Contact Mechanics and Elements of Tribology Foreword

Vladislav A. Yastrebov

MINES ParisTech, PSL Research University, Centre des Matériaux, CNRS UMR 7633, Evry, France

> @ Centre des Matériaux February 8, 2016

Outline

- Acquaintance
- Questionnaire
- Course content
- Historical remark
- Complexity
- Notations

Questionnaire

Please fill in the questionnaire

Message to DMS students :

- Rank all suggested topics¹ for your report in the order of decreasing attractiveness
- Before the lunch one topic will be assigned to everybody
- On Friday (12/02) you will have 10 minutes to present briefly your topic to other students
- If you are not a DMS student but would like to follow, you are welcome Basava, Andrei and Paolo will also present rapidly their research projects on 12/02

- By Friday (19/02) you will need to send me your report on your topic (≈ 10 pages in Français/English)
- Criteria of evaluation : no plagiarism, scientifically sound report

¹or suggest a different one but not related to your master project

Course content

Lectures :

- 1 Motivation : industrial applications
- 2 Contact Mechanics I & II
- 3 Contact at small scales : surface roughness
- 4 Computational Contact Mechanics
- 5 Contact rheology & friction laws
- 6 Elements of tribology : friction, adhesion, wear
- 7 Wear and fretting (by Henry Proudhon)
- 8 Multiphysical problems in contact
- 9 Your presentations

Course content

Lectures :

- 1 Motivation : industrial applications
- 2 Contact Mechanics I & II
- 3 Contact at small scales : surface roughness
- 4 Computational Contact Mechanics
- 5 Contact rheology & friction laws
- 6 Elements of tribology : friction, adhesion, wear
- 7 Wear and fretting (by Henry Proudhon)
- 8 Multiphysical problems in contact
- 9 Your presentations

Practice :

- 1 Chalk and blackboard : Boussinesq, Cerruti, Flamant
- 2 Chalk and blackboard : Hertz contact
- 3 Computer : rough contact
- 4 Computer : frictionless and frictional cylindrical contact
- 5 Computer : elasto-plastic spherical indentation

V.A. Yastrebov

Historical remark

Use of friction and overcoming of friction

- Frictional heat lighting of fire > 40 000 years ago.
- Ancient Egypt lubrication of surfaces with oil > 5 000 years ago.

Historical remark

First scientific studies on contact and friction

- Leonardo da Vinci [1452-1519] first friction laws and many other tribological topics
- Isaac Newton [1687] Newton's third law for bodies interaction
- Guillaume Amontons [1699] rediscovered friction laws
- Leonhard Euler [1707-1783] roughness theory of friction

Historical remark

First scientific studies on contact and friction

- Charles-Augustin de Coulomb [1789]
 friction independence on sliding velocity and roughness, the influence of the time of repose
- Heinrich Hertz [1881-1882] the first study on contact of deformable solids
- Holm [1938], Ernst and Merchant [1940], Bowden and Tabor [1942] difference between apparent and real contact areas, adhesion theory.

Photoelasticity analysis of Hertz contact problem (fringes correspond to max shear stresses)

Complexity

Zoom on the contact interface

- Between different heterogeneous materials with specific rough surfaces
- Under various loads

Involved physical phenomena

Primary phenomena (atomic/electronic interactions)

- 1 Contact (non-penetration)
- 2 Friction (tangential resistance)
- 3 Adhesion (resistance to tension)
- 4 Surface energy
- 5 Quantum effects (tunneling, Casimir effect)

Secondary phenomena

- 1 Wear
- 2 Lubrication (fluid-structure interaction)
- 3 Environmental effects (oxidation)
- 4 Aging, diffusion
- 5 Heat production
- 6 Heat and electricity transfer

Contact complexity : physics and mathematics

Particular difficulties related to contact problems : multiphysical aspects, mathematical aspects

- Fractality of surfaces
- Interface chemistry
- Hardly accessible contact interface
- Generation and diffusion of heat
- Multiscale and multiphysical nature of friction

Contact complexity : physics and mathematics

Particular difficulties related to contact problems : multiphysical aspects, **mathematical aspects**

- One of the most hard problems in mechanics
- Lack of standard optimization problem
- Non-convexity and non-differentiability
- Non-continuous character
- Bad scalability

Notations

Vectors and tensors

• <i>a</i> , α	scalars
• <u>b</u>	vectors
• $\underline{\underline{C}}, \underline{\underline{\beta}}$	2nd order tensors
• ⁴ <u>D</u>	4th order tensors

• $\nabla a = \underline{B}$ gradient operator

- $a \cdot b = c$ • $a \times b = c$ • $\underline{a} \otimes \underline{b} = \underline{C}$ • A^T
- scalar (dot) product
 - vector (cross) product
 - tensor product
 - transposition
 - $\nabla \cdot a = c$ divergence operator • $\underline{I} = \underline{e}_i \otimes \underline{e}_i$
 - unitary 2nd order tensor

Mechanics

• $\nabla \times \underline{a} = \underline{B}$

Cauchy stress tensor • <u>σ</u>

rotor operator

- gap, normal gap • g, gn
- € penalty parameter
- $\lambda, \lambda_n, \lambda_t$ lagrange multipliers
- $\sigma_n = (\underline{\sigma} \cdot \underline{n}) \cdot \underline{n}$ contact pressure
- ξ • <u>n</u> • $\frac{\partial \varrho}{\partial \xi_1}, \frac{\partial \varrho}{\partial \xi_2}$ • f

● <u>8</u>

Small strain tensor position vector in parent space outward unit normal vector surface tangent vectors Coefficient of friction

V.A. Yastreboy

Welcome to CMET course!

 \odot