all 8 vertices, 12 edges and 6 faces of the i-th cell. To get
more optimal algorithm such an investigation of neighbouring cells is better to start
from the closest faces, further edges and finish the verification with vertices. Note
that each verified cell may decrease the ds

i j and consequently can decrease the num-
ber of cells to be checked. In such a manner all possibly proximal slave and master
nodes are detected cell by cell. The average number of verified neighbouring cells
for different meshes is represented in Figure 4. This number decreases with increas-
ing normalized grid size dc/dmax but as the optimal ratio dc/dmax = 1 the average
number of verified neighbouring cells remains quite high (12–16 cells).

Every slave node in the bounding box has been considered and for certain of
them rs∗

j corresponding proximal master nodes rm∗
j have been detected. To construct

contact elements it is necessary to project each of such slave nodes rs∗
j onto surfaces

containing its homologue master node rm∗
j . The case when only one projection is

found is trivial. There remains only to create the corresponding contact element
spanned on the slave node and master surface possessing this projection. If several
projections are found we choose the closest one and create the contact element. The
case when no projection is found is not as trivial as the preceding ones and has to
be considered in details. There are two possibilities:

1. the slave node is situated in a “blind spot” of the discretized master surface;
2. the slave node does not come in contact but just passes by close to the boundary

of master surface.
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Fig. 6 Examples of blind
spots: external, internal and
due to the symmetry boundary
conditions.

Case 1. Since the finite element method requires only continuity of the discretiz-
ation (Γc ∈C0) so the contacting surface may be not smooth (Γc �∈C1). Each master
segment has its “projection” zone (Figure 6), each point in this zone has at least one
projection onto the master surface [7, 8]. But often in the junction zone of master
segments (at common edges and nodes) the intersections of “projection” zones does
not fill the surrounding space entirely but with some gaps of form of prisms and
pyramids in 3D or of form of sectors in 2D. This problem exists not only for linear
master elements but for any order. Three types of blind spots can be distinguished:
internal, external or blind spot due to boundary conditions (see Figure 6). If a slave
node in a blind spot is overlooked, different consequences depending on the type of
blind spot are possible.

• External blind spot. Slave nodes situated in this kind of spot are not detected
before they penetrate under the master surface. After such penetration during
the next time step it can be detected and brought back onto the surface, but the
solution has been already slightly changed. In certain cases especially in force
driven problems such penetration can lead to a failure of solution.

• Internal blind spot. Contact is predicted correctly, but if slave node penetrates
just a little under the master surface and appears in its internal blind spot this
node will be lost for the contact detection at least during the next time step. Such
little penetrations take place if the penalty method for contact resolution is used
or just due to the limited precision of the iterative solution.

• Blind spot due to boundary conditions. This type of blind spot is situated at the
boundary and can be either internal or external. It appears due to the presence of
symmetric or periodic boundary conditions on the master surface, for example,
the basic Hertz contact problem with axisymmetrical 2D finite element mesh.

Obviously if the detection procedure which does not consider blind spots is repeated
at every iteration then some problems can be avoided but on the other hand it is very
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Fig. 7 Detection of the passing by nodes. (a) Master surface and its boundary. (b) Zoom on the
geometry close to the passing by node. (c) Convex master boundary. (D) Concave master boundary.

time consuming and not always efficient (for example, if a convex edge with an
external blind spot becomes a concave with an internal blind spot the penetration of
the slave node situated in this spot can be irreversible).

There are different possibilities to avoid the loss of contact in blind spots:

• Artificial smoothing of master surface for large sliding contact problems [8, 12].
There are no more gaps in “projection” zones except gaps due to symmetry, i.e.
there are almost no more blind spots and the problem of passing by nodes (Case
2) does not exist. However most of these methods have some inherent drawbacks:
and derive sometimes not correct deformation close to the edge of the master
surface boundary.

• A “proximal volume” can be constructed by an extrusion of the master surface
in the normal direction and in the opposite one which fills both projection zones
and blind spots. If a slave node is situated in this volume then it is considered
as node in contact and the master surface is further detected. “Passing by” nodes
can be easily detected as they do not appear in the “proximal volume”.

The first group of methods in general is too “expensive” if one uses them only for
the detection purpose and are not applicable for arbitrary meshes, the second one is
quite time consuming as well.

We use rather rough but quite simple and robust treatment of blind spots. If a de-
tected slave node has no projection and is not a passing by node then the correspond-
ing contact element is constructed with the closest [15] or randomly chosen master
surface attached to the closest master node. For sufficiently small time step such
approach is quite reliable. There remains only to determine if the node is passing by
or not. One possible technique is represented in Figure 7.

Case 2. First of all, in the preliminary phase the boundary master nodes surround-
ing the master contact surface have to be marked. Let us assume the situation when
one of such marked nodes rm is found to be the closest to slave node rs. If it has
no projection onto master segments attached to the marked master node, then two
alternatives are possible: either the slave node is situated in a blind spot or it passes
by the master surface. To choose between these possibilities it is possible either to
verify if the slave node is situated in one of blind spots attached to the master node
or to check if the slave node is situated in the local proximal volume of the mas-
ter surface. The second possibility seems to be more simple and natural. Note that
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such a verification is slightly different for locally convex and concave master sur-
face boundaries. The convexity can be known as nodes of each master segment are
ordered. The condition of convexity is

(rm − rm2)× (rm1 − rm) · (n1 + n2) ≥ 0, (12)

where n1 and n2 denote average normals to master segments possessing the edges
{rm,rm1} and {rm,rm2} respectively. Then the criterion of the slave node being in
the proximal volume is

n2 × (rm − rm2) · (rs − rm) ≥ 0 AND n1 × (rm1 − rm) · (rs − rm) ≥ 0. (13)

If this condition is fulfilled then the slave node is taken into account and the contact
element is established with the closest master segment. For the concave surface
AND should be replaced by OR in (13).

More elaborated approaches (see, for example, [7]) take into account node-to-
node and node-to-edge contacts in case of blind spot detection, average normals can
be established at edges and vertices. But for most of the contact problems, consid-
eration of only node-to-segment discretization provides the correct results.

As one can see the proposed algorithm is quite simple and natural except may
be the verification of passing by nodes. The proposed method does not require any
special data storage nor particular code structure and consequently can be easily
implemented in any finite element code.

2.3 Validation and Performance

The preliminary validation of the grid detection method is easy to carry out on
simple meshes. Normally a visual analysis of the constructed contact elements is
sufficient. The further validation consists in comparison with the all-to-all detection
method which is trivial to implement.

To demonstrate the performance of the grid detection method we consider a tyre-
road contact problem. Such simulation can be rather helpful for example for an
improvement of tread patterns (stick increase and noise reduction). We are particu-
larly interested in this problem because the contact elements change intensively at
each time step and consequently a fast detection procedure is highly desirable.

A finely and regularly meshed tyre wheel is translated over an artificially rough
road surface and its FE mesh is deformed manually accordingly to the road rough-
ness and next the contact detection procedure is executed. The finite element mesh
of the tyre (Figure 8) consists of about 550,000 nodes with contact zone of about
105,000 nodes. The finite element mesh approximating the road roughness (Fig-
ure 9) consists of about 400,000 nodes one half of them being included in the master
contact zone. Established contact elements are demonstrated in Figure 9 for differ-
ent tyre-road dispositions and imprint deep. It can be noted that the choice of the
bounding box as an intersection of master and slave bounding boxes reduces sig-
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Fig. 8 A part of the tyre finite element mesh consisting of about 550,000 nodes.

Fig. 9 Tyre-road contact problem: general view, three tyre-road dispositions and corresponding
contact elements on the bottom of the tyre for different imprint deep.

nificantly the number of contact nodes to be considered. The bounding box of the
road is kept constant, whereas the bounding box of the tyre is updated at each step.
The contact detection time at each time step in average is just 1.5–2 seconds on a
laptop, i.e. the contact detection time can be neglected in comparison to the system
resolution time. The analysis of the detection time shows that the estimation of the
maximal detection distance takes about 30% of the time, preliminary stage takes
about 20% and the detection procedure requires just 50% of the time.
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Table 1 Detection of contact between rough surfaces (2 millions of master and slave nodes).

Geometry Nodes in BB∗ Contact
elements

Detection time Gain,
Tall−to−all/Tgrid

Two close surfaces 2,100,000 75,300 35 minutes >300 times
Two convex surfaces 340,000 15,800 1 minute >10,500 times
Two close but not contacting
surfaces

50,000 0 4 seconds >160,000 times

∗BB – Bounding box

Fig. 10 Rendered surfaces of two finite element meshes (each contains 220 contact nodes).

Another example is an artificial contact between two rough surfaces, each con-
sisting of 220 contact nodes. Rendered surfaces corresponding to the meshes are
represented in Figure 10. Such a kind of problems requires a longer time for con-
tact detection because the bounding box includes all or almost all contact nodes
and there are as many slave nodes as master ones. If one uses the modified all-to-
all method (not node-to-segment but node-to-node), the reliable estimation of the
needed detection time exceeds 180 hours (!) (almost 8 days) and 240 distance veri-
fications are needed. The proposed grid detection method requires much less time
than all-to-all method. The time strongly depends on the geometry and discretiz-
ation, consequently on the constructed bounding box and the number of contact
nodes located in it, for example, for close enough rough surfaces (Figure 10) the
detection time is much higher than for convex surfaces and it is almost negligible if
two surfaces are close enough but not so close to come in contact. The results are
summarized in Table 1. Let us note that in presented computations the quadrilateral
master segments are supposed to remain flat for both considered methods.
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Fig. 11 Indistinguishable
contact nodes in self-contact
in case of the maximal detec-
tion distance higher than the
minimal structure thickness.

3 Self-Contact Detection

There are mechanical problems for which determination of master and slave sur-
faces presents a big challenge or may be impossible. Among such problems there
are multibody systems, problems with complicated geometries (for example highly
porous media like metal foams), large deformation problems with not regular dis-
cretization and self-contact problems.

This class of contact problems needs a particular contact detection procedure.
Here an adaptation of the grid detection method to problems with unknown a priori
master-slave discretization is proposed, particular attention is paid to self-contact
problems. Such adaptation demands considerable modifications in all stages of the
grid detection procedure. Moreover an adapted finite element mesh can be required
to make the detection possible. The growth rate of the method is the same as for the
case of known a priori master-slave discretization. The method is straightforward
and it does not need any complicated constructions and three data organization, as
for example in recently proposed technique for mortar formulation of contact [14].

A self-contact is more probable for thin or oblong solids, for which one or two
dimensions are much smaller than others, than for solids with all dimensions of the
same order. But there is a challenge which reveals itself in Figure 11. For a thin solid
with two sided contact zone in general case it is impossible to distinguish the contact
with the reverse side node (r1 can be in contact with r3) from a simple neighbour-
ing with it (r1 is close but cannot come in contact with r2). Even if in addition to
node positions their normals n1, n2, n3 and corresponding surfaces are taken into
account there is no way to distinguish r2 and r3. A possible solution to overcome
this problem is to generate a finite element mesh with contact surfaces smaller than
the minimal thickness of the structure (Figure 11). It provides the maximal detection
distance higher than the distance to the back side and allows to avoid this confusion.
But in a less general case the possibility of two sided contact can be omitted and
two sides can be treated independently. In this case, the maximal detection distance
should be limited by the doubled minimal thickness of the structure.

Let us enumerate the features of the implementation of the grid detection method
in case of unknown a priori master-slave discretization. The main modification is
that not only node coordinates but also associated normals have to be taken into
account to determine potentially contacting elements as in [1].
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1. The bounding box has to include all nodes of contact surface; it can be either
constant if we know a priori a sufficiently small area where from the contact
nodes do not escape or it can be a bounding box spanned all contact nodes.

2. In the beginning of every time step the normal have to be assigned to each contact
node. An average of average normals of attached contact surfaces can be used.

3. Only one array Ac is created and filled with contact nodes. The logic is the same
as in the case of simple contact.

4. Since we cannot distinguish master and slave nodes the detection of the closest
node has to be carried out for each contact node rc

i j against all other nodes rc
il, l �=

j in the cell i. To be sure that the closest nodes can come in contact and are not
attached to a common segment, the normals associated with nodes are checked
to form an obtuse angle ni j ·nik ≤ 0. Obviously some neighbouring cells have to
be verified as in case of simple contact.

5. When two proximal contact nodes j and k are detected then in order to determine
the NTS contact element the local mesh density has to be analyzed. If the surface
mesh surrounding j node is found to be more rough than the surface mesh of the
second node k, then the node j is considered as master node, otherwise as slave.
If one local mesh is as fine as another one, then the node j has to be checked
against each surface attached to the node k and vice versa. If the projection exists
then the contact element is created otherwise arbitrary one of nodes is considered
as a slave and its opponent as a master and if the slave node is not passing by then
the contact element is created.

Being adapted for the case of unknown master-surface, the detection procedure
has been verified on the challenging artificial problem of the self-contact within
a snail-operculum-like structure containing over 130,000 nodes on the surface, all
nodes with attached segments are included in the contact detection step (see Fig-
ure 12). The detection time is higher than for the contact of the same order with
known a priori master-slave discretization, because the preliminary stage requires
the assignation of normals to every node and also because the main detection stage
requires significantly more verifications of distances and normals than in master-
slave conception. In practice the difference in detection time between known a priori
and unknown master-slave depends significantly on the geometry and its evolution.
For example, for the snail operculum problem for the known master-slave the detec-
tion time (≈ 9 sec) is only three times faster than for unknown a priori master-slave
(≈ 30 sec).

In conclusion we affirm that the grid detection method can be adapted to the class
of contact problems with unknown a priori master-slave discretization. The required
detection time is of the same order of magnitude as the time needed for simple con-
tact detection for the same problem. Availability of such powerful method extends
significantly the capacities of the finite element analysis of contact problems.
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Fig. 12 Finite element mesh
used to test the detection
procedure for self-contact
problems.

4 Parallelization

Sequential treatment of the problems presented above requires either too long com-
putational time or even impossible due to the great amount of memory needed. The
use of the parallelization paradigm is a good way out. Many parallelization tech-
niques are available nowadays, the class of non-overlapping domain decomposi-
tion, also called iterative substructuring methods, is successfully and widely used
in computational mechanics, see [3, 5, 9]. It implies a splitting of an entire finite
element mesh into subdomains which intersect only on their interfaces. Each sub-
domain is treated by one or several associated processors and further the continuity
of the solution across subdomain interfaces is enforced by displacement and force
equality. The use of these techniques with affordable and powerful parallel com-
puters allows to solve very large mechanical problems in reasonable terms. Since
the resolution follows the detection procedure so the last one is very important for
the efficiency of parallel computations [2]. It should not present a bottleneck in the
whole process and if it is possible it has to use all available capacities of parallel
computers.

The essential thing for the contact detection procedure in parallel treatment is the
fact that the finite element mesh and possibly the contact surface is divided into some
parts associated with different processors and in the case of distributed memory it is
not available entirely on a particular processor. Since in principle we need the entire
contact surface(s) to perform the detection procedure this repartition implies the
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data exchange between subdomains containing different parts of this surface(s). The
smaller the amount of data transfer between subdomains on distributed memory, the
faster the algorithm computers. It will be demonstrated below how this data transfer
can be reduced significantly in the framework of the grid contact detection method.

Two ways of parallel treatment of contact problems are proposed and analyzed:
Single processor Detection, Multiple processor Resolution (SDMR) and Multiple
Detection, Multiple Resolution (MDMR). As it is evident from the notations SDMR
carries out the contact detection on a single processor whereas MDMR uses all
available resources. The last implies a parallelization of the detection procedure
which will be discussed in details and tested.

First, let us consider the SDMR approach. The main idea is that all necessary
information is collected by one processor which carries out the contact detection
and distributes consequently the created contact elements among all concerned sub-
domains. This method can be efficiently applied to any contact problem and is easy
to implement. On the other hand this method does not use efficiently all available
resources, i.e. all except one processors are idle and inactive during the main detec-
tion phase however all processors possessing contact surface are active during the
preliminary stage.

At first, the bounding box for the contact detection has to be defined. This
task is easily performed in parallel. Each subdomain i ∈ [1;Nc] possessing a part
of contacting surfaces examines it and derives the corresponding bounding boxes
mr1

i ,
sr1

i ,
mr2

i ,
sr2

i and the maximal dimension of master segment di
max. Further by

means of data transfer the global maximal detection distance dmax = maxNc

i=1{di
max}

and master and slave bounding boxes are determined

m,sr1
{x,y,z} =

Nc

min
i=1

{m,sr1
i{x,y,z}}−dmax,

m,sr2
{x,y,z} =

Nc

max
i=1

{m,sr2
i{x,y,z}}+ dmax. (14)

Finally, the resultant bounding box {r1, r2} is constructed as the intersection of
master and slave bounding boxes, exactly as in the sequential procedure. The data
transfer consists in maximum 3Nc sends but the load is not uniformly distributed
between processors, because not all of them contain the contact surface and among
possessing it, the size of this surface can be quite different. In all cases this operation
is quite fast even for huge meshes.

Next step consist in the union of all necessary parts of the contact surface at one
processor-detector. First, the information about the global bounding box is distrib-
uted among the subdomains possessing the contact surface, each of them counts the
number of master and slave nodes located in the bounding box, further the subdo-
main with the maximal number of master and slave nodes is chosen as the detector.
Another possibility is that this choice can be made in concordance with processors
network topology to accelerate the data transfer on the next detection step. As one
can see, at this stage the data exchange between subdomains remains very limited.

It remains to transfer all master and slave nodes from the bounding box (global
IDs, hosting subdomain ID, coordinates, and attached surfaces) to the detector sub-
domain, to carry out the detection as it is described in Section 2 and to distribute the
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Fig. 13 Example of cells par-
tition between two processors.
Each one gets one half of the
total number of cells (with
slave and master nodes –
represented by triangles and
circles respectively) as well
as one boundary layer from
another half which contain
only master nodes.

constructed contact elements between the corresponding subdomains. If a contact
element unions slave node and master nodes from different subdomains, the inter-
face between them has to be created or updated as well as duplicated slave or master
nodes have to be formed.

In MDMR (Multiple Detection, Multiple Resolution) the preliminary part of a
bounding box construction is exactly the same as in SDMR approach. The key dif-
ference between MDMR and SDMR consists in the following step. Instead of trans-
ferring all the necessary information to the detector, in MDMR this information is
distributed between all subdomains in a special way. As it was shown above the grid
is constructed in a way that for each slave node only one surrounding layer of neigh-
bouring cells has to be verified to find the closest master node. If the self-contact is
excluded from the consideration we do not care about slave nodes in neighbouring
cells. That is why the bounding box can be divided into N non-overlapping parts,
each part consists of integer number of cells. Further, each part is extended in all
directions (not exceeding the bounding box) by a one-cell-overlapping layer; the
extended part is filled only with master nodes (see an example for two subdomains
in Figure 13). In other words each part consists of internal cells (non-overlapping
with other parts) including both master and slave nodes and external cells (shared
with neighbouring parts) including only master nodes. Each part is associated with
a processor and all necessary data: nodes and surfaces located in the part (global
IDs, hosting subdomain ID, coordinates, and attached surfaces) is collected from
different subdomains and transferred to the considered one. Consequently the de-
tection can be carried out absolutely independently, i.e. in parallel in each part. No
additional data exchange is needed and it increase significantly the performance and
scalability of the MDMR approach. The advantage of the method is that the total
number of operations per processor during the main phase of detection does not
increase with proportional increasing number of processors and contacting nodes.
However, during the main detection phase the number of operations is not distrib-
uted homogeneously between processors.
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Fig. 14 The split of the FE mesh split into 16 sub-domains for parallel computations.

The same parallel procedure can be used for self-contact problems. The only
difference is that master and slave nodes are not distinguished and hence all contact
nodes have to be included in the overlapping cells. The described method is very
similar to the parallelization of the Linked Cell Method widely used in molecular
dynamic simulations for short-range interactions [6].

In Figure 14 the finite element mesh of a rough surface is presented, in the figure
different tones of grey correspond to subdomains. The scalability test for MDMR
approach has been performed between two such meshes containing over 560,000
nodes and over 66,000 contact nodes each. The scalability test for such meshes with
slightly different surface roughness is represented in Figure 15. The heterogeneous
distribution of active contact zones means that the parts of bounding box associated
with different processors have quite different number of potential contact elements;
the homogeneous distribution means that this number is more or less similar for
different parts. And the average gain stands for averaged time of processors work.
The difference between linear gain and the average gain makes evident the time
necessary for the data exchange between subdomains. The pronounced difference
between the gain for heterogeneous and homogeneous active contact zones distri-
butions can be explained by the following observation. If there is no master node in
the cell of the slave node, nor in the neighbouring cells, the time needed to conclude
that is very small. On contrary if the considered cells are not empty and contain sev-
eral master nodes it takes a longer time to derive the coordinates of these nodes, to
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Fig. 15 Time gain for parallel contact detection procedure.

compare them with the slave node and to verify a projection availability. Neverthe-
less the gain is quite high and its rate does not decrease with increasing number of
detecting processors (for reasonable ratio of contact nodes to number of processors).

The SDMR and MDMR approaches can be efficiently applied to parallel con-
tact treatment. The second approach requires a larger amount of programming but
its performance allows to neglect the detection time for large and extremely large
contact problems.

5 Conclusion

The very fast local detection method has been elaborated on the base of the bucket
method. Sequential and parallel implementations of the method have been discussed
in details for known a priori and unknown master-slave discretizations.

The strong connections between the finite element mesh of the master surface,
the maximal detection distance and the optimal dimension of detection cells are
established. Analytical estimation and numerous tests demonstrate that the optimal
cell size is equal to the maximal detection distance which by-turn is equal to the
dimension of the biggest master segment. The particular attention in the article has
been paid to the bounding box construction, optimal choice of the neighbouring
cells to be verified, “passing by node” and blind spot analysis, master–slave surfaces
definition in self-contact and especially to an efficient implementation of the method
on distributed memory parallel computers.

The method is very flexible but it is not well adapted neither for very heterogen-
eous distribution of master segment dimensions nor for very different mesh densities
of master and slave surfaces. In the method, the dimension of the biggest master seg-
ment is strongly connected with the maximal detection distance and consequently
with the cell size. Therefore if the master surface has at least one segment which
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dimension is 10–100 times larger than the dimension of an average segment the
detection time can be rather high, but always less than in all-to-all approach.

The validation of the method has been performed on different contact problems
in sequential and parallel cases: contact between rough surfaces with different geo-
metries, tyre-road contact, self-contact of a snail operculum and on the extremely
large contact problem between two rough meshes including more than 1,000,000
segments at master surface against 1,000,000 slave nodes. In the latter problem, the
detection time varies significantly for different geometries from several seconds to
30–40 minutes in comparison to almost 8 days needed for all-to-all detection tech-
niques.

Acknowledgements The implementation of the algorithm and all demonstrated analyses have
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