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ABSTRACT

To model a creeping flow through closed cracks in cracked materials we study
a normal mechanical contact between two elastic half-spaces with rough surfaces is
studied. The roughness is modeled using a filtering technique in Fourier space: the root
mean squared roughness, the spectral content and the fractal dimension are prescribed.
The non-linear contact problem is solved using a spectral boundary element method.
A general transmissivity laws for incompressible fluid linking roughness parameters
and applied load are deduced up to the percolation limit. In this analysis it is assumed
that hydrostatic pressure is much smaller than contact pressures. It is shown that the
transmissivity decreases exponentially with the effective contact area, which in turn
grows linearly with the contact pressure. The effective contact area includes both con-
tact clusters and zones of trapped fluid. A strongly coupled problem of trapped fluid
in the wavy contact interface is also considered for compressible and incompressible
fluid. The influence of the trapped fluid on the friction angle is studied.

INTRODUCTION

The transport of fluids in geomaterials plays an essential role in many natural
geophysical phenomena as well as in geotechnical engineering [Sahimi, 2011]. Apart
from the classical porosity geomaterials can contain dense networks of penetrating
cracks or fracture porosity. At macroscopic scale these crack increase significantly the
permeability of rocks by creating dominant paths through the rock’s bulk. Thus the
account for the fluid transport through these cracks is essential for many phenomena
and applications dealing with fractured porous rocks.

As all engineering and natural surfaces, crack faces are rough and thus when
pressurized they form mechanical contact only on a small portion of the nominal con-
tact area, the remaining non-contacting area allows fluid to pass through the crack.



Under increasing normal pressure the true contact area increases leaving lesser space
to fluid to pass through the contact interface. When the true contact area reaches the
percolation limit which is of about 40%, the flow through the interface stops. To study
transmissivity of cracks, we start with a contact problem between two elastic half-
spaces brought in mechanical contact by a pressure applied at infinity. Assuming that
material of both sides is the same, the effective elastic modulus [Johnson, 1987] is
given by E∗ = E/2(1 − ν2), where E and ν are Young’s modulus and Poisson’s ra-
tio of the rock, respectively. The effective roughness of the crack interface is given by
z∗(x, y) = z1(x, y)− z2(x, y), where z1, z2 are roughness of two half-spaces.

First, we show how the effective periodic rough surface is generated for a given
spectral content, a root mean squared height and a fractal dimension (or a Hurst ex-
ponent). The method is also generalized for generation of porous media. Second, we
show the results of mechanical contact simulation using the spectral boundary ele-
ment method on the evolution of the contact area and the free volume under increasing
contact pressure. After that, on the free volume maps using a finite element method
we compute the evolution of transmissivity of the contact interface under increasing
load, i.e. we solve Reynolds equation for a viscous incompressible fluid flow between
immobile walls. All these results are obtained under the assumption that hydrostatic
fluid pressure is much smaller than contact pressure, which has a rather limited use
in poromechanics. Finally, we briefly discuss the role of trapped fluid by analyzing a
fully coupled problem of a compressible and incompressible fluid trapped in contact
interface.

Figure 1. (a-b) Synthetic rough surfaces and zoom on a small portion of the surface
(0.1L×0.1L) with visible discretization grid; (a) k̃l = 4, k̃l = 64,α ≈ 12.3,H = 0.8;
(b) k̃l = 1, k̃l = 128, α ≈ 311.7, H = 0.8; (c) generated porous medium with
2563 ≈ 17 · 106 voxels, only pores are shown.

CRACK ROUGHNESS

Roughness is generated using an FFT filtering technique [Hu and Tonder, 1992].
We generate a white noise w(x, y), x, y ∈ [0, L] with 〈w〉 = 0, which is transformed
in Fourier space ŵ = FFT(w), root mean squared (rms) height

√
〈w2〉 is chosen such



that 〈ŵŵ∗〉 = Φ0. In Fourier space a filter f̂(kx, ky) is created, which retains wavenum-
bers only within frequency band k ∈ [kl, ks], where k =

√
k2x + k2y and kl, ks are cutoff

wavenumbers for long and short wavelengths, respectively. Within this frequency band,
the filter decays as a power law of wavenumber: f̂ = (k/kl)

−(H+1), where H ∈ (0, 1)
is the Hurst exponent, which for a fractal surface determines the fractal dimension
Df = 3−H . Taking a product between the white noise in Fourier space and the filter
gives the FFT of the resulting roughness ẑ = ŵ∗ f̂ , which is transformed back into real
space z = FFT−1(ẑ). The power spectral density (PSD) of the surface, which can be
found as the Fourier transform of the autocorrelation function follows approximately
the power law Φ(k) ≈ Φ0(k/kl)

−2(H+1). Such a technique results in an isotropic and
Gaussian rough surface, smooth at frequencies higher than ks: the bigger the product
Lkl (where L is the surface period), the closer the height distribution to a Gaussian one.
Such a surface can be studied using a stationary random process model [Nayak, 1971].
An anisotropic roughness, often encountered in fracture surfaces [Ponson et al., 2006],
can be also generated using this approach using an anisotropic filter. Geometrical char-
acteristics of the surface can be found through spectral moments mp of the surface
spectrum: rms height

√
〈z2〉 =

√
m0 and rms gradient

√
〈|∇z|2〉 =

√
2m0, another

important characteristics is the so-called Nayak’s parameter α = m0m4/m
2
2. For an

isotropic surface spectral moments are given by mp = T (p)
∫∞
−∞ k

p+1Φ(k) dk, where
T (p) =

∫ 2π

0
cosp(φ) dφ. Synthetic rough surfaces are presented in Fig. 1(a-b).

Generation of porous microstructures. It is worth noting that the same tech-
nique can be employed for generation fractal-like (self-affine) porous microstruc-
tures. The only difference is that all quantities should be defined in three-dimensional
space. Starting again with a white noise w = w(x, y, z) centered at zero, one can
create a filter in Fourier space f̂ = (k/kl)

−(H+1), where in general case k =√
(kx/a)2 + (ky/b)2 + (kz/c)2, where adimensional parameters a, b, c can be used to

produce anisotropic pore distribution. After taking a product of white noise with a
filter in Fourier space and returning to real space we obtain a three dimensional func-
tion G(x, y, z) = FFT−1(f̂ ∗ ŵ), by introducing a threshold G0 we split the bulk
x, y, z ∈ [0, L] into pores for G > G0 and into a bulk material G ≤ G0. The result-
ing porosity is given by ρ0 =

∫
V
H(G − G0)dV/L

3, where H(x) is the Heaviside
function. Note that G0 = 0 corresponds to ρ0 = 50% giving the percolation limit for
this self-affine Gaussian porosity, negative values ofG0 corresponds to non-penetrating
porosity. If a non-uniform threshold is used G0 = G0(x, y, z) a non-uniform porosity
can be synthesized. An example of isotropic porosity generated using this technique is
shown in Fig. 1(c).

MECHANICAL CONTACT BETWEEN CRACK FACES

Under increasing pressure applied at infinity, two elastic half spaces with rough
surfaces come in intimate contact at discrete zones forming the true contact area



A; since we consider a periodic roughness the nominal contact area per period is
A0 = L2 and the true contact area can be considered also only within this period.
For a crack, since the area of both crack faces is the same, the nominal contact area
A0 is simply a half of the total crack’s surface. Moreover, in most situations crack
faces form a conformal interface, so at the macro-scale the closed crack is similar
to two nominally flat surfaces in contact [Greenwood and Williamson, 1966]. The re-
maining non-closed gap between two surfaces g(x, y) > 0 determines the free vol-
ume available for a fluid to go through the contact interface. We first map an elastic
contact between two rough half-spaces to an equivalent problem of contact between
a rigid surface with an effective roughness z∗ with an elastic half-space with an ef-
fective elastic modulus E∗ [Johnson, 1987]. This problem is solved using a spectral
boundary element method [Stanley and Kato, 1997] and an adapted conjugate gradi-
ent solver [Polonsky and Keer, 1999]. The external pressure is applied within approxi-
mately 100 steps until the true contact area reaches 50% fraction. The non-linear evo-
lution of the contact area depends on the external (nominal) pressure p0, rms surface
gradient

√
2m2 and Nayak’s parameter α: the normalized adimensional nominal pres-

sure is given by p′ = p0/(
√

2m2E
∗), so the contact area evolves as A/A0 = F (p′, α).

Note that F is a non-linear function, but as p′ → 0 for an any α the ratio F/p′ tends to a
unique constant F/p′ →

√
2π [Bush et al., 1975, Carbone and Bottiglione, 2008]. The

need in heavy numerical simulations comes from a strong non-linearity of contact prob-
lems and from long-range elastic interactions. All available analytical models, both as-
perity based [Bush et al., 1975, Greenwood, 2006, Carbone and Bottiglione, 2008] and
Persson’s model [Persson, 2001, Manners and Greenwood, 2006] are unable to predict
accurately the contact area evolution [Yastrebov et al., 2015]. Apart from the true con-
tact area that does not conduct any flow, an effective area Aeff can be introduced which
includes the true contact area and the trapped non-contact area Atr, which also cannot
conduct any fluid, giving Aeff = A + Atr. Evidently the transmissivity properties of the
crack are determined by this effective non-conducting area. We demonstrate that con-
trary to the true contact area A(p′), the effective area evolves linearly with the nominal
pressure up to high area fractions of 30− 40%.

VISCOUS FLOW SIMULATION THROUGH CLOSED CRACKS

Free volume field g(x, y) obtained in mechanical contact simulation for a given
nominal pressure p0 is used to estimate the transmissivity of the contact interface:
K = −Q/∆p, where Q = 〈qx〉 is the average flux, qx is the flux in the direction
of the applied pressure drop ∆p = po − pi, where po, pi are the outlet and inlet pres-
sures applied at x = L and x0, respectively. Periodic boundary conditions are used
on lateral sides y = 0 and y = L of the simulation domain: qy(x, L) = qy(x, 0).
The problem of the viscous incompressible fluid flow through a thin interface can be
solved using Reynolds equation for immobile walls ∇ · [g3(x, y)∇p(x, y)/12µ] = 0,
where µ is pressure insensitive dynamic viscosity of the fluid. Equivalently, an effec-



Figure 2. Simulation of the creeping flow through the contact interface at different
nominal pressures (a-d): dark uniform-color zones (navy color in online version)
represent non-conducting zones Aeff including contact clusters and non-contact
zones surrounded by contact zones (trapped fluid), gray-scale channels (reddish
colors in online version) represent scaled fluid flux |q|; inlet and outlet hydrostatic
pressures are applied on the left and right sides of the simulation square domain;
periodic boundary conditions on lateral borders are used.

tive medium theory can be used [Stroud, 1975, Dapp and Müser, 2016] but with mod-
ified in a way that it accounts for non-conducting trapped area Atr. Reynolds equation
is solved on a regular grid using the finite element method and a coloring technique
to exclude all non-conducting areas Aeff, an example of simulation results is depicted
in Fig. 2 showing the flux and the effective non-conducting clusters. The simulations
demonstrate that the transmissivity decays exponentially with the effective contact area
K ∼ exp(−γAeff/A0) down to the percolation limit. This result however holds only for
weakly interacting solid and fluid, i.e. in the case when the hydrostatic pressure in the
fluid in much smaller than contact pressures. Otherwise, a more elaborated coupling
scheme is needed, in which the fluid pressure is taken into account in the contact prob-
lem. This, however, cannot be ensured in the spectral method, in which the gradient of



the hydrostatic pressure over long spatial lengths is hard to take into account.

Generalization to permeability of a system of cracks The approach can be gen-
eralized for a representative volume element (RVE) L × L × L containing numerous
end-to-end flat cracks [Singhal and Gupta, 2010]. Assuming the RVE is subject to the
macroscopic stress tensor Σ, the nominal pressure on every crack can be found as
p0 = −n · Σ · n, where n is the normal to the crack interface. Knowing the crack
dimensions, roughness parameters and the pressure gradient, the flux through a single
crack can be found as Q = −K[exp(−γAeff(p0)/A0)]

∑
i ∆pieiLoi/Li, where ei are

the unit basis vectors i = 1 . . . 3, Li is the crack length along ei and Loi is the mean
crack width. Summing up contributions from differently oriented cracks the effective
permeability tensor depending on crack orientations and macroscopic stress state can
be found K(Σ).

Figure 3. Fluid trapped in the contact interface: a periodic wavy profile of an
elastic half-space brought in contact with a rigid flat by an external pressure, a
compressible fluid depicted in blue is trapped between contact lines.

TRAPPED FLUID IN CONTACT INTERFACE

A more relevant problem for poromechanics is when the fluid is trapped in the
contact interface and the pressure developed in the fluid is fully transmitted to the solid.
We considered a simple plane-strain problem (see Fig. 3) for a linearly-elastic solid
with a sine-wavy surface z(x) = ∆ sin(2πx/λ) brought in mechanical contact with
a rigid flat and containing a certain amount of fluid (linear fluid density, i.e. sectional
area is Af = f∆λ), the remaining volume is filled with a much more compressible
fluid and is not taken into account. This situation corresponds to an unsaturated porous
medium. Up to a certain pressure the system behavior is equivalent to a classical West-
ergaard problem with a known analytical solution [Westergaard, 1939]: for a given
external pressure pext the contact area and the contact pressure distribution are known.
For a certain pressure, the fluid comes in contact too and is pressurized: if the fluid is
assumed incompressible, its volume remains constant under increasing load; for a com-
pressible fluid a linear relation between volume and pressure are assumed. This coupled
problem can be formulated as an optimization problem under specific constraints for
the contact part (contact pressure is not smaller than fluid pressure and the gap is non-
negative) and for the fluid part (gap volume is not smaller than fluid volume and fluid
pressure is non-negative). Formulated within a monolithic weak form using either the



method of Lagrange multipliers or the penalty method (in the case of compressible
fluid) to threat inequality constraints, this problem was solved using the finite element
method. The details of implementation can be found in [Shvarts and Yastrebov, 2017].
It was shown that if the compressibility modulus of the fluid is greater than this of the
solid, then the fluid will eventually open the contact interface. This important result,
appearing naturally in the finite element model, cannot emerge within the boundary
element framework, in which surface slopes are inherently assumed to be infinitesi-
mal ∆/λ � 1, see e.g. results of [Kuznetsov, 1985]. The opening of the contact zone
by the pressurized fluid results in the decreasing of the macroscopic static coefficient
of friction down to zero µgl, which might also explain the cap in the yield surface of
geomaterials [Resende and Martin, 1985].

CONCLUSION

In this short paper we presented a scheme for analyzing the permeability of a
representative volume element of a fractured rock subject to an arbitrary stress state.
The method is based on phenomenological equations based on results of numerical
simulations of the normal mechanical contact for generated self-affine rough crack sur-
faces and the subsequent finite element solution of Reynolds equation for a creeping
flow through the crack interface. In addition a method for generation of volumetric
porous media was suggested inspired by the technique used to generate random self-
affine surfaces based on the white-noise filtering in Fourier space. Finally, a strongly
coupled problem for an almost incompressible fluid trapped in the contact interface was
addressed in the framework of the finite element method. The main reported result is
that in partly saturated crack under increasing external pressure the fluid should even-
tually open the trap, which would result in a lowering of macroscopic static friction.
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