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advances in modeling have enhanced our ability to make quantitative predictions for tribolo
nomena, thereby unraveling relevant mechanisms. Algorithmic innovations, including those bas
ltiscale methods and machine learning, have been especially impactful, for example in overcomi
anding bottlenecks that hinder simulations of systems with strong coupling across disparate scal
er, traditional modeling approaches, such as boundary-element techniques, have also progressed a
e to yield new insights. This article reviews developments from the past decade, examining how bo
d established methods have deepened our understanding of experimental results and have further
ical approaches in key tribological areas, including contact mechanics, lubrication, metal frictio
bo-chemistry. Selected applications, such as tunable interfaces and energy harvesting, illustrate t
influence of recent developments on the field.
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in other scientific and engineering fields, modeling plays a central role in tribology [1], which concer
iction, lubrication, and wear, or more generally, all processes that occur when two surfaces are
motion. Understanding and ultimately improving tribological systems benefits energy efficien

stainability. Nonetheless, applications are still significantly driven by trial-and-error procedur
because it is difficult to obtain direct experimental information on stresses, temperature, chemic
sition, and related quantities near the tiny zones in a buried interface [2], where surfaces touch and ru
where modeling offers a distinctive advantage. It allows complex dynamics to be directly visualiz
ulating the mechanical, thermal, and chemical processes locally. However, this is easier said th
ince the simulator ideally needs expertise in mechanics, materials, and chemistry. It also requir
dge of quantum physics and electromagnetism—for example, when addressing triboelectricity [3].
n, incorporating experimental data into models often requires further proficiencies, such as handli
ata or even integrating measurements on-the-fly during simulations, as in digital twins.
tunately, many interesting tribological problems exist where “single-physics approaches” allow a giv
n to be answered or a specific target property to be optimized. Examples include assessing the v
ic dissipation when an elastomer slides past a textured or randomly rough surface using continuu
s [4], or identifying oils whose viscosity changes as little as possible with temperature through a com
n of molecular dynamics and artificial intelligence [5]. However, even these seemingly straightforwa
s often become computationally prohibitive—primarily due to the challenge of reaching experime
e scales—or inaccurate due to the limited validity of material models. Matters become even mo
x when different physical descriptions are optimal at different length scales. A paradigmatic examp
eneration and propagation of a single crack in a tribological coating. Its modeling requires atom
ion at the crack tip—achievable through molecular dynamics—while boundary conditions are mo
ely determined at much coarser scales using continuum-mechanics-based techniques [6, 7].
ling up from a single crack to modeling wear in machine components—such as an entire bearing—a
tely to a full engineering system like a vehicle with numerous moving parts necessitates careful metho
l choices. Ideally, modeling should offer added value beyond simply reproducing the you-get-out-wha
t-in pitfall. Despite the challenge of reaching meaningful time and length scales while maintaini
curacy, a key advantage of simulations is their ability to examine a moving, buried interface—
that is extremely difficult to examine in in situ experiments [2]. For instance, flash temperatur
principle, be determined in a sliding contact between non-transparent surfaces before the rubb
s are exposed to air. Atomistic simulations can even address fundamental questions, such as wheth
tribution of velocities adheres to the Maxwell-Boltzmann distribution—a prerequisite for defini
ature in analogy to an equilibrium system.
ure 1 provides a comprehensive overview of the mechanisms governing tribological interfaces acro
le scales. The schematic integrates representations of length and time scale-dependent processes, t
ing mechanisms shaping macroscopic contact behavior, and the inherently multiphysical nature of t
. At the smallest scale, it explicitly resolves atomic interactions between solid surfaces and any co
edium (e.g., gas, liquid), depicting key elements such as lubricants, additives, oxides, and tribofilm
to the mesoscale, it highlights the role of defects, dislocations, and near-surface microstructu
ith local solid–liquid interactions such as adhesion, wetting, and lubricant film formation, all critic
e-scale behavior.
ure 1 also serves as a framework for understanding the constellation of phenomena influencing i
l performance, including damage localization, material transformation, tribolayer evolution, a
e-surface interactions. Additionally, it explicitly captures how external macroscopic influences, su
tric or thermal fields and variable applied loads, directly impact smaller-scale responses. A maj
ge in tribology modeling lies in accounting for this vast array of mechanisms and selecting the a
te tools to capture them. The key lies in determining which aspects must be explicitly included
. While significant progress has been made in addressing many of these elements through advanc
ng techniques, Fig. 1 serves as a canvas to present the “big picture” by integrating the developmen
unified perspective.
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: A representation of the complexity of a tribological interface capturing multiple scales, mechanisms and exter
es that control friction, wear, and engineering performance.

his review, we highlight recent advances in tribological modeling and summarize key insights gain
e past decade, building on a previous comprehensive review [1] co-authored by many of the autho
work. We focus on areas where significant progress has been made. These range from AI-assist
e dynamic simulation of cross-scale coupling to the long-standing challenge of bridging atomis
ions with continuum models, encompassing the modeling of bond-breaking and formation in trib
try, plasticity, or wear under realistic conditions. The main body of this review begins with a bro
ion of methodological advances in Section 2, covering both conventional modeling approaches a
ments involving machine learning and artificial intelligence. Section 3 examines recent progress
tinuum mechanics of solids and lubricants—fields with long-standing foundations but ongoing d
n fundamental issues, such as how adhesion contributes to energy dissipation in sliding contacts
r friction causes contact areas to shrink or expand. Some tribological challenges require materia
istry-specific approaches. These are explored in Section 4, with a focus on the friction and wear
and tribochemical processes driven primarily by high local stresses. Application-oriented aspects
gy are discussed in Section 5, particularly in relation to tunable interfaces, energy harvesting, a
es. Finally, conclusions are presented in Section 6.

deling

ditional models for tribological systems mold what we know about mechanics, materials, and chem
to models suitable to answer specific tribological questions. This requires approximations and a
ons: for example, molecular models for predicting (tribo-) chemical reactions are carried out at som
external pressure, but which pressure is relevant at molecular scales is determined by surface roug
hich varies widely. Validating a “single-physics” and a “single-scale” model typically requires bespo
ents: for example, friction measured from atomic-force microscopy (AFM) could be matched wi
lar calculations if AFMs had the ability to move at technically relevant velocities. However, for mo
ring applications there is still a lack of coupling schemes for arriving at truly macroscopic, “mul
” and “multi-scale” predictive simulations. New flavors of models, in particular digital twins a
e-learned models, attempt to fill this gap by combining simulation data with measurements that c
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models on the fly. The hope is that such hybrid models can offer predictive power even in scenarios
x as those encountered in most mechanical devices. This section highlights advances in the technic
of modeling in broader contexts than those covered in later sections. For example, we summari
rtificial intelligence (AI) methods have been applied in tribology, while later chapters provide a mo
d exploration of their use in addressing specific topical problems.

ngle-physics models and beyond

dern modeling tools allow tribologists to study processes across a wide range of scales, from the atom
macroscopic. Over recent decades, atomistic simulation techniques like molecular dynamics (MD
nsity functional theory (DFT) have provided unique insights into various tribological systems a
es. Molecular simulations can now capture phenomena such as fluid rheology [8, 9, 10], tribochem
1, 12, 13], and the formation of rough interfaces [14, 15]. Atomistic models are particularly valuab
ealing molecular processes that often drive the macroscopic behavior of tribological systems [1
limitation of molecular models, however, is the restricted length and time scales, and the chemic
xity [17], they can access. While length scales can be extended through parallelization—allowi
ions with tens of millions of atoms [18]—bridging time scales requires problem-specific, advanc
ng techniques, such as kinetic Monte Carlo [19]. Similarly, despite mounting evidence that tackli
al complexity is becoming increasingly feasible with machine-learned potentials [20, 21, 22], ev
ess computationally demanding two-body potentials impose tight bounds on accessible system si
e scales.
ulating realistic rough interfaces requires system sizes that are typically beyond the reach of molecul
ues. To address this challenge, the tribology community has a rich history of developing mesosca
ion methods for studying roughness, particularly the boundary element method (BEM) [23, 2
simplifies the problem by mapping the three-dimensional elastic response of a body with a (typica
terface onto the response of the interface alone. Recent advancements include extending BEM
form grids [25] and tackling nonlinear problems such as plastic flow occurring at and below contacti
ies [26, 27, 28, 29]. BEM has been employed to study wear [30] and the evolution of roughne
acting interfaces [31]. The largest linear elastic BEM models in recent literature have discretiz
roughness using grids exceeding 65, 536 × 65, 536 nodes, amounting to over 4 billion degrees
[32, 33, 34]. These high-fidelity calculations serve as reference standards for developing simplifi

cal models [32, 33] and facilitate the study of the fractal nature of contacting geometries [34] (s
a-c). In situations where molecular information in the boundary itself is still required, BEM mod
dels with atomistic resolution can be combined [35, 36], even for many-body potentials and finit
ss boundaries [37].
ther recent advancement is combining BEM with a Griffith-like criterion to study wear partic
ion. In this approach, wear particles are generated either when the size of the contact islands excee
hold (see Fig. 10d, Refs. [38, 39]), or when the elastic energy released by removing an asperi
—calculable within BEM—exceeds the energy required to create new surface area (see Fig. 10e
0, 41]). When combined with simple geometric criteria for asperity removal, these models provi
s into wear processes. The dimensional reduction inherent in BEM can be extended for adhesi
s, resulting in one-dimensional models of the contact line. These models enable simulations th
length scales over several orders of magnitude [42, 43].
recent years, two exciting developments have emerged in mesoscale modeling of wear: molecula
ics-like models, where beads interact via custom-made pair interactions to create two-dimension
solids at numerically accessible scales [44, 45, 46, 47], and phase-field fracture models [48, 49, 5
ypes of models overcome a critical size limitation inherent to molecular techniques, which cann
the length scale of the “process zone”—the region near the crack tip, where the material undergo
deformation. The process zone can extend up to centimeters in ductile metals, and even in apparent
materials like glass, it spans micrometers—beyond the reach of molecular simulations. Calculatio
molecular-dynamics-like discrete element model (DEM) have confirmed that a Griffith-like criteri

s the transition between particle formation and asperity flattening: particles form only at length sca
than a critical value determined by the material’s mechanical properties and surface energy [45, 4

4
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(a) (b) (c)

(d) (e) (f)

: Contact morphology and wear models. Contact islands in rough elastic contacts form fractal morphology w
ated branched structures. Panels (a) to (c) show contact islands of different size obtained from a multi-billion degre
m boundary-element calculation reported in Ref. [34]. Such calculations have recently been used to formulate w
Panel (d) shows the selection of wearing contact islands from Ref. [30] based on a critical junction-size model, wh
ds have junction sizes that would wear. Panel (e) shows a contact morphology in combination with a color-code m
ergy released when a hypothetic half-sphere of diameter D is removed from the contact, also obtained from bounda
calculations in Ref. [40].

DEM models enable the study of system sizes large enough to represent the evolution of self-affi
ess during wear [51]. Phase-field models are similarly suited for studying the formation of we
es, but reported simulations have so far been limited to single-asperity junctions in elastic [48, 4
stoplastic [50] contacts. Finally, coarse-graining techniques utilizing artificial intelligence—such as
approach using graph neural networks in a biophysical context [52]—might help parameterize su
scale models from first principles.
soscale models that incorporate the structure of surface roughness are also crucial for understandi
tion. Most lubrication models are formulated in a height-averaged manner, typically leading to t
ds equation. Probably the most significant advance in this field over the last decade is the dev
t of quickly converging and stable cavitation algorithms, specifically the Fischer-Burmeister-Newto
FBNS) algorithm developed by Woloszynski, Podsiadlo, and Stachowiak [53]. Other unconvention
ological developments include solution strategies that are agnostic to the actual constitutive behavi
uid [54], making them suitable for learning shear-thinning, shear-thickening, or other nonlinear co
e laws directly from molecular dynamics simulations [55]. Additionally, the use of smoothed partic
ynamics for modeling the flow of lubricants [56, 57] and the material-point method for plastic flow
[58] represent significant advances, broadening the modeling tools available to tribologists. Anoth
ant aspect in coarse-graining tribological contacts can be the necessity to retain some stochastici
ct the coupling of scales. One example is the prediction of leakage rates when fluid flow is block
sely distributed critical constrictions [59]. Reproducing the desired heterogeneity can be achieved
cing realistic randomness into the local constitutive laws relating stress and displacement [59, 60]
ulations at the scale of a tribological component have historically employed continuum metho
not resolve microscopic features of roughness, such as the finite element method (FEM). Howev

tanding a component often simultaneously requires precise chemistry (bond breaking and form
large-scale nonlinear phenomena (plasticity, fracture), and structural geometries of industrial re
bearings, gears) subject to thermo-elastic loading [61]. This necessity strongly drives the extension

5
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le FEM technologies for nonlinear large-scale problems by adding microstructural details with nov
ization techniques. This involves embedding textures and roughness into interface elements, as pr
n Refs. [62, 63, 64]. If there is a scale separation between microstructural features of roughness a
uctural elements of the component, concurrent coupling of FEM and the boundary element meth
enables nonlinear structural mechanics simulations of real components with implicit FE soluti
s [65], while incorporating the effect of roughness in the cohesive law that describes contact in the F
ion. Conversely, FEM can also be useful to turn linear BEM calculations into a full nonlinear solv
FE calculations are only carried out in contact regions with large slopes where the largest deviatio
near elasticity are expected [66].
M can also be exploited to interpret phenomena occurring over multiple scales of observation. Su
roach was attempted by Marulli et al. [67], using elevations acquired by photogrammetry at t
cale and detailed confocal profilometric height fields in the surface areas where the origin of we
needed to be investigated. We expect these and related coupled techniques to impact the descripti
omena like contact-induced fracture, where the solution of the contact problem affects crack growt
to the mesoscale wear problem described above, crack growth (and wear) can be simulated usi

ormulations of phase-field problems [68, 69, 70, 71].

igital twins

ital twins are virtual counterparts of machines, systems, or processes [72], which evolve over time a
ularly updated based on measurements from the real-world system. Ideally, they persists througho
ire life cycle of its physical counterpart. In a tribological context, sensor data on surface roughne
d during operation can be used to update and improve the accuracy of the digital twin [73]. This
larly useful for processes that are difficult to capture using conventional models, such as running-
ar. Digital twins are already used in manufacturing and a wide range of industrial application
ng those where tribology is central to performance, such as wind turbines and aerospace engines [7
ology, digital twins are still largely prospective, but they illustrate how modeling could evolve in
ously updated, predictive tools directly linked to experiments. We here report on a few examples
twins that we are aware of.
a first example, Bucknall [74] recently reported a digital twin of a full tribological system, develop
Castrol for modeling combustion engines. The twin is a virtual replica of the mini traction machi
2), a ball-on-disk tribometer from PCS Instruments (Acton, UK) [74]. Their physics-based mod
the classical, yet contentious, Greenwood-Tripp contact model [75, 76] for two rough surfaces. T

aphy of the contact surfaces started from three-dimensional surface profiles of the ball and dis
d with white-light interferometry. Repeated measurements of surface topography were then used
e and update the digital twin for the effect of wear. Several other dynamic models were incorporat
ribe the lubricant’s density, temperature-viscosity and pressure-viscosity relationships, shear thinnin
g shear stress, as well as flash heating and asperity friction. Thus, the model was sensitive to bo
uid and additive properties and was capable of reproducing the full Stribeck curve observed in t
xperiments. Similarly, Hansen et al. [77] recently reported matched pin-on-disk experiments and flu
ics calculations based on the Reynolds equation. A key input was the post-experiment topograph
they used in continuum calculations assuming a mixture of hydrodynamic lubrication and a fix
coefficient for solid-solid contact. They then “calibrated” their model by smoothing the topograp
oduce the experimental Stribeck curve in the boundary lubrication regime.
pler models for digital twins have been developed to model wear progression, typically by applyi
d’s law [78] and updating predictions using measurements of wear track depth. Regis et al. [79] appli
proach to a helicopter bush bearing system, where wear was predicted based on a Hertzian calculati
act stresses that fed into Archard’s wear model. This method can be combined with reduced-ord
ical models of the macroscopic device encompassing the tribosystem, allowing the digital twin to
d based on vibration monitoring [80].
usefulness of a digital twin can be questioned if the underlying model is fundamentally flawed. F
e, bearing-area models (such as Greenwood-Tripp) fail to account for the effect of long-range elas
ation, which is just one of many factors that must be considered to accurately model mechanic

6
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s [33]. Relying on insufficient models will prevent a digital twin from passing rigorous tests of
ive ability.

achine-learned models

ent advances in computational power have made feasible the use of “non-parametric” models deriv
urely statistical considerations, often referred to as machine-learned (ML) models. Physics-bas
incorporate physical principles discovered over centuries of human research, such as energy a
tum conservation or the fact that, in the long-wavelength limit, the mechanical response of soli
described by a few elastic constants. In contrast, data-driven models essentially interpolate betwe
ed or simulated data points—or even extrapolate when the number of parameters is so large that
ssible to construct data on a fine mesh [81]. When based on probability theory or random process
odels can estimate uncertainties or even provide the full a posteriori probability distribution

ial model outcomes.
predictive ability of a machine learning model depends sensitively on the feature vector—that is, t
input variables—and the database. Together, these determine the dimensionality of the input spa
e available data points from which the model extrapolates. Training an ML model involves optimizi
function, which in the simplest case is the squared difference between the model’s predictions a
get values. While variants of neural networks (NN) are the most commonly used schemes, oth
e learning approaches such as Gaussian processes also exist [82]. The remainder of this section w
ctured around generic features of applying such ML models.
ommon application of machine learning (ML) models is to serve as surrogates for physics-bas
that are quicker to evaluate. The primary reason for using ML in this context is to replicate t
-based model while saving computational resources. For example, Walker et al. [83] trained neur
ks (NNs) on film thickness and friction forces obtained from classical elastohydrodynamic (EH
ions. The feature space, or input parameters, of the model consisted of geometric parameters of t
e element. The authors reported that the NNs were more computationally efficient than full EH
tions.
a similar vein, Rapetto et al. [84] and later Kalliorinne et al. [85] conducted elastoplastic BE
tions of the contact between randomly rough interfaces with 256 × 256 nodal points. They train
networks (NNs) to predict the real area of contact from these calculations, using a feature vect
ing of standard scalar roughness parameters such as average surface roughness (Sa), root-mean-squa
ess (Sq), skewness (Ssk), and others. The database comprised 6,144 calculations of the conta
ical response of topographies with different statistical properties. This dataset provided distincti
es for learning the area-load dependencies for various types of surface topographies, including se
andomly rough surfaces, Weierstrass patterns, bi-Gaussian distributions, and exponential mode
uction of such surrogate models for contact mechanics or EHL appears to be starting to become
n the tribology community [86, 87, 88, 89].
ajor limitation of purely data-driven models is their reliance on large datasets to adequately ca
d learn the underlying physical principles. This limitation can be mitigated by incorporating pri
dge of the physics into the learning procedure. For example, when learning the pressure profile
cated contact, the optimization process can be regularized by adding a penalty to the loss functi
tions that do not satisfy the Reynolds equation. This approach was suggested by Almqvist [90] a
plemented by others using neural networks [91, 92, 93]. Since the solution to the hydrodynam

tion problem is represented by the weights (or parameters) of the neural network rather than
at specific grid points, such procedures are sometimes referred to as “meshless.” However, it shou
hasized that the Reynolds equation is used only for regularization and does not have to be strict
d.
chine learning models can be useful for recognizing patterns in topographic data of experiment
gical interfaces. In this context, much research effort is directed toward constructing relevant featu
, which are statistical descriptors of the rough topography. These feature vectors represent data
dimensional vector space, where each dimension corresponds to a specific feature extracted from t
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: Coupling continuum scales with molecular scales using machine-learning. The continuum solver (a) is agnostic of t
tive law and requires fluxes as a function of stresses in the system [54]. This relationship is obtained from (b) molecu
s calculations, whose results are interpolated with (c) Gaussian process regression. (d) New datasets are added wh
iction error is large. From Ref. [55]

nabling quantitative analysis and pattern recognition by ML models. Techniques like principal com
analysis (PCA) are often used to reduce dimensionality while retaining the most significant featur
ld was pioneered by Stachowiak and co-workers [94, 95, 96], who introduced feature vectors bas
rete wavelet transforms for detecting wear during machine condition monitoring. They employed
upport Vector Machine (SVM) to classify adhesive and abrasive wear levels. More recently, Wols
97, 98] and Yesilli and Khasawneh [99] used simpler multidirectional geometrical parameters, su
n curvature and fractal dimensions, to distinguish between abrasive, adhesive, and corrosive wea
and co-workers have defined derivatives (slopes, curvatures) of topographic data as a function
00] and suggested performing classification based on such statistical descriptors [101].
chine learning when used as surrogates is synonymous to interpolation between given data poin
terpolation can come with prediction for the error made when interpolating, for example when usi
an processes. The predicted error allow to generate new data point in regions when the error is hig
e that is often called active learning of kriging. Examples include the computation of constituti
s to whenever the Gaussian process is uncertain about its interpolation between existing data.
m example for the use of such a scheme in a tribological context is the active learning of viscosi
nd slip boundary conditions of lubrication from molecular dynamics calculations [54, 55]. The
copic laws are incorporated into a macroscopic lubrication solver, yielding the multi-scale simulati
ork shown in Fig. 3.

pen Science

eview of physics- and data-driven methods in the 2020s would be incomplete without discussi
cience practices in the field [102]. Open Science seeks to enhance the accessibility of raw tribologic
d ensure the reproducibility of experiments and simulations. The first attempt to generate a tru
e, accessible, interoperable, and reproducible (FAIR) [103] dataset for a full tribological experime
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rried out by Garabedian and co-workers [104]. Their work is accompanied by a complete descripti
experimental workflow in the form of computer-readable data formats.
umenting tribological research in this manner requires future standardization in how experime
tocols and topographic data are communicated. Topographic data can now be deposited in t
repository contact.engineering [105], which provides standardized analysis workflows for su
such as computing the power spectral density or autocorrelation function [106]—as well as facilit
a publication and citation. One recent example of topography data sharing is the Surface Topograp
ge [107], in which more that 150 scientists collaborated to characterize stochastically identically sam
he study highlighted discrepancies in data from commodity instruments and developed best-practic
topographic is collected. It may serve as a blueprint for how the community can come together
develop standards and practices in data collection and sharing.
ther key form of data publication is the availability of open-source codes that adhere to establish
control procedures, particularly test-driven development and continuous integration. In the field
mechanics, high-quality codes like Tamaas [29] and the contact.engineering [105] ecosystem ha
nificant development in recent years. The commitment to open data and open-source codes not on
ins reproducible computational tribology, but it also paves the way for collaborative innovation a
ed scientific discovery across the discipline.

chanics

tact mechanics investigates how forces and displacements are distributed and transmitted at t
ce between two bodies in contact. Early approaches neglected the effects of adhesion, interfac
, and roughness beyond deterministic shapes, such as flat punches and parabolic indenters. Tim
ent effects due to the presence of a lubricant, the viscoelasticity of the contacting bodies, or interfac
multistability were also long overlooked. Centered on the framework of contact mechanics, this secti
hts recent developments related to (1) interfacial adhesion, (2) frictional sliding, and (3) lubricat
s.

dhesion

en two non-conformal elastic bodies come into contact, surface energy is gained locally where tr
occurs, albeit at the cost of elastic deformation energy, which counteracts contact formation a

s the perceived adhesion [108, 109]. Conversely, several hysteresis mechanisms, such as viscoelastici
der contact breakage and effectively increase the perceived adhesion. While it is straightforward
tand qualitatively that viscoelastic contact hysteresis grows with both a larger work of adhesion a
-range surface interactions, quantitatively predicting interfacial dynamics—arising from the interpl
sion, viscoelasticity, and roughness—remains a significant challenge and an active area of researc
ction highlights recent key works in this context and discusses open challenges.
(dissipative) dynamics of adhesive interfaces can be divided into four categories, which will, howev
ussed below in inverse order to their listing in this paragraph. First, jump-in and snap-off conta
lities [112, 113], which Tomlinson [112] argued are a primary cause of friction. Since the sna
urs at a larger separation than the jump-in, hysteresis remains even when driving velocities a
ely low. Fig. 4(c) shows a multi-asperity contact and its stress distribution just before the mome
-off. The Tomlinson model complemented the earlier work by Prandtl [114, 115], who emphasiz
eral significance of instabilities for solid friction by showing that sliding-induced instabilities le
lomb friction when thermal effects are negligible, but result in Stokes friction in the (creep) limit
ocities at finite temperatures. Prandtl’s model primarily focused on the in-plane motion of atom
brings us to the second category: the quasi-discontinuous motion of contact lines caused by modera
ss [116], leading to adhesive hysteresis at low mean contact-line, or, depending on context, crack-t
ies. Fig. 4(b) shows contact lines during moments of arrest, while they are unstable in betwee
ergy loss associated with a hysteresis loop occurs even in a perfectly elastic medium, because t
energy produced during the sudden advancement of a crack front is distributed among vibrations
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: (a) Smooth, adhesive indenter continuously sliding over a viscoelastic substrate at varying velocities. The r
ws the stress, while the straight black line separates compressive (top) from adhesive (bottom) stress. Adopted fr
0]. (b) Stable contact line configurations during the retraction of an indenter from a wavy contact; simulation (to
xperiment (bottom). Adopted from Ref. [43]. (c) Topography of a multi-asperity indenter (top, color) and str
, color) during snap-off, blue indicating tensile and orange compressive stress. The remaining black-and-white ima
pare actual contact (dark) and non-contact (light) between experiment (top) and simulation (bottom) at different tim
the retraction process. Adopted from Ref. [111].

te/incommensurate frequencies, preventing the local energy density from ever returning to its init
lue without external work. In other words, there is an implicit assumption that the instable degre
dom are damped. Third, steadily moving interfacial cracks—or evolving contact geometries—
d in Fig. 4(a). They occur when a smooth, rigid, adhesive solid indents into or retracts from
er but also during peeling [117]. Their description is similar to crack initiation, growth, and closu

oelastic media, a well-established topic [118, 119], but one that continues to be actively investigat
e analytical work can only address relatively simple geometries, while numerical simulations fa
dous challenges due to the broad spectrum of time- and length-scales involved in viscoelastic adhesio
t not least, adhesion in hard-matter systems can lead to plastic rather than elastic deformation [12
for this last point, we have largely avoided classifying contacts as soft and tacky versus hard a
cky, as this distinction is non-universal and breaks down at small scales and high excitation rates,
become clearer below.
help the reader better digest the remainder of this section, we re-iterate some key results on rou
s and the competition between surface energy and elastic energy [109]. For contacts of micron si
er to exhibit adhesion (or “stickiness”), a substantial relative contact area must develop without a
l load. This requires that the work of adhesion, γ, be comparable to or greater than the elas
per unit area, vela, needed for the elastic body to conform closely to its counterface. (To be mo
, one needs to consider the combined contact compliance 1/E∗ and the combined roughness of t
ntacting bodies. As usual, E∗ = E/(1 − ν2) denotes the contact modulus, where E is the Young
s and ν the Poisson’s ratio.) The cost of perfectly following a single sinusoidal surface undulatio
uq cos(qx+ φq), with wavelength λ = 2π/q, can be expressed as [109, 121, 122]:

vela =
qE∗

4
u2
q (

lation, which can be seen as the working-horse for any efficient, Fourier-based boundary-eleme
but also for Persson’s contact mechanics theory [4], follows from simple dimensional analysis, apa

se, for the numerical prefactor 1/4. This is because the elastic energy is proportional to stiffness a
uadratically with the amplitude. The result for vela suggests that the critical roughness parameter f
surface undulation is hadh,q = qu2

q/4 and that generalizations involve summing individual roughne
ters over wave numbers or wave vectors for more complex surface shapes [43]. It is worth noting th
ling vela ∝ q holds for a semi-infinite solid can be interpreted as a fractional Laplacian operator acti
surface deformation [42, 43]. For contact with a membrane (under tension) the scaling relationsh
ified to vela ∝ q2, while for thin sheet (plate) one finds vela ∝ q4 [123].
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: Canonical model of the power-spectral density (PSD) used in many theoretical works (black line), with a consta
m system size at wavevector q0 to the roll-off at wavevector qr, where the PSD crosses over to a power law at sh
gth. The power-law region often extends down to the atomic scale, described by the short-wavelength cutoff qs. Fo
e topography, the power-law region follows the scaling q−1−2H for the one-dimensional PSDs shown here, where H
st exponent. The data shown is from a measurement of a microscrystalline diamond film that exhibits this idealiz
ack circles show the average over all individual measurement, shown by crosses. The roll-off wavelength 2π/qr ≈ 1µ
nds to the film thickness. The experimental data (different colors refer to different techniques) is taken from Ref. [13

height spectrum of most real surfaces C(q), which is proportional to the (local) mean or expect
f |ũ(q)|2, can be approximated as constant for small wave-numbers q up to a roll-off wave vector qr a
a power law, C(q) ∝ q−D−2H down to very small scales (see Fig. 5 and Refs. [124, 125]). Here, D
rfacial dimension (i.e., D = 1 for line andD = 2 for areal height profiles) andH is the Hurst exponen
ypically takes values below but close to one). Thus, when summing up individual contributions hq

r scale-dependent) hadh, the near-qr contributions dominate on both the roll-off and the power-law
ne branch of C(q) – at least when H > 0.5 [124, 126, 127, 128]. Therefore, regularly stated quantit
an or root-mean-square roughness, which have their dominant contributions at small q, are not use
tors in the context of adhesion. Our semi-quantitative discussion allows further conclusions to
most importantly that length but also time scales matter, e.g., the propensity of a small rigid bo
to a viscoelastic counterface can decrease substantially with an increasing linear dimension l wh

qr. Likewise, the frequency with which contact is formed and broken also matters since elastome
at high frequencies.
ired by earlier work of Anderson [129] on dislocation loops near crack tips, Sanner et al. [43] suggest
roach with which the local work of adhesion is reduced by the (semi-) local elastic energy need
local contact. Their idea is connected to the interpetration of a term like

√
qh̃(q) in a Four

ntation as a real-space fractional derivative. Exploiting this analogy allows the modeler to map t
f roughness on a spatially heterogeneous work of adhesion [42], which mitigates the need for fi
discretization in situations where most of the contact is conforming with the rough topography.

Hard adhesive contacts

introductory discussion of this section revealed that even hard matter can be sticky when the partic
ll or the interface smooth. However, it appears that sub-micron rubble particles constituting asteroi
l too hard to allow for this exception. Persson and Biele [131] realized that the observation of lar
ds spinning with a period of at least Tmin = 2.3 h implies that adhesion forces are no significa
n to the (already pathetically small) gravitational forces in asteroids. Tmin is exactly the period
he centrifugal and gravitational forces of an asteroid with radius R > 300 m and a small gravel partic
e each other out, assuming the mass density is similar to that of fused silica, i.e., ρ ≈ 2 g/cm3. Th
s of the competition between surface energy and roughness led them to conclude that contact betwe
particles forms merely at one to three points, the latter number following from the requirement th
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rticles squeezed together, even with a microscopically small force, must be torque-free. Simil
rations should apply to other granular matter like that used for 3D metal printing, where adhesi
n granules might be best done by renormalizing the local radii of curvature rather than the surfa
Wang and Müser [132] supported the findings by Persson and Biele with simulations showi

ugh, adhesive contacts touch only in a single point during detachment when γ/vela ≲ 1/2. (T
argument does not apply because of periodic boundary conditions.) In separate work [106], they al
d a simple formula to estimate the scale- or size-dependent vela from the expected height varian
− h(∆r)}2⟩.
mons et al. [133] revealed that neither elastic nor rigid models could reproduce pull-off force me
nts of spherical ruby probes retracted from ultranano- to microcrystalline diamond coatings. T
s had been subjected to preloads leading to moderate nominal Hertz stresses of 135 MPa, but loc
pressures significantly exceeded common values for penetration hardness. After accounting for pla
rmation with a simple bearing-area model, measurements could be fitted assuming a rigid retracti
eneric cohesive-zone model, thereby highlighting the need to consider plasticity in (pre-loaded, i.
teroidal) hard-matter contacts. However, the deduced range of adhesive interaction of 5.6 nm leav
or interpretation as to whether a more advanced elasto-plastic model is required for a truly qua
description, or if capillary or electrostatic forces contributed to the adhesion. The fact that th

s compatible with other estimates employing different experimental methodology, e.g. atomic-for
copy [134, 135], hints that there may be a fundamental gap in our knowledge about the forces acti
contacting interfaces.
-elastic effects can occur in small hard-matter contacts even without preload, as demonstrated
ined experimental-numerical study by Vishnubhotla et al. [120]. They found adhesion-induced, r
dislocation motion in self-mated platinum contacts, which caused significant hysteresis betwe
and unloading as well as large deviations from expected linear contact mechanics, including t
by Johnson, Kendall, and Roberts (JKR) [108]. Unfortunately, the extent of reversibility remai
, as the authors did not provide approach-retraction curves, and any residual dislocations may lea
traces too subtle for clear experimental detection. Their expectation that these results have im
ns for probe-based microscopy and lithography is certainly valid for other solids that, like platinu
tense adhesive stresses on each other due to lacking passivation layers. However, the small adhesi
s caused by the Van der Waals forces of passivated surfaces are small fractions of the Young’s mod
solids and thus unlikely to cause signigicant deviations from (scale-free) elasticity. Nonetheless,
ting aspect of the observed hysteretic dislocation motion is its loose analogy to (thermally activate
ational changes in polymers, which are a primary cause of viscoelasticity and thus contact hysteres

Smooth contacts: continuously moving contact lines

cesses similar to those in ideal opening cracks (brittle fracture resulting in smooth surfaces) occ
ndenters retract from a substrate, as well as at the trailing edges of rolling or sliding contacts, such
presented in Fig. 4(a). Likewise, leading edges and approaching indenters can be seen as analogous
cracks. This is why traditional approaches to crack dynamics and their results pertain to the conta
ics of bodies with deterministic or smooth surface profiles. In such contacts, continuous approac
ion, sliding, or rolling imply continuously moving contact lines, which mark the boundary betwe
(intact) and open (cracked) contact.
sing contacts and opening them again generally entail hysteresis, as can be most easily seen fro
lowing consideration. When an indenter is swiftly pushed into an elastomer, the latter will respo
inantly with its high-frequency modulus, so that not much contact is formed during the brief time
Keeping the indenter at its position for a long time then allows the elastomer to adapt to the sha
indenter with its low-frequency modulus, leading to larger contacts. When the contact is brok
nder swift motion, the elastomer will again respond with its high-frequency modulus, but now t
is larger (and more relaxed!) than immediately after contact formation. The frequency-dependen
ic moduli is also important, because a lower contact modulus leads to a steeper adhesive neck (
JKR limit of short-ranged adhesive, Hertzian indenters) than a larger modulus. Steep moving nec
imply large strain-gradient velocities and thus high dissipation. Effects of this kind have certain
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nderstood for a long time; however, theoretical treatments like that by Persson and Brener [13
egantly exploited the observation that normal stress decays with the inverse square-root distan
contact line but is bounded at small distances by the maximum interfacial tension, are involv
not generalize easily beyond simple contact line motion. Numerical simulations are also challengin
e steep adhesive necks require high spatial resolution near the contact lines, forcing the simulator
mise, e.g., to abandon efficient Fourier-based techniques, to have high resolution everywhere, or
n special geometries like rotationally symmetric [41] or singly connected contacts [42]. Alternative
ing the range of adhesive interaction relative to the actual value while increasing the relaxati
f the elastomers accordingly, the correct resistance of a contact line to motion can be obtained al
arse spatial resolution [137]. Qualitatively similar considerations as those mentioned above in th
aph hold as well when the contact hysteresis originates from mechanisms besides viscoelasticity, su
ing, cavitation, or plasticity. However, their quantitative description through meaningful theories
ore challenging and simulations typically require specialized modeling approaches beyond boundar
t methods.
hough crack-propagation theories are established, verifying their accuracy with rigorous nume
ulations that leave no room for tweaking parameters could only be achieved recently after a on
ional, short-range viscoelastic contact was discretized into 218 surface elements [138]. Despite th
cretization allowing for rather short-ranged adhesive interactions, the adhesion had to be label
nged with respect to the high-frequency modulus, which is why the detachment mechanisms tra
d from crack propagation to quasi-uniform bond breaking with increasingly large pull-off speed v
curred in agreement with the Persson-Brener model of uniform bond breaking at small scales [13
h the product of contact area and maximum adhesive interfacial tension provides an upper bou
pull-off force. The simulations [138] furthermore revealed local maxima in the viscoelastic work
n Wadh at intermediate vp, which prompted the speculative suggestion that the enhanced ener
at intermediate vp may contribute to increased pain felt when pulling off bandages at intermedia
ies. The relative maximum in Wadh(vp) is most easily rationalized for flat punches, for which t
tatic work of adhesion Wadh = 2πa2γ does not depend on E∗ so that this value also applies wh
raction speed is very high (given that the adhesion is still short-ranged). Viscoelastic dissipati
ly add to the adhesion in between these two limits. Recently, Mandriota et al. [139] have observ
ar non-monotonic behavior of the effective work of adhesion in retracting axisymmetric contacts
g the problem with a specific numerical technique that can handle the limit of infinitely short ran
e contacts, hence avoiding a very fine discretization of the contact. In the same study, they also co
that very high pull-off force can be achieved during fast retraction, at almost constant contact ar
nch-like behavior) [140, 138]. This is similar in spirit to earlier work on (non-viscoelastic) adhesi
s by Pohrt and Popov [141].
open issue that has been recently addressed by simulations relates to an apparent “size-dependen
bserved in some experiments of viscoelastic contact breaking, where the pull-off load was found
on maximum preload and thus on initial contact radius, e.g. [142], while other experiments, e.g [14
size-independence. Simulations showed that such an effective size-dependence emerges whether

e viscoelastic solid was in its fully relaxed state or still in a transient [144, 145, 139]. The si
ence is hence really a history dependence of the contact, where an effective viscoelastic stiffening
id can promote cohesive breaking over edge propagation.
rfacial contacts must form before they can break. The related process of crack closure has tr
lly been studied by exploiting the r−1/2 singular form of the stress near the crack tip [118, 11
n approach suggests that viscoelastic losses increase the effective adhesion energy G(v) of an ope
tact by a similar factor as they reduce it for a closing contact at a given contact-line velocity
[146] proposed an energy-based method and arrived at similar G(v) dependencies as tradition
s [118, 119], albeit without accounting for the stress field close to the crack tip. He argued th
ant viscoelastic losses during crack closure must also occur near the crack tip in closing cracks, whe
nal approaches would assume the material to be in a loss-free glassy state. This issue is now d
controversially [110, 147, 145]. Resolving it could benefit from simulations in which contacts wi
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ange adhesive even at high frequencies, while simulation cells are large enough to avoid finite-si

liding and rolling motion, e.g., of a rigid object over a deformable body, contact closure and openi
imultaneously. This unavoidably leads to retardation effects and thus dissipation even if there is
interfacial friction and be it only because any body is made up of atoms with inertia, whose effe

racted away when postulating a high-frequency modulus. As can be seen in Fig. 4(a), the leadi
f a sliding tip has a smaller slope and thus less dissipation than the trailing edge. While it is ea
p that viscoelasticity and adhesion boost frictional losses in moving contacts, quantifying them is f
ivial [148, 149].
ently, Carbone, Mandriota, and Menga proposed a new approach to moving, viscoelastic contacts [11
hich allows one to identify the contact area using energy balance principles. A peculiar predicti
treatment is that the pull-off force assumes its maximum at intermediate velocities, as also observ
oach/retraction viscoelastic JKR-like simulations [139] and in qualitative agreement with the expe
carried out by Lakhera et al. [151] (see Fig. 4 therein). In Refs. [110, 150], the authors also sho
e effective work of adhesion at the contact leading and trailing edges (closing and opening crack
ively) presents a non-monotonic trend with the sliding velocity (i.e., the excitation frequency),
sly suggested by Persson for opening cracks [152] in finite sized solids, thus entailing an addition
peak related to adhesion hysteresis as experimentally shown by Grosch [153] and Roberts [154].
the presence of a characteristic length l (either the contact length or periodicity), the frequency

the material is excited far from the contact edge can be estimated as v/l, thus leading to a glas
astic) behavior at large velocity with no dissipation. The same authors also investigated the v
ic friction, which at relativerly low (Fig. 4a top) values of v/l is mainly governed by viscoelas
d adhesive hysteresis at the contact edges, whilst at relatively high (Fig. 4a bottom) values of v
mainly depends on the viscoelastic bulk dissipation. Importantly, at the intermediate range of v
ntributions take place, but cannot be linearly separated.

Wavy contacts: discontinuously moving cracks

en waviness is added to an otherwise smooth surface profile of an indenter, which is gradually retract
r pushed into an adhesive, elastic body, the motion of the contact line will become modulated
end that the motion decomposes into stable and unstable segments, given sufficient waviness [11
Moments of contact-line arrest of such a serrated motion occurring in a singly-connected conta
icted in Fig. 4(b). Arguing that each unstable segment dissipates energy (even during quasi-sta
on, i.e., at velocities low enough where viscoelastic losses to be irrelevant), Guduru [116] propos
aviness-induced, discontinuous contact line motion increases the work of adhesion. At the same tim
rgy gained on approach is reduced, resulting in contact hysteresis similar in nature to that caused
asticity on smooth interfaces. It may be useful to note that the energy dissipated during an unstab
t can also be due to viscoelasticity. The important distinction is that the instability occurs on tim
much shorter than the external motion of the slider, in which case the detailed dissipation chann
ot matter. Having two potential scenarios for energy dissipation has sparked some debate in t
re over the (predominant) origin of adhesive hysteresis in specific real or numerical experiments.
eemingly strong argument in favor of viscoelasticity is the frequent observation of the Gent-Schu
6], which states that changes in the pull-off force scale with a (small) power law in pull-off spe
ch a power law is a typical outcome of a smoothly moving contact line obtained readily with
rd linear solid. However, recent analysis of the Prandtl model [114, 115], where friction arises due
lities, reveals that a power-law response is also a natural outcome of instability-induced dissipation
emperature, with a logarithmic or Eyring-like dependence appearing only as a limiting case of we
springs and low temperatures [157]. This suggests that care may be needed to pinpoint the origi
sive hysteresis.
theoretical treatment of the detachment process of a wavy sphere from a viscoelastic foundatio

ella and Papangelo [158] suggest that the roughness-induced enhancement of the pull-off force iden
Guduru disappears at speeds near those where pure viscoelastic enhancement is comparable to th
ic instabilities. This result aligns with expectations from the Prandtl model, assuming that expli
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g occurs in the substrate rather than in the spring pulling the atom (or another generalized degr
om) over past the corrugated potential representing the substrate. The rationale in both cases
mping smooths out instabilities. The damping found by Pérez-Ràfols et al. [159] for an elastom

∞/E0 = 10, did however not affect significantly the amount of dissipation, as the change in area w
stable but still occurred at nearly constant load. Therefore, the pull-off load enhancement due
asticity and roughness was found to be roughly additive.
ent work by Sanner et al. [43] correlates the stick-slip motion of contact lines observed experime
DMS against nano-crystalline diamond) with that deduced from simulations in which the effect
ess was mapped onto chemical heterogeneity. Fig. 4(b) compares the position of simulated and expe
lly observed contact lines during moments of rest. The limit of short-range adhesion could be explor
simulations through the use of a crack-front model for singly connected contacts [42], which only n
tes the contact line to be discretized rather than the entire surface. It remains to be seen to wh
previous studies may need reinterpretation, particularly those that matched only force-displaceme
without contrasting microscopic contact features.
ently, numerical simulations have demonstrated that in the case of long-range adhesion, cavit
60, 161], i.e., the rupture of a singly connected contact into two or more contacts separated by gap
nstant ’apparent contact size’ [161], takes the role the elastic instability. Cavitation clearly comp
he contact problem, as now instead of a couple of advancing cracks there are multiple close-by cra
that require fine discretization, possibly interacting at small scales.

Rough contacts: jump-in and snap-off

inally flat contacts form at isolated sites, as in Fig. 4(c), with microscopic contacts forming a
g during both normal and lateral motion. When the surfaces attract each other, asperities jum
ntact and snap off again during sliding, as in cyclic normal loading. Tomlinson’s suggestion th
ocess could be the main source of solid friction was reformulated over the years, notably by Ful
berts [162], who replaced Tomlinson’s atomistic model with a bearing-area approach and local JK
eristics. Yoshizawa et al. [163] demonstrated that the friction coefficient of surfactant monolaye
surfaces closely correlates with adhesion hysteresis rather than with adhesion force or energy, as loa
ature, humidity, velocity, and holding times were changed. Their observation suggests that there a
t some systems in which adhesion hysteresis is the primary type of instability causing solid frictio
merical studies quantifying the contribution of adhesion hysteresis to friction in specific system
to be lacking.
difficulty in modeling asperity jump-in and snap-off lies in the poor convergence of the ener

sis with decreasing adhesion range. Although the load-displacement relation of a receding adhesi
n indenter closely corresponds to the JKR limit already at a Tabor parameter of µT = 5, the indent
into contact so prematurely relative to JKR that the adhesion hysteresis does not even reach 50%
R limit at µT = 5 [164]. Here, µT ≡ (Rc∆γ2/E∗2)1/3/ζ is a dimensionless measure for the (invers
f adhesion, where Rc is the (local) surface curvature, ∆γ the work of adhesion, and ζ the actual ran
sion. At µT ≈ 100, errors still exceed 10%, while adhesive hysteresis vanishes entirely once µT dro
µT ≈ 1. Thus, reproducing the short-range limit of adhesive hysteresis requires using small ζ, whi
necessitates a linear mesh size ∆a on the order of ζ2 to avoid lattice-trapping artifacts—i.e., jump-
ap-off instabilities of individual discretization points, which rapidly increase energy dissipation [16
a ∝ ζ2 requirement arises from the stability that the curvature of the driving spring / local elastici
s proportional to E∗/∆amust exceed the curvature of the interfacial interaction, which is proportion
.) Since the error in adhesive hysteresis only diminishes with ∆a1/3, reducing it by a factor of 10 f
imensional contact requires at least 106 times the computational effort with standard methods. Th
hts the need for new approaches, potentially beyond locally adaptive meshes, which are challengi
grate with efficient Fourier-based boundary-element techniques.
a numerical example, it may be instructive to see that adhesive hysteresis for a contact characteriz
= 50 nm, ∆γ = 50 mJ/m2 (typical for chemically passivated surfaces), and ζ = 3 Å (typical f
r Waals interactions) yields a threshold value of E∗ ≈ ∆γ

√
Rc/ζ3 → 2 GPa below which adhesi
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sis starts to kick in. This is of similar order of magnitude as the high-frequency modulus of ma
s and elastomers.
assess the origin of adhesive hysteresis, Müller et al. [111] successfully contrasted experimental a
ted the approach and retraction process of flat punches to which single sinusoidal roughness was adde
the studied topographies is depicted in Fig. 4(c). Not only the contact evolution, see Fig. 4(c), show
greement, but also force-displacement were found to be in good agreement for both surface patter
ular and hexagonal), after the viscoelastic nature of PDMS had been considered. In their syste
gest contribution to contact hysteresis was due to contact instabilities of minima and saddlepoin
than those of the height peaks. For small preload and small operating velocities, these instabilit
under compression but moved to tensile loads for large (compressive) preloads and “large” speeds
s. Near the moment of maximum tensile force, all height maxima in contact were under compressi
s visualized in Fig. 4(c); tension originated exclusively from the saddlepoints and the ridges betwe
peaks. Pull-off forces were miniscule in comparison when only the height maxima formed conta
the moment of detachment. It thus seems that contact instabilities are not necessarily related to t
asperities, as assumed historically, but due to the valleys in between the highest peaks.

ry friction

Displacement coupling

majority of works on elastic contacts focuses on purely normal loading in the absence of interfac
tress. However, a normal point force acting on a surface induces not only normal but also i
isplacements just like an in-plane point force causes normal displacements in addition to in-pla
ements. This coupling, which Bentall and Johnson [166] emphasized to occur already in line
ty without exploring it much further at that point, arises from the resistance of an elastic body
changes that are induced by normal or shear stresses acting on it. There are many consequenc
ling, both qualitative and quantitative, which have been explored mostly in single-asperity contac
enced by the lack of its discussion in the precedent community review on modeling in tribology [
portance of coupling is often underappreciated so that summarizing not only recent but also pa
ments on this topic is certainly in place.
linear coupling of in-plane and normal surface displacements of semi-infinite (!) solids does not ne
ken into account explicitly whenever the second Dundurs constant β [167] vanishes. It is a measure f

tive difference of the contact compliance of two contact pairs, specifically, β = (1−2ν1)/E1−(1−2ν2)/E
2(1−ν1)/E1+2(1−ν2)/E

E1,2 are the elastic moduli and ν1,2 the Poisson’s ratios of the contacting materials. The constant va
hen the solids are either elastically similar or both incompressible. This is because the displacemen
onse to in-plane and normal shear superimpose in that case. However, once β is finite or a complia
as finite height, the superposition ceases to hold, because relative in-plane (normal) displacemen
due to normal (in-plane) stresses are no longer symmetry-related. In other words, an interfac
stress makes the two materials “want” to displace differently in the tangential direction. The su

t motion or its suppression is counteracted by a frictional force, which would be absent in a conta
h both bodies have identical elastic properties and heights. Likewise, an interfacial tangential stre
the dissimilar solids want to displace differently in the normal direction, which causes the norm
r the interfacial separation to change compared to a frictionless contact, for which the effects induc
pling are effectively taken care of by the contact modulus. In the following, (linear) coupling effec
due to a finite second Dundurs parameter and due to finite or mismatching heights will be referr
aterial and geometric coupling, respectively.
ne of the first quantitative studies on material coupling, Spence [168] found it to reduce the conta
Hertzian frictional contacts at a given normal load compared to the classical, i.e., frictionless soluti
induce partial slip near the contact edge. This result implies that fretting can occur merely due
motion. To estimate the synergetic effects on fretting fatigue occuring due to combined norm

tial loading, Nowell et al. [169] derived a numerical procedure accounting for coupling in contacts
n geometry. It allowed them to conclude that symmetry is broken in a way that coupling caus
and in-plane stress to increase toward the trailing edge under gross slip conditions. These resu
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pported by a semi-analytical approach [170], which later also indicated material coupling to decrea
ical tangential load needed to trigger gross sliding [171]. Recently, material coupling was also studi
ng, rough contacts [172] and shown to change the quasi-linear relation of tangential force and the rat
uck to total contact to one with a significant fraction of contact in sliding motion even at extreme
hear forces.
ce material interactions across an internal surface in a body follow the same rules as those across
interface, coupling effects in layered [173] and graded [174] elastic contacts are intimately linked
ust described. For example, a pure normal impingement of a layered material can induce delaminati
the material.
ne of the first quantitative studies on geometric coupling, Bentall and Johnson [175] investigated
astic strip passing through the nip of two identical and ideally counter-spinning wheels, one time
strip as in rolling (metalworking) and one time attached to one of the wheels like a tyre, which
quently encountered in processing machinery. Their study reveals that geometric coupling almo
bly results in microslip at the extreme edges of the contact, particularly when the rollers are mu
than the processed strip. Nowell and Hills [176] overcame the restriction of ideally counter-spinni
by including the effect of the rollers’ torque. In such an asymmetric set-up, a net interfac
tial force is exerted on the film’s surface. Ultimately, this increases the maximum normal pressur
kewing the normal stress to the contact’s leading edge, i.e., to the opposite edge as under mater
g. Scheibert et al. [177] confirmed these trends through rigorous numerical models. They also test
gree with which typical model assumptions—like linear elasticity, small-slope approximation, a
ons’s law at small scales—stand the comparison to an experiment, in which a glass cylinder indent
PDMS film resting on rigid substrate containing a MEMS-based device sensing normal and tangent
elds. Predicted and measured stress fields were found to be within a few per cent.
ently, Menga and various co-authors extended the analysis of coupling from partial slip single-asperi
s first to gross slip of randomly rough line contacts [178, 179] and later to areal random roug
80]. While some features are qualitatively similar as in single-asperity contacts, such as the skewi
ss distributions toward the leading or the trailing edge of individual contact patches depending
edominant) nature of coupling, new features arise. This includes the observation that coupling c
the validity of Amontons’ law when it holds microscopically in a way that geometric coupling i
interfacial and viscoelastic friction, while material coupling has the opposite effect. Moreover, bo
ric and material coupling reduce the propensity of interfacial fluid flow or leakage especially wh
occurs normal to the pressure gradient (see Fig. 6a2-6a3), which, in parts can be related to t
g-induced asymmetries of individual contact patches. Coupling moves the maximum of the in-pla
stress to the trailing edge of a contact and, potentially more importantly, increases its value substa
see Fig. 6a1). Thereby crack nucleation and propagation occur more easily, which can boost the ri
erial failure.
ite a few questions related to coupling have remained unexplored. For example, it has not yet be
ated how coupling affects the normal contact stiffness in areal contacts, which is the change
pressure with the mean interfacial separation (though, line contacts results suggest coupling-induc
ontact stiffness [178]). It is an important property, because it sets an upper bound for interfac
al conductance, e.g., in sliding electrodes [184]. An extra resistance comes from a thin oxide surfa
als and dendrites growth, which is inversely proportional to the true contact area, whose size a
is again affected by coupling [185, 186]. At the same time, interfacial stiffness sets a lower bou
heat conductance, as evanescent waves allow for heat conduction in addition to heat diffusio
elevance depends on the distribution of the gap, which can also be affected by coupling [187, 18
ingly unexplored is also the effect of coupling in (multi-) layered configurations, such as human sk
ad tyres, even if Wang et al. [173] set the framework for such a study. It also seems unexplored ho
g affects adhesion in particular under tangential loading. However, even without coupling, it remai
ging to predict how frictional shearing affects the contact under a normal and/or adhesive force,
ssed next.
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: (a) confinement induced linear coupling effects on in-plane maximum principal stress (a1) and leakage anisotro
Adapted from [180]. (b) Images of PDMS lens vs smooth glass contact in static (b1) and steady gross slip (b

ns, showing anisotropic contact shrinkage. Adapted from [181]. (c) Measured longitudinal in-plane stretch (c1) a
shear stress (c2) distributions in shrunk sliding contacts. Adapted from [182]. (d) Measured sliding contact a
mpared to static one (dashed) (d1) and analogous nonlinear FEM simulations results for Neo-Hookean (d2) a
–Rivlin (d3) models highlighting the effect of finite deformations/displacements in contact shrinkage (green are
from [183].

Contact shrinkage

n in the absence of elastic coupling between normal and tangential displacement at the interfac
ed tangential and normal loading of mechanical contacts may induce changes in the contact size,
bserved in experimentally [181, 189]. Despite significant efforts made over several decades, the orig
is still discussed, which is why a summary of past and very recent achievements in the field may
e. Before cutting to the chase, we wish to specify that we are not concerned with the friction arisi
the viscoelastic dissipation that a sliding (stiff) indenter induces in an elastomer in the absence
interfacial friction. That issue is dealt with in Sect. 3.1 as the attentive reader certainly remembe
e discuss explicit, interfacial friction, which is often modeled using a local constitutive equation

m τ = τ0+αp, where τ is the shear stress, τ0 an offset, α a dimensionless parameter, and p the norm
ssive stress, e.g., that induced by adhesive attraction, squeezing the surfaces against each other.
koor and Briggs [190] were the first ones to observe a slight reduction of contact area when tangent
is combined with a squeezing normal force in macroscopic contacts. Since the contact shape stay
metric during the application of the tangential load, they related the observation to adhesive conta
ics. Specifically, they postulated friction to allow for stuck interfacial conditions (leading to singul
tresses at the contact periphery and to mode II and III brittle crack propagation) and argued th
gential fields increase the elastic energy stored in the body and, in turn, the energy release ra
s the reversible energy per unit contact area variation available at the interface to break the adhesi
Since the work of adhesion per unit area γ stays constant, this requires the contact area to redu

ilibrium. However, their prediction overestimated the contact radius reduction. Inspired by wor
ture mechanics by Hutchinson [191, 192] while aiming at empirically correcting Savkoor and Brig
ations, Johnson [193, 194, 195] argued that, for a contact shrinking under the actions of normal a
tial loads, only a portion of the released elastic energy is available for reversible transformatio
ve energy release rate). In fact, Johnson’s theory focused on the role of partial slip conditions,
stuck inner circle (with bounded shear stresses) is surrounded by an annular region where slip occu
onstant shear stresses, i.e., τ = τ0 - in contrast to Cattaneo [196] and Mindlin [197] who used τ0 =
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n-plane displacements at the contact interface also depend on the contact size [198], Johnson assum
rt of the elastic energy released during the contact shrinkage is dissipated in the annulus by friction
sliding. However, the rationale behind this picture was only vaguely identified in possible surfa
eneity able to reversibly store energy (other than the Dupré work of adhesion) through ’spatially hi
cy slips’ and ’evolution of the interface-dislocation structure at the atomic level’ [195], or by ’injecti
microstructures into the material due to locally heterogeneous deformations’ [199]. Only recent

ussed below, Barras et al. [200, 201] have tried to quantify the effective energy release rate, though
ch more complicated framework of nonlinear elastodynamic FEM calculations. On the contrary, t
enological Johnson’s approach exploited ’rather arbitrary’ [194] functions and experimentally fitt
ents to describe the ’mixed-mode’ effective energy release rate. As a consequence, the model h
predictive utility, being potentially able to either recover the Savkoor and Brigg’s overstimation
tact area reduction or to indicate no reduction at all.
etheless, in some cases (mostly at the small scale) contact area changes were experimentally found
ginal to non-existent, as shown by Israelachvili’s group [202] for atomically smooth mica cross-cylind
s, by Carpick et al. [203] for AFM tips coated with mica, and by Vorvolakos and Chaudhury [20
r polymeric contacts up to sliding velocity of order 10−3 m/s (with shear stresses amounting to almo
the elastic modulus). The independence of the adhesive contact area on the tangential loading w
alytically predicted, in linear elasticity, by Menga et al. [205, 206] in the case of a rigid sphere slidi
elastic solid in the presence of uniform interfacial shear stress [198]. In the same work, they sho
ear stress spatial fluctuations may lead to a reduction in the contact area, as the energy relea
creases globally. Importantly, detailed in-situ observations of the contact interface rarely report
area increase during sliding, even when accounting for factors such as surface roughness [207], whi
es viscoelastic adhesion [208], and elasto-plasticity in spherical contacts [209].
er experimental observations on basically smooth contacts found more significant anisotropic effec
shrinkage along the sliding direction (the trailing edge has a greater radius of curvature than t
edge), and potentially a slight growth in the orthogonal, in-plane direction, as shown in Fig. 6

mportantly, the contact size was also reported to drop below the Hertzian value [204, 189, 18
ing that a proper model should also account for nonlinear elastic effects. This was also confirm
teauminois’s observations in polymeric sliding contacts [210, 182], reporting strain values localiz
contact edges well beyond the linear elasticity threshold (see Fig. 6c). Indeed, FE could reprodu
behavior including finite deformations and rotations. Recently, these have been investigated
y Stupkiewicz’s group [183] showing, as reported in Fig. 6d, that the anisotropic contact shrinki
d in Ref. [189] is a non-adhesive phenomenon mostly ascribable to ’local contact lifting’ occurri
contact region and induced by nonlinear coupling in neo-Hookean elasticity. On similar ground
ents and nonlinear FE calculations showed that the contact area can even slightly increase in t
slip regime before gross slip occurs due to the enlargement of the leading edge induced by the loc
ssion and consequent material bulging [211]. Recent FE calculations also confirmed the role of fin
ty in frictional contacts, even in purely normal indentation, showing that hysteresis con be observ
inally uncoupled contacts and partial slips nucleate somewhere in the contact region (depending
al indenter slope) rather than at the contact edges [212].
o, the classic assumption of quasi-static contact evolution lacks physical meaning. Since the friction
e is a path-dependent process, the residual stress and displacements at the interface, and the ener
tion, and, in turn, the effective energy release rate associated to a contact area variation crucia
s on elastodynamic bulk effects (e.g., wave radiation from the frictional interface to the surroundi
al) [200, 201]. Moreover, a series of studies by Fineberg’s group [213, 214, 215] have shown th
copically observable quantities, such as the contact area and the frictional sliding stability, in rou
contacts suffering from confinement coupling are strongly affected by the interaction between t
eed elasto-dynamic propagation of spontaneous rupture fronts, the degree of confinement, and
ted velocity-dependent friction law. Despite many promising works dealing with the question of ho
ed tangential and normal load affects contacts and their mechanics, it remains challenging to quant
ergistic effects in real tribological systems.
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brication

rication is the process of reducing friction and wear in mechanical contacts by introducing a su
such as oil, grease, or even water—that forms a protective film between two surfaces. The slidi
between these surfaces generates hydrodynamic lift, which facilitates film formation and thus se
the sliding bodies. Lubricant research in modeling encompasses diverse aspects, most important
oretical or numerical modeling of fluid flow at moving interfaces, the engineering of surface textur
o the molecular simulation of bulk liquids to aid the modeling-supported design of new lubrican
allenges are to properly account for the interaction between fluid flow and solid mechanics, but al
h meaningful shear rates in molecular simulations as well as sufficient accuracy as it comes to ma
mistry-specific predictions [216]. Regarding this latter point, we note exemplarily that effective
ng the chemical binding between friction-modifying additives—such as gallate molecules in aqu
ricants—and surfaces is infeasible with density-functional methods, inaccurate even with advanc
tional force fields, but apparently satisfactory when employing machine-learned potentials [217].

Bulk Lubricant Properties and Design

ricants are crucial in determining the performance and durability of tribological contacts. Designi
nts is complex because base lubricants are typically combined with additive molecules that perfor
functions, such as modifying viscosity or protecting sliding surfaces. In recent years, there has be
in molecular methods employed for designing bulk properties of lubricants, such as their viscosi

er, the proper design of surface-active species—such as for wear protection—has largely remain
and-error process. Designing new lubricants begins with the ability to predict their constituti
or—such as viscosity, shear thinning, and how these properties change with temperature and confin
from the molecular structure of the lubricant.
cussions about the best functional forms as well as the physical origin of constitutive relations rema
Jadhao and Robbins [10] observed that squalane is essentially fully aligned with the shear flow

ediate shear rates γ̇ when the effective viscosity ηeff = σ/γ̇ has only dropped by a factor of thr
red to the equilibrium viscosity η0, in a broad range of temperatures T and pressures p. At low
ge p, the ratio ηeff/η0 can become many orders of magnitude smaller than one third, although t
les do not further align parallel to the flow with increasing shear rate. Thus, attributing the reduc
e viscosity to alignment is often premature and risks confusing correlation with causation. Viscosi
ear thinning appear to be determined by how energy barriers are overcome in a lubricant duri
d shear flow and most notably by the energy difference at the onset of a structural instability a
nt, where a local structure has found a new stable position [157].
conceptual pitfall of confusing correlation with causation may also appear in the context of pressu
ence and free-volume interpretations of the equilibrium viscosity η0(p). While most liquids certain
e their steric repulsion with increasing pressure—whereby free-volume theories may appear quantit
uids with typical shear thinning can display negative piezoviscous coefficients, indicating a decrease
rium viscosity with increasing pressure [218, 219]. For example, tetrahedral network formers such
ave an increased number of coordination defects with increasing pressure, providing a mechanism f
ducing (free) volume can enhance mobility, as the latter is carried by these high-density coordinati
[220]. Correlating lubricant molecular structure with viscosity appear to be particularly challengi
iscosity is time dependent as in viscoelastic fluids. This can increase load-bearing capacity and redu
[221]. Assessing the lubrication performance of viscoelastic fluids is, inter alia, crucial in polym
ing, where viscoelastic models may be applied to polymer melts and solutions [222], or biomechani
biological fluids, including e.g. the synovial liquid [223], are marked by a strong viscoelastic rheolog
pite frequent challenges in correlating fluid viscosity with simple geometric parameters of lubrica
les, there are certainly exceptions. For example, the insight that the hydrodynamic radius and t
e a molecule must be displaced before its motion becomes diffusive can be quite useful for estimati
ies from short molecular runs [224]. Exploiting such correlations can benefit the simulation-assist
of new lubricants, as equilibrium viscosities are notoriously difficult to determine from molecul
ions.
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aradigm example for the simulation-assisted design of base lubricants was presented by Kajita, Kin
shi [5]. They used a “genetic” algorithm that randomly combines different fragments of lubrica
les into new candidates to solve this design problem, where minimizing the change of viscosity η wi
ature was the design target. At a given temperature, η was estimated from very short molecul
ics simulations by linking short-time shear-stress autocorrelation functions to equilibrium viscosit
a modified shoving model [225]. Their work [5] is a first demonstrator that automatic lubricant desi
ible, however, the design of complex additive combinations requires further research into accelerat
ion methods.

Thin-film flow and the percolation problem

croscopic models for lubricated tribological systems, as well as mesoscopic models that explicitly re
surface roughness, often begin with simplified hydrodynamic descriptions. In the classical Reynold
differential equation (PDE),

∇ · J = 0, (

flow rate, flow is assumed to be of a Newtonian fluid, and stick-boundary conditions are considere
to

J = − h3

12η
∇p+

h

2
U. (

denotes the interfacial separation, η the viscosity, U the entrainment velocity, and p the flu
e. Since it is generally unfeasible to resolve small-scale details of h when solving the Reynol
n, a number of homogenization methods have been proposed.
e of the earliest homogenization approaches goes back to Bruggeman [226], whose work allows t
in seals to be homogenized, i.e., when the shear-induced flow rate or Couette flow Jc = hU/2 ter
This limit matters not only theoretically but also concerns the efficiency of components in industr
tions [227]. For leakage problems, the flow rate reduces to J = σ̄∇p, where σ̄ is the effective flui
nductance at coarse scales, accounting for the microscopic surface roughness. For isotropic roughne
, σ̄ can be estimated from the microscopic conductance σ = h3/12η by solving the self-consiste
n

1

σ̄
=

∫
Pr(σ)

D

σ + σ̄ (D − 1)
dσ, (

28]. Here, Pr(σ) is the probability density for the local conductivity σ to occur, while D is the spat
ion of the interface.
(4) is known to yield astoundingly accurate results even for highly complex contact geometries [22
ose to the percolation threshold [230, 231], in particular whenD is replaced with an effective interfac
ion that reproduces the correct percolation threshold for the relative contact area, e.g., a∗c ≈ 0.42 f
and random roughness, which implies Deff = 1.72 to be used instead of D = 2 in Eq. (4) in that case
inistic profiles can lead to different percolation thresholds [230]. This outcome is also fully consisten
s of a∗c with other contact mechanics results obtained on purely deterministic way and available
re [232]. The accuracy of the theory is demonstrated in Fig. 7, which compares full Reynolds flo
tions conducted on the gap topography from the contact-mechanics simulation of a randomly rou
to the results of a calculation based on Bruggeman’s effective-medium theory.
sson [233] generalized Eq. (4) to anisotropic surface roughness that can be described via the Peklen
r, i.e., for surfaces whose topography results from isotropic roughness by compressing one in-pla
n relative to the other. Wang and Müser [234] later corrected a typo in the final equation a
that the extension to anisotropic surfaces was accurate and that the percolation threshold of ac

r two-dimensional surfaces remained unaffected within numerical accuracy. A remarkable reason f
ating anisotropy is related to what happens in sliding viscoelastic contacts: here, even in presen
opic interfaces, the solution in terms of contact areas, displacements, and pressure distribution
opic due the different relaxation mechanism between leading and trailing edges [235, 236]. A relati
n percolation and anisotropy, as previously described, might also potentially arise also from coupli
n normal and tangential tractions [180].
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: Fluid pressure during fluid flow through a contact formed by a randomly rough surface and a linearly elastic bo
here fluid pressure decreases from blue to green. Panel (e) shows the mean current density j through the conta
tters reference the previous panels. Panels (c) and (d) highlight a situation near the percolation threshold, where t
ssure drops almost entirely near a critical constriction. The inset of panel (e) supports the hypothesis that fluid leaka
astic contact disappears with the exact power law (L − L∗)3.45 as a function of load L when the percolation load
ached [230]. Full lines depict the Bruggeman effective theory [228], while symbols show different disorder realizatio
from Ref. [231].

sliding contacts, the full Reynolds thin-film equation needs to be regularized so that Couette flo
idered in addition to Poiseuille flow, potentially including the effect of anisotropic surface roughne
n be achieved again with the Bruggemann effective medium [237] but also using perturbation [238]
alization-group based approaches [239], or an approach [240] based on Persson’s contact mechan
[4]. It turns out that the shear stresses between the fluid and the solid surfaces can induce a no
le, anisotropic flattening of asperities belonging to initially isotropic surfaces [241]. This can great
the magnitude of fluid-solid interactions, just like the orientation between anisotropy and slidi
n. Specifically, when an O-ring slides steadily over a grooved, randomly rough surface, mixed fricti
es when the grooves are oriented perpendicularly to the sliding direction. This reduced friction
ted to the enhanced coupling between fluid and asperities, leading to increased fluid pressure a
d asperity-asperity contacts. [240]. Fluid-induced asperity flattening might also cause the occurren
condary (micro-)elastohydrodynamic friction regime in the Stribeck curve, as demonstrated in t
a grooved rough soft contacts [242].
ther key problem is that constitutive behavior may no longer be known for highly confined a
ized fluids, or that the constitutive behavior starts to explicitly depend on the gap separating t
interface, for example because of epitaxial ordering [243], fluid layering [244], or jamming of t
his high-dimensional parameter space can be explored using active learning, e.g. by using Gaussi
regression to interpolate between molecular dynamics simulations and decide in which regions of t
ter space to run new calculations, see Sect. 2.3 and in particular Fig. 3 or Ref. [55].

Surface texture and functionalization

Reynolds’ equation works extremely well in the limit of hydrodynamic lubrication, where interfac
l separated and no solid-solid contact occurs. This limit is achieved at high sliding velocities and wi
fluids. Optimization of sliding systems often aims to extend this hydrodynamic regime to slow

ies and lower viscosities, the latter often introduced to increase energy efficiency. One way to achie
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: (a) Parameteric [248] and (b) nonparametric [250] optimization of surface textures. The “adjoint” textures in pa
obtained using PDE-constrained optimization employing the adjoint method. Adapted from Refs. [248] and [250].

timization is to pattern sliding interfaces with dimples, an approach pioneered by Etsion [245].
n to increasing the load-bearing capacity, dimples are also considered beneficial for capturing we
es, effectively removing them and their adverse effects from the contact. Furthermore, dimples direct
pate to the friction reduction, promoting cavitation when the fluid expands in the micro-hole, an
remarkable reduction of the shear stresses [246, 247]. The latter are, in fact, much lower when t
bricant is replaced by a gas and contribute to the overall friction reduction in the lubricated syste
ure 8 shows examples of surface textures simulated and manufactured for pin-on-disc experimen
ano et al. [248, 249] used predetermined patterns of dimples (Fig. 8a) and concluded that the ma
ric factor influencing performance is the fraction of the surface occupied by dimples. While op
dimple geometries is typically carried out in this parametric manner, that is, by designing dimp
s and testing them in numerical calculations, Codrignani and co-workers [250] used PDE-constrain
zation based on the Reynolds equation, which does not impose predefined patterns, to optimize t
ry of a sliding contact. This optimization strategy yielded the geometries shown in Fig. 8b, whe
p-like geometries on the left are those predicted through completely free-form optimizations to mo
tly increase load-bearing capacity. The dimple patterns in Fig. 8b were obtained by constraining t
zation to specific locations of the dimples. Codrignani [250] also points out that the ideal patter
on the operating conditions (load, sliding velocity, etc.) of the tribological contact.

Soft lubricated contacts

Sect. 3.1, we discussed sliding on dry viscoelastic solids, which has been extensively studied usi
ical techniques over the last decade. Viscoelasticity of the contacting bodies also plays an importa
en the contact is lubricated, as is often the case in soft lubrication and biomechanics. The scenar
nly found in elastohydrodynamics (EHL) changes dramatically in terms of both film thickness a
e distributions [251, 252, 249]. This leads to significant variations in the classic Stribeck relati
n fluid speed and friction coefficient [251]. In fact, friction is produced not only by fluid loss
o by hysteretic viscoelastic losses. As shown experimentally by Sadowski and Stupkiewicz [25
eans that the classic sequence of boundary, mixed, and elastohydrodynamic lubrication regimes
by the occurrence of a bell-shaped viscoelastic hysteretic friction contribution to the Stribeck curv
uently, Putignano has shown that when dealing with visco-elasto-hydrodynamic lubrication (VEHL
rsey number—related to the fluid entrainment velocity, fluid viscosity, and load—is not the on
l parameter governing the process. It must be complemented by the two dimensionless speeds of t
coelastic bodies, leading to three different and independent dimensionless groups that characteri
HL regime [252].
above considerations make it clear that the time-dependent dissipative characteristics of a viscoelas
surface significantly influence the dynamics of the lubrication process, especially under non-stead
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nditions, where transient effects [254] are amplified by solid viscoelasticity [255]. This is exemplified
e of lubricated squeezing of viscoelastic bodies: before reaching a Hertzian-like pressure distributio
tem exhibits a distinctly non-elastic evolution, with viscoelastic-induced pressure peaks at the conta
256]. Additional effects arise from various configurations of viscoelastic solids, such as thin layers [25
roximate yet effective methods have been developed for multi-field problems, particularly for fu
thermo-viscoelastic contact problems, with applications to layered materials and coatings as w

simulation of frictional and viscoelastic heating [258]. The main challenges related to soft lubric
ncluding the impact of material viscoelasticity, large deformations, and non-Newtonian effects in t
are further discussed in [259].

Aqueous systems

pursuit of sustainable and energy-efficient lubricants has sparked interest in water-based lubricati
nical applications. Much of the expertise in water lubrication comes from research in winter spor
ften involves contact with ice and aims to improve sports equipment performance. [260]. However, t
isms of ice friction remain a topic of considerable debate. Two common explanations are typica
first, that frictional heating melts the ice, creating a lubricating water film; and second, that d
unique properties of water (shared with other tetrahedral liquids [261]), pressure lowers the melti
also causing the ice to melt. Recent molecular dynamics simulations, however, have shown that ice c
o shear melting even both at temperatures far below and relatively close to freezing temperatures [26
to the solid-state amorphization processes observed in other tetrahedral solids [263, 264].
ter in its liquid form is also the primary lubricant in biological systems. Joints and other body par
ricated by synovial fluid, which consists of water enriched with a variety of biomolecular ’additiv
lubricin. Biological sliding interfaces are often composed of cartilage tissue, a hydrogel that requir

ion. Water is expelled from the hydrogel during compression, but Burris and co-workers [265] recent
that the formation of a lubricant film during sliding helps rehydrate cartilage. Putignano and c

s [266] used an elastohydrodynamic lubrication (EHL) model combined with a mean-field model f
-media flow through cartilage to demonstrate that sliding induces a net flow through the cartilag
ating the hydrogel. This mechanism appears to be essential for maintaining cartilage stability und
frictional conditions and supports the advice from physiotherapists to keep joints in motion an
y, has been artificially replicated on hydrogels [267].

terials

etals

tals are typically lubricated in engineering applications, except in the case of sliding electrical contac
h lubricants can affect conductivity. Nonetheless, extreme conditions can lead to the squeeze-o
icant and even the removal of the (protective) oxide layer. Modeling friction and wear in meta
larly at the atomistic level, therefore often assumes that any oxide layer has worn away during sli
ving the tribological response dominated by cold-welded metal junctions, adhesion, and plowin
er, soft metals, for example gold, are even used as solid lubricants in vacuum bearings for spa
tions [268, 269], which adds to necessity to study direct metal-metal contacts. The material’s m
cture—such as grain boundaries and defects—and surface topography then influence friction, wea
atch resistance [270] of the metal contact.

Friction and wear of pure metals

sticity in metals is governed by two dominant bulk deformation mechanisms, dislocation-mediat
ity and grain boundary sliding, and these mechanisms are also responsible for the tribological r
[271]. Dislocation-mediated plasticity dominates when grain sizes are above approximately 10 n
agranular deformation—through the nucleation and motion of dislocations—becomes energetica
avorable than intergranular deformation for larger grains. However, in refined grain structures wi
elow about 10 nm, grain boundary sliding dominates and can lead to low friction. Molecular mod
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: Schematic summary of molecular dynamics (MD) simulations and experimental observations for a gold–tungst
sliding contact. Panel (a) shows MD snapshots illustrating the formation of a loosely packed interlayer (IL) of
at the interface with W (gray) as a function of increasing W-Au distance. This IL is associated with a significa
n in friction. Panel (b) presents a stylized schematic of the high-resolution transmission electron microscopy (HRTE
ed in the accompanying experiments. Panel (c) compares the frictional response in interfaces with and without an
ecreated and reinterpreted based on Ref. [274].

tion in pure metals connect the tribological response to the behavior of cold-welded commensura
ial) or incommensurate junctions.
erstanding the relationship between microstructure and friction in metals allows for tailoring fr
roperties in practical applications for both bulk metals and surface films. For instance, recent expe
have demonstrated that a single-crystal nickel (Ni) surface with the 011⟨211⟩ orientation preferentia
s an ultra-nanocrystalline near-surface layer when subjected to shear against a Si3N4 ball [272]. Th
rmation leads to a reduction in the coefficient of friction from 0.64 to 0.32, resulting from a tran
m dislocation-mediated plasticity to grain-boundary sliding. Another approach to forming ultrafi
that lead to low friction via grain-boundary sliding is through the careful selection of layer thickne
-nickel (Au-Ni) multilayer systems [273]. In these systems, mechanical mixing under tribologic
ons in ultra-high vacuum for layer thicknesses below approximately 50 nm led to an increase in gra
ry density, lowering friction by a factor of about two.
h-fidelity studies often combine atomistic modeling with high-resolution microscopy to directly v
imulation outcomes. As an example, He et al. [274] combined in-situ high-resolution transmissi
n microscopy (HRTEM) and atomic force microscopy with molecular dynamics simulations to obser
cial structure formation during frictional processes in atomic-scale Au-W contacts, see Fig. 9. Th
ch enabled real-time visualization of the interface microstructure, overcoming limitations of indire
itu techniques. They found that a loosely packed, disordered interfacial layer acted as a lubrica
n tungsten (W) and gold (Au) asperities, resulting in friction coefficients below 0.01 in nanosca
s, similar to structural lubricity. The relative motion between the Au and W asperities was med
diffusion of Au atoms rather than by rigid shear, yielding, or junction fracture, as would occur

iction scenarios. The intimate connection between microstructure and friction explains why emergi
ng efforts are focusing on understanding aspects of wear, plastic deformation, and scratch resistan
llic surfaces.
ar can be distinguished by various mechanisms including abrasion, fatigue, adhesion. Two-body we
s the direct interaction between two surfaces, resulting in material exchange and removal due
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of0: Surface fragmentation and three-body formation in a discrete-particle simulation of sliding wear. The simulatio
gured so that brittle fracture occurs at length scales smaller than the simulation box—something not achievable
cale models. Colors indicate distinct fragments that detached from both sliding surfaces and eventually agglomerat
a third body. Cold welding between surfaces is prevented by dynamic detection of surface atoms that are assigned
dhesion energy, mimicking the effects of oxidation and surface passivation in metals.. From Ref. [278]

n and adhesion. Three-body wear involves abrasive particles caught between two surfaces, resulti
from the rolling and sliding actions of the particles. The material properties, shape, and size of the

es influence the degree and mechanism of three-body wear. Recent modeling advancements enab
c simulations of mechanical wear, leading to a better understanding of wear processes at differe
Molecular dynamics (MD) and discrete element methods (DEM) can describe wear mechanism

ll scales, while finite element (FEM) and boundary element methods (BEM), as well as phase-fie
have been used to study subsurface stress evolution and damage in sliding contacts. In the followin
highlight some of these studies.
ile MD simulations excel at handling complexities associated with severe deformation at small scal
ruggle with phenomena at larger scales like crack shielding and amplification or debris formation. T
as been recently simulated using coarse-grained potential based discrete element simulations [44, 4
e similar in spirit to molecular dynamics but operate on coarse-grained elements that can defor
eract via forces and torques not necessarily derived from an underlying energy function. The calc
revealed formation of wear particles (Fig. 10) and the existence of a critical junction size betwe
lliding asperities where the failure mechanism upon sliding transitions from smoothing by plas
ation to subsurface fracture and debris formation—a mechanism postulated more than 60 years a
inowicz [275]. These works are notable for being able to treat brittle propagation and interacti
ks, leading to fracture. This is in contrast to molecular dynamics results, that in most cases sho
behavior of the contacting bodies and blunting of pre-existing cracks. Indeed, the critical-size id
s why this happens: The length scales accessible in atomistic calculations are much smaller than t
the critical junction (or crack-tip process zone) expected in most materials, with the potential notab
on of brittle crystals [7, 276] or amorphous carbon [277]. Studying the effect of material heterogen
asperity failure, it was shown that the critical junction size formula works for hard materials un
ility threshold is reached, leading to mixed behavior between shear localization and mode II cra
g [47]. This reveals that simple homogenization schemes are insufficient for capturing all underlyi
of deformation, as local fluctuations increase ductility, but also create brittle areas prone to cra

ion, resulting in competing mechanisms.
low-up works [279, 280] identified three distinct mechanisms for material removal during adhesi
the asperity level: atom-by-atom removal (atomic attrition) [281, 282, 283, 284] (see also Sec. 4.2.1

ity (dislocation-based or amorphization-induced material removal) [285, 286], and fracture-induc
nt detachment [287]. Mechanistic wear models have been recently developed based on the critic
n size model [41, 39], that connects the macroscopic wear rate, particle sizes, and emission rat
ting the formation process of third-body particles and the wear they induce on sliding surfaces presen
us challenges. For example, Ref. [288] showed that detached fragments can first act as roller bearin
ransitioning into a shear-band-like state via adhesive bonding, suggesting that proximity betwe
es and size relative to surface roughness affect the stability of the rolling regime. However, Aghababa

26



Journal Pre-proof

demon le
format .

The he
nanosc ce
roughn he
influen by
couplin ct
analysi n-
tial of a
concur ite
elemen rt
to stud ce
of mat ur
orders of
the wo

Scr ss
of mate at
the con hs
but we a
functio to
wear fr m
is supp 6]
showed n-
mediat ng
depth i al
indente lt
to initi

Mo c-
tures, s al
relevan 8]
reveale nd
this co of
scratch on
(b and lly
shown tic
activity

Stu of
an ana nd
asperit ip
betwee he
crucial 3]
have sh ch
directio od
as plas of
applied ng
to diffe lt
in incr ts
that al er
the def on
hardne rd
wear m ise
as a m ic,
Jo

ur
na

l P
re

-p
ro

of

strated [278] that interfacial adhesion also affects the particle growth rate by controlling the partic
ion probability and determining the energy per unit volume of removed material (see also Fig. 10)
se studies emphasize the significant impact of wear particles on friction and wear, even at t
ale, highlighting the need to incorporate additional complexities such as the coupling between surfa
ess and wear particle dynamics in continuum simulations. Recent work [289, 290] investigated t
ce of microscale features such as surface roughness on the wear behavior of engineering systems
g semi-analytical models into Archard’s model-based finite-element framework. The micro-conta
s shows a considerable decrease local pressure and temperature with time due to wear. The pote
multiscale approaches to model wear at the mesoscale has also been recently demonstrated with
rent multiscale framework, in which a coarse-grained discrete approach [44] was coupled with fin
ts to simulate fracture-based material removal during adhesive wear [291]. A related multiscale effo
y surface finishing based on MD and the material point method (MPM) [292, 293] found eviden
erial removal rates and surface roughness parameters scaling linearly with the abrasive size over fo
of magnitude, allowing predictions regarding the effects of abrasive blunting on the surface quality
rk piece.
atching is considered a subset of two-body wear, particularly when abrasion predominates the proce
rial removal. Large-scale MD simulations of single-crystalline W and Cu [294, 295] demonstrated th
nection between adhesion and abrasion in material removal is strong at shallow scratching dept
akens as the scratching depth increases. In fact, there exists a critical adhesive strength, which is
n of the scratching depth at which the material removal mechanism transitions from atom-by-atom
agment removal. This study confirms that the contribution of the atom-by-atom removal mechanis
ressed when plowing dominates the process of material removal. Scratching polycrystalline Fe [29
that reducing the mean grain size changes the plastic deformation mechanism from a dislocatio

ed mechanism to one involving grain lattice rotation and grain boundary sliding. As the scratchi
ncreases to a certain level, radial, median, and lateral cracks can initiate, and there exists an optim
r half-apex angle, which depends on the scratch depth and indenter radius, where it is most difficu
ate radial and median cracks [297].
st recent atomic-scale scratching research has focused on FCC and BCC metals, whereas HCP stru
uch as titanium (Ti) and magnesium (Mg), have received less attention, despite their technologic
ce, e.g., in lightweight components. Atomistic scratch simulations of Ti single- and bi-crystals [29
d that softer Ti grains exhibit shallower residual scratch grooves than initially harder ones, a
uld be attributed to fragmentation-induced internal interfaces, see Fig. 11. An in-depth analysis
ing across a grain boundary revealed grain boundary bending (panel a), asymmetric pile-up formati
c) and the formation of nano-grains immediately at the grain boundary (panel d). It was genera
for HCP metals that the basal surface has lower hardness than the prismatic surface, on which plas
is more pronounced and from where dislocation loops are emitted into the substrate [299].

dying the scratching process of a deformable substrate with a rigid asperity led to the formulation
lytical model that predicts wear profiles and substrate penetration depths as a function of load a
y geometry [300]. Interestingly, the experimentally validated model revealed a nonlinear relationsh
n wear volume and force, differing from the classical Archard wear model. This emphasizes t
role of asperity geometry in material removal rate and mechanism. Recent studies [301, 302, 30
own that wear volume in single-crystal materials varies greatly with crystal orientation and scrat
n, challenging the notion of a unique wear coefficient for a given material. This can be understo
tic hardening and size effects are strongly influenced by the crystal orientation and the direction
forces [304]. Variations in these factors significantly affect the material’s response to wear, leadi
rences in wear behavior. Furthermore, it has been demonstrated that while smaller grains resu
eased scratch hardness, they have negligible impact on the pile-up topography [305]. This sugges
though finer grains enhance the material’s resistance to scratching, they do not significantly alt
ormation pattern that forms around the scratched area. These observations suggest that indentati
ss alone may be insufficient to characterize the wear response of crystalline materials using the Archa
odel, as it fails to account for crystal anisotropy. Alternatively, scratch hardness has shown prom
ore effective measure for estimating wear responses that are both size-dependent and anisotrop
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1: Visualization of how scratching across a grain boundary in hcp Ti leads to persistent grain boundary (GB) bend
asymmetric pile-up formation in front of the scratch tip (b) further evidenced by the atomic displacement vectors (
s the subsequent formation of nano-grains (NG) near the grain boundary (d). Adapted from [298].

useful at both the continuum level [306] and the atomic scale [307]. These insights provide a nov
cient method for indirectly characterizing material properties, such as elastic modulus, hardne
ing coefficient/exponent, and fracture toughness through scratch testing [308, 309].

Friction and wear of metal alloys

ile the considerations discussed above for pure metals can provide deep insights into friction and we
isms, most metals in real-world applications are alloys (and sometimes even amorphous) leading
mechanisms that can differ considerably from those in elemental metals. Chandross and Argibay [31
ed a model for predicting the shear strength of polycrystalline metals and alloys based on the stre
d for deformation via amorphization, which does not occur in pure metals, thus eliminating the ne
ustable parameters. They further extended this concept to predict the ideal strength of metal
using stress-activated transformations with a regular solution model, offering a possible pathway
esign at low computational cost [311]. These methods show promise for designing and optimizi
rformance alloys and composites for maximum strength by optimizing the readily-calculated heat
rather than performing resource-intensive simulations.
ng beyond the properties of single crystals by modeling alloys at the nanoscale under tribologic
conditions has yielded valuable insights into their interfacial properties. As a prominent examp
rincipal element alloys (MPEAs) or complex concentrated alloys (CCAs), often referred to as hig
dium-entropy alloys (HEAs and MEAs), have shown potential as robust materials for extreme en
ts, with increased strength and creep resistance compared to traditional alloys [312]. These materia
er the possibility of being produced from scrap [313]. Atomistic modeling techniques advanced t
tanding of the tribological behavior of these alloys, for which the reader is also referred to a rece
dedicated to HEAs [314]. Most of the particular studies outlined in the following used ball-on-fl
geometries, that may be interpreted either as single-asperity contacts, nanoindentations or scrat
15], or even in the context of nanomachining.
ent MD simulations revealed that a decrease of the chromium content to 22% in an FCC NiCo
eads to lower coefficients of friction against a diamond sphere, but a notably increased hardne
ompared to the traditional equiatomic MEA composition [316]. In this case, the rearrangement
at the sliding interface leads to a repulsive layer that is enriched in nickel, improving the tribologic
ties of the alloy. Other atomistic simulations with polycrystalline CuCoCrFeNi HEAs demonstrat
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of2: MD-simulated grain orientation (EBSD) tomographs of polycrystalline CuNi25 after sliding against a rough ri
ody (gray) for 280 nm at a normal pressure of 0.7 GPa at different velocities vx. The three panels show evidence
cation mediated plasticity, (b) fluid-like flow (note the high contact conformity), and (c) relocalization of the slid
to liquid contact regions at ballistic speeds. Images adapted from [325].

resses induced at grain boundaries under cryogenic conditions (77 K) can reduce stresses within t
enhancing wear resistance [317]. While single-crystal samples exhibited the lowest friction, column
stalline samples with a grain diameter of 10.7 nm showed the highest wear resistance as well
t overall performance for friction and wear. Nanoscale modeling has also provided insights into t
gical performance of HEAs used as coatings. An additively manufactured AlCoCrFe coating with
ss of 3.2 nm on pure aluminum increased the Young’s modulus of the sample by 50%, enhanced
ss by a factor of ten, reduced the wear scar volume by an order of magnitude, and lowered fricti
compared to the uncoated Al substrate [318]. Similarly, a FeNiCrCoCu coating on copper exhibit
ive properties through stress absorption and subsequent release [319]. The stress release leads to t
tion of stacking faults in the coating, that then act as a barrier to lattice damage in the Cu substra
otwinned Cu/FeCoCrNi nanolaminates, the coefficient of friction, wear rate, and surface roughne
ed relative minima at a sliding speed of 100 m/s, attributed to the formation of V-shaped dislocatio
cking fault tetrahedra [320].
itional alloys, such as Invar (FeNi36), AZ91 (simplified to Mg17Al12), and cupronickel (CuNi) ha
cently studied for their tribological behavior using atomistic modeling. Studies of the polishing
ar alloy have focused on optimizing conditions to reduce subsurface damage and improve surfa
[321, 322]. The authors found that a rolling speed of the abrasive particles that corresponds to pu
is most detrimental to both surface roughness and subsurface damage, while some slip (in eith
n) produced better-quality polished surfaces. Based on the MD results, an analytical model w
ed to predict the minimum uncut chip thickness (an indicator of a material’s machinability) as
n of the elastic modulus, Poisson ratio, shear strength, and hardness of the processed material
geometrical considerations. Another study investigated the influence of continuous and discontin
cipitates on scratch-induced wear in the AZ91 magnesium alloy through experiments and atomis
ions [323]. The orientation of the BCC precipitates on the surface significantly affected the alloy
ation behavior; a longitudinal orientation with respect to the cutting direction led to a ductile-brit
ion, while a transverse orientation yielded a fully ductile response. Discontinuous precipitates e
higher wear resistance, but also higher friction regardless of orientation compared to continuo

tates, a conclusion that was supported by an analysis of planar defects and dislocations. Finally,
f large-scale MD simulations on polycrystalline CuNi alloys have explored deformation regimes a
deformation mechanism maps [18] that can be considered an enhancement of Ashby charts (a mat

lection tool) for tribological systems. The validity of the obtained maps was assessed via compariso
images of worn samples from ball-on-plate experiments, allowing researchers to identify different d

ion mechanisms (twinning, grain refinement, shear-induced grain growth, etc.) as a function of all
sition, normal load, temperature [324], and sliding velocity. At extreme sliding velocities (∼320 m/
e characterized by fluid-like behavior of the softer sliding partner with a highly conformal interfa
served [325], see the differences between panels (a) and (b) in Fig. 12. Further investigation at b
peeds (> 640 m/s) revealed a rise in contact temperature, the relocalization of the sliding interfa
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efied metal contact patches (see panel c), as well as a decrease in plastic deformation and interfac
, that could be aligned with experimental observations by Bowden and Freitag [326].

tion and wear modeling of single-crystal metals at small scales has reached a mature state, wi
tablished mechanisms and tribological laws governing contact, friction, and wear. However, nume
dies must now address more complex systems—such as polycrystalline metals and high-entro
where the detailed contributions of subsurface defects are critical. For high-entropy alloys, futu

tic modeling should also investigate dislocation mechanisms and interactions with lubricants or 2D m
like graphene [327]. Recent research [328, 329] further highlights the potential of tribology-assist
al characterization, particularly through scratching techniques, where combined topographical a
easurements facilitate the extraction of diverse material properties and microstructural features.
upscale this understanding, the development of concurrent and sequential multiscale models is e
to bridge from nano- to macro-scale information. These models will enable a more comprehensi
tion of friction and wear mechanisms across different length scales. To ensure their accuracy a
ity, systematic small-scale experiments examining factors such as contact area, pressure, surface t
hy, and lubrication conditions are necessary for rigorous validation. Addressing these challenges w
he way for more robust numerical models, ultimately advancing materials design, durability, a
nent lifespan.

ibochemistry

ochemistry is the study of chemical reactions occurring at the interface between surfaces in relati
. Tribochemical reactions are caused by interfacial stresses and/or frictional heating and in retu
changes in friction, wear, and lubrication. While mechanical alloying or even the motion of dis
at interfaces described in the previous sections is a type of tribologically-induced reaction, becau

g chemical bonds are broken while new ones are formed, mechanochemistry encompasses a broad
f stress-induced chemical reactions, including those occurring in bulk solids, liquids, or gases due
ical stresses caused by grinding, milling, or shearing but also those triggered by forces on individu
les. Whether a change of bond topology should be classified as tribochemical, plastic, or more gene
chanochemical may not always be unambiguous. This is also because the degree with which chemic
are directional even in elemental solids changes almost continuously throughout the periodic table
e of the tribochemical reactions, which frequently affects the lives of car engines, is the degradati
ne oils. At the same time, effective lubrication by engine oils relies on tribochemical reactions su
e leading to the formation of surface tribofilms from antiwear additives and friction modifiers. T
n how to tribochemically “synthesize” in situ tribofilms that protect surfaces from wear and redu
in boundary lubrication has become increasingly important. The goal is to replace expensive coatin

ted life span with tribofilms that are self-generating and self-repairing [330, 331, 332]. The classic
le is the anti-wear film formation of zinc-phosphates, which is still controversially discussed and hen
d below along with the growth of low-friction carbon tribofilms, which has also enticed much rece
t.
ile the interpretation of tribochemical pathways is much assisted by atomistic simulation, attemp
o made to develop a formal theory for tribochemical reactions. The field is still in an early sta
s also because, with rare exceptions [333], most theories [334] overlook that stress is not a numb
symmetric) tensor of rank two and that different stress-tensor elements can trigger different chemic
ns (see Fig. 13a-d). Consequently, formal theories such as the von Mises yield criterion in so
ics, which are independent of coordinate system choices, have yet to be formulated.

Generic models for tribo- and mechanochemistry

ording to Eyring’s transition-state theory [337], the central quantity affecting the rate of gas-pha
ns v from reactants to products is the activation energy ∆E, as v depends on it exponentially

v ∝ exp(−β∆E), (
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3: Upper row: Educt (a) and products (b-d) of strain-induced reactions in a model ZDDP decomposition molecu
strains differed in shape and thereby lead to different hydrostatic pressures (p) and shear-stresses (τ), where t

s took place, but also to different bulk moduli B, as indicated in the panels. Adopted from [335, 336]. Lower ro
nding MD simulation of the tribochemical composition of a glycerol molecule between two ta-C surfaces [12]. T
molecule chemisorbs simultaneously to both surfaces (e). Tribologically induced molecular decomposition combin
erface cold welding leads to the formation of a H- and O-containing amorphous carbon sliding interface (f). Localizat
lastic shear deformation results in the formation of a passivated, partially aromatic sliding interface (g), which lies
of superlubricity. The polycyclic structure of the surfaces can best be seen in panel h, which is a top view of a t
2.8-Å-thick region of the bottom surface.
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= (kBT )
−1. Due to a directed force F pulling a bond in a molecule, the reaction barrier to bo

ation ∆E can be reduced to the extent that it approaches the thermal energy kBT or that ∆E ev
s negative, in which case the reaction, e.g., the breaking of bonds, happens (quasi-) spontaneous
ing order, it is described through a linear relation in the so-called Bell model [338], though previous
ed by Evans and Polanyi [339], Kauzmann and Eyring, [340] and others

∆E = ∆E0 − F∆x, (

∆E0 is the energy barrier in the absence of an external force, while ∆x could be coined a reacti

bulk material, stresses rather than forces affect the rate of reaction, so that ∆E is a function
e or stress. In mechanochemistry, one possible and frequently used generalization of Eq. (6) reads

∆E = ∆E0 + α∆H, (

∆H is the reaction enthalpy. However, other generalizations are possible. To this end, assume t
in Eq. (6) is applied to an initially cubic box with volume V = a3 containing an isotropic mater

surface normal to the z direction yielding a tensile stress of σzz = F/a2. The most general expansi
in the stress-tensor invariants In yielding linearity in F is [341]

∆E = ∆E0 +
3∑

n=1

αnI
1/n
n . (

1 reduces to σzz, in which case the hydrostatic pressure becomes p ≡ −I1/3 = −F/(3a2), while t
ses or equivalent shear stress σvM ≡

√
3I21 − I2 would be σvM = F/(3a2).

a general loading condition, there is no reason for σvM to be equal in magnitude as p. A prop
lization of the linear Bell relation would read

∆E = ∆E0 + pV1 − σvMV2 − 3
√
I3α3, (

the Vn are expansion coefficients, which one may want to call free volume in the case of V1 a
te with a volume needed for a reaction to take place. For non-isotropic systems, up to six volum
defined [342], yet, most studies focus on V1 and associate it with an activation volume. A difficul
description of a tribochemical reaction is that stress tensor elements and the Vn coefficients chan
inuously across the interface so that they are generally undefined right at a tribological interface.
se, one may want to replace p with the normal load per unit area and σvM with the frictional she
333], and ignore the effect of additional or higher-order strain tensor elements on the reaction rate
ssic evidence for stress-assisted bond breaking in sliding contacts comes from the observation of we
sliding atomic-force microscopy tips, such as by Park et al. [343] for the formation of wear tracks
lutions or by Gotsmann and Lantz [344] for wear of the tip itself under dry conditions. Gotsmann a
characterized wear indirectly from tip radii extracted in pull-off experiments. They were the first
at the worn volume upon sliding tips for hundreds of meters on a polymeric substrate follows the B
rather than the phenomomenological law of Archard [78] stating that wear is proportional to the wo
y friction. This was later confirmed in direct electron-microscopy measurements of the tip geomet
obs and Carpick [342], albeit for wear rates orders of magnitude larger than the previously observ
y-atom attrition [344]. We now understand that not only wear, but also tribofilm growth [345]
ed by such stress-assisted activated processes. As many other works, all of the works cited in th
aph [344, 342, 345] consider only the pressure and ignore the other terms in Eq. (9), although Jaco
rpick explicitly recognize that as an approximation.
need to incorporate a more rigorous description of the local stress field in the models is exemplifi
lack of consensus on which particular scalar pressure value (e.g. normal or shear interface pressur
ines the atom-by-atom wear process. For example, Gotsmann et al. [344] assumed that the ener
for the wear process is reduced by the interface shear stress that stretches the bonds at the interfa
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n tip and substrate. In contrast, Jacobs et al. [342] use the compressive normal contact stress to
erimental wear data, but note that the shear stress used in previous works scales linearly with t
ssive stress. Although these studies are unable to identify the precise reaction pathway for atom-b
ear, Jacobs et al. [342] propose that each single wear process could be decomposed into two step
first step, compressive stress at the contact between tip and substrate promotes the formation
t bonds between an atom of the tip and one of the substrate. In this case, this is the rate-limiti
n the next step, the bonds connecting the first of the two atoms to the tip are broken upon sliding
on the substrate.
idea of decomposing the atomic wear process into a bond-formation and bond-breaking (or wea

oposed by Jacobs et al. [342] has been recently resumed and elaborated in works aimed at modelli
d [346] and speed dependencies of atomic wear [347]. While the work of Raghuraman et al. [34
on the removal of oxygen atoms from graphene by means of a silicon tip, and the wear step is
hopping process that is biased by the tip lateral velocity, the study of Wang al. [346] is closer
a of Jacobs and Carpick. The authors assume that the energy barrier for the bond-formation step
by a compressive stress, while the barrier for the bond-breaking step is reduced by the local she
The energy barriers for the two reactions are the only fitting parameters as the authors direct

te the work done by the compressive and shear stress components using simple models for conta
ation energy and bond breaking, respectively, without introducing activation volumes. Evaluati
ar volume boils down to finding a suitable expression of the normal-load dependency of the re
area. Comparison with the results of MD simulations on DLC/DLC contacts with different lo
ences of real contact area are accurate and show that this dependency determines the wear law.
heir two-step atomic wear model, Wang et al. [346] use simple estimates for the mechanical work th
energy barriers and avoid introducing an activation volume, which they claim is a fitting paramet
o explicit physical meaning. In most of the other studies mentioned in this section, key discussio
around the interpretation of the volume term V1 in Eq. (9). It is sometimes referred to as t
ve) activation volume. Interestingly, its value for a given interface can take values ranging fro
Å3 [342, 344, 348, 349, 347], making it difficult to assign a local interpretation to V1. One propos

ation is that V1 does not only have an interfacial but also a bulk contribution, where the latt
pend on the radius of curvature of the scratching tips or the stiffness of the material close to t
ce [348]. However, this suggestion violates the principle that chemistry is generally local. It may w
t the locality principle can be reestablished by including all relevant stress terms into a theory, e.
3
term or by properly deducing σvM, which requires the generally neglected in-plane stresses to

d, for example, through a proper contact-mechanics analysis.

Anti-wear tribofilms

ny studies on the formation of anti-wear films focus on the rate of tribofilm formation but ignore th
ducts themselves depend on the stress that acted when the films were produced, which violates t
tions made for Eq. (7). For example, decomposition products of anti-wear additives, most notably
alkyldithiophosphates (ZDDPs), form substantially stiffer polyphosphate glasses with longer chai
of asperities, where stresses had been previously high than in the valleys between asperities with mo
te stress history [350]. Nonethless, it is certainly interesting to learn that zinc-phosphate tribofilm
w without direct asperity contact provided that the shear stress is sufficiently high: under identic
stress and shear rates, Zhang and Spikes [351] found film formation with a high-viscosity but not wi
iscosity base oil. Fang et al. [352] corroborated these results. By blending together high-viscosity a
cosity base oils, they systematically controlled both the shear stress and normal stress. In agreeme
hang and Spikes [351], they found that increasing the temperature and shear stress increase tribofi
exponentially; however, increasing the normal stress had the opposite effect.
nother recent study, Zhang et al. [353] compared the tribofilm growth rates of ZDDPs with a ran
l substituents. They showed that the ZDDPs with long linear chains had a stronger temperatu
ence and thus a larger activation energy, while those with branched and bulky groups had a strong
dependence, and thus larger activation volumes. Zhang et al. [354] also showed that ZDDPs wi
ary alkyl groups formed tribofilms much faster than those with primary ones under a wide ran

33



Journal Pre-proof

of tem on
volume ial
factor

As P
tribofil D
simulat es
from te ir-
reversi 6],
and an P
tribofil at
typical by
Shakhv lly
much l 5]
showed to
levels e nd
potent s
formed al
stress m

A c ff-
ness ca le
tribom la-
tions to ey
showed P-
contain ss.
Softer b-
surface nd
DFT-b lic
substra g-
nesium at
this wa s
in the nt
transm e-
activity e,
organic

Ano M
experim al
decomp of
the act er,
Rana e in
ultrahi ed
perpen be
require to
simulat ts
that a ar
C–CH3 3

bond, n.
These on
a copp a
critical ce
of a cri
 Jo

ur
na

l P
re

-p
ro

of

perature and shear stress conditions. Both ZDDPs had similar a activation energy and activati
and the main reason for the larger reactivity of the secondary ZDDPs was a larger pre-exponent

[354].
well as for its growth, mechanochemistry also plays a role in the mechanical strengthening of ZDD
ms. Mosey et al. [11] studied the pressure-induced changes in zinc phosphates using DFT-based M
ions. They showed that, at very high hydrostatic pressure, the coordination of zinc atoms increas
trahedral four coordination to six coordination and back to four, albeit in a seesaw geometry. The
ble changes lead to cross-linking, network formation, or alternatively to longer phosphate chains [33
increase in elastic modulus. Such transformations could be important to the durability of ZDD
ms. It was argued that the pressure required for this transformation (17 GPa) was beyond th
ly found in tribometer experiments or engineering components [351]. However, a follow-up study
orostov et al. [355] showed that the pressure required for pressure-induced cross-linking was actua
ower than the initial estimate (7 GPa). Moreover, a recent study by Sukhomlinov and Müser [33
that stress anisotropy (e.g shear stress) further reduces the required network formation pressure
xpected inside rubbing steel contacts (1-2 GPa), thereby strengthening the hypothesis that two a
ially even more terms on the right-hand-side of Eq. (8) matter. They also showed that the tribofilm
under compression are stiffer than those formed under shear, which suggests that although norm
ay inhibit ZDDP tribofilm growth [352], it may be important to obtain durable tribofilms.

ombined experimental and multiscale modelling study by Ruiz et al. [356] showed how contact sti
n be another important consideration in ZDDP mechanochemistry studies. They used macrosca
eter experiments, contact mechanics calculations, and tight-binding (TB)-DFT-based NEMD simu
study the performance of ZDDP on diamond-like-carbon (DLC) contacts of varying hardness. Th
that an optimal combination of ultralow friction and negligible wear can be achieved with ZDD
ing lubricants by using hydrogen-free tetrahedral amorphous carbon (ta-C) with moderate hardne
coatings exhibited low wear but higher friction, while harder ta-C underwent severe wear and su
sulphur contamination. Similarly, Peeters et al. [357] used a combination of AFM experiments a
ased NEMD simulations to study the adsorption and decomposition of ZDDP on lightweight metal
tes. The AFM experiments showed that ZDDP gives poor wear protection on aluminium and ma
, but performed better on aluminium-magnesium alloys [357]. The DFT calculations showed th
s due to the higher surface energy and affinity of the sulfur atoms in ZDDP to magnesium atom
alloy surface [357]. This provides anchor points on the opposing sliding surfaces, enabling efficie
ission of stress to the molecules through the sliding surfaces, and thus higher mechanochemical r
. This is consistent with previous TB-DFT-based NEMD simulations of another type of additiv
friction modifiers on sliding ta-C surfaces [12].
ther notable study in this area is by Boscoboinik et al. [358], who used a combination of AF
ents in ultrahigh vacuum and quasi-static DFT calculations to investigate the mechanochemic
osition of methyl thiolates on copper surfaces. They showed that the normal-stress dependency
ivation energy was in excellent agreement between the two techniques [358]. In a follow-up pap
t al. [359] studied the mechanochemical decomposition of other alkyl thiolates on copper surfaces
gh vacuum. A buckling theory analysis of the effect of a normal stress on an adsorbate that is orient
dicularly to the surface that reacts by tilting suggests that a critical value of the stress should
d to initiate a mechanochemical reaction. This concept was verified by using DFT calculations
e the effect of compressing a homologous series of alkyl thiolate species on copper [359]. This predic
critical stress is indeed needed to initiate methyl thiolate decomposition, which has a perpendicul
bond. In contrast, no critical stress is found for ethyl thiolate with an almost horizontal C–CH

while a critical stress is required to isomerize propyl thiolate from a trans to a cis configuratio
predictions were tested by measuring the mechanochemical reaction rates of these alkyl thiolates
er substrate by sliding an AFM tip over the surface [359]. In accord with the DFT predictions,
stress of 0.43 GPa for methyl thiolate and 0.33 GPa for propyl thiolate was found, but no eviden
tical stress for ethyl thiolate.
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Low-friction tribofilms

ricants generally contain other surface-active additives in addition to anti-wear additives. An impo
ample are friction modifiers (FM) that reduce friction in boundary lubrication through the formati
friction tribofilms. In recent years, numerous studies combining experiments and atomistic simu
ave focused on low-friction tribofilms made of carbon. The formation of carbon tribofilms is oft
by tribochemical reactions involving organic FM [12, 360, 361], molecules in the gas phase [331, 362]
nsfer from carbon surfaces [363]. The stable chemical passivation and the smoothness of amorpho
tribofilms make them ideal candidates to achieve superlubricity [12, 360].
lecular modelling of carbon tribofilms from FM focuses on three aspects: the surface adsorpti
[364, 365], the tribochemical processes leading to the film formation [12, 360, 361] as well as t
ship between friction and the chemical structure of the tribofilm [366, 365]. Broadly speaking, tw
t tribofilm structures are identified in molecular modelling studies. On the one hand, there a
lar films composed of amphiphilic molecules (e.g. oleic acid) that chemisorb onto steel surfaces v
olar group [366, 365]. On the other hand, there are polymeric [332] or amorphous carbon tribofilm
rm through the tribochemical degradation of the FM [12, 360, 361].
antum-mechanical or reactive MD simulations show two different mechanisms for the surface pas
of amorphous films. The first mechanism is the saturation of surface dangling bonds with chemic
(e.g. H, OH, O) originally present in FMs [12]. The other passivation mechanism is the formation
ic surface structures through the coalescence of aromatic molecules [361] or through plastic deform
amorphous carbon films containing impurities like O, N and H from the tribochemical fragmentati
[12, 360, 367] (Fig. 13e-h).
ile atomistic simulations have helped shed light on many tribo-chemical mechanisms involved in t
ion of tribofilms, their application to complex tribo-chemical systems is not without its limitation
ibofilm structure depends on several factors, like load, surface chemistry, synergies and competitio
n additives. A very recent experimental study by Song et al. [368] shows that even a slight differen
position of a carbonyl group in two isomers (glycerol monostearate and stearyl glycerate) can resu
rent tribofilm structures (amorphous or brush-like) and hence in different friction coefficients.
, in molecular modelling, the tribofilm structure seems to be strongly influenced by initial assumptio
ulation setups. For example, a frequent hypothesis is that FMs diffuse through the lubricant a

he surface where they physi- or chemisorb with no need for mechanical activation. Adsorption energ
figurations can be obtained with quantum-mechanical simulations (adsorption enthalpy) [365] or fr
calculations based on classical force fields (physisorption free energy) [364]. Based on the resulti
ed configurations, molecular tribofilms with a given surface coverage (usually a free parameter) a
ucted” and then used in non-reactive MD simulations to study structure-friction relationships [36
hese simulations, however, cannot provide information about the chemical stability of the molecul
ms (or their oligomerization) under tribological load.
versely, amorphous tribofilms nucleation is often modelled as a sequence of tribochemical FM fra
ion reactions followed by the shear-induced plastic deformation of the nascent amorphous film. Th
lly the result of reactive MD simulations in which a small, arbitrary number of molecules (often o
simulations) are squeezed between two reactive surfaces in relative motion and cannot escape t

c, flat contact [12, 360] (e.g., Fig. 13a-d). In systems for which the accuracy of reactive interatom
ials is sufficient, this approach can be applied to dozens of molecules for several nanoseconds. F
le, this approach provided insight into the tribochemical steps involved in the nucleation of carbo
tribofilms by shear-induced oligomerization of hydrocarbons [330, 369]. In particular, these wor
size the role of shear stress in enabling tribochemical reactions at relatively low temperatures. T
al iteration between molecule and surface plays a key role in the activation, shear-driven deformatio
hydrogenation of hydrocarbons, which undergo fragmentation and react with other molecules to for
ers that can act as tribofilm nuclei.
ally, to minimise the influence of the initial assumptions and be able to cope with complex b
al aspects like competition/synergy between additives or molecular size effects, it would be necessa
ge the modelling strategies outlined above. This would imply having models with the efficiency a
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nge of chemical elements of force fields and the chemical accuracy of quantum-mechanical method
t in localized regions of the system. Recent attempts have been made to apply hybrid QM/M
um mechanics/molecular mechanics) methods to tribochemistry simulations [370]. However, the lar
the QM regions, also caused by the non-trivial handshaking between the QM and MM regions [37
ot allow for significant efficiency gains compared to traditional QM simulations. A possible way
chemical accuracy more efficiently could be provided by the rapid development of machine-learni

omic potentials that the user can train for specific applications [20, 21, 22]. The trade-off betwe
uracy and efficiency of these methods in tribochemical applications that are chemically complex a
the equilibrium (i.e. the standard training conditions) are now under scrutiny [372].

pite of recent developments in the field of interatomic potentials, modelling the growth of a tribofi
requires time scales that are beyond those currently allowed by MD. Alternatives based on t
ation of MD and kinetic Monte Carlo have recently been proposed to model the thermal grow
phosphate films on iron surfaces [373]. However, the development of analogous methods for no
rium systems with complex tribochemical reaction paths seems unlikely. An alternative “rever
ring” approach is to focus on the final tribofilm structure instead of the formation mechanism
ly, Zarrouk et al. [374] have proposed a scheme to infer the structure of oxygen-rich amorpho
films starting from experimental X-ray photoelectron spectra (XPS). The scheme combines gran

cal Monte Carlo, a machine-learning model for prediction of XPS spectra, and a machine-learni
omic potential to generate O-containing amorphous carbon structures that match the experiment
ectra and are “low in energy”.
overview proposed in this section is obviously far from complete but highlights some general op
ns. Generic models for tribochemistry and the interpretation of tribochemical reactions may bene
ore rigour. For example, models for tribochemical reactions that emphasize the role of the stress tens
the presence of surfaces and chemical heterogeneity, while those including surfaces generally assum
e strain, which may not always be a justified approximation. Aside from questions about bounda
ons and accuracy of atomistic techniques under mechanically and chemically complex tribo-chemic
ons, there are also open questions on the assumptions made in preparing representative atomis
s. These include: the thickness of the lubricant film in which the tribo-chemical reactions take plac
position and the state of the additive molecule (e.g. solvated in oil, physisorbed or chemisorb
surface); interactions between different surface-active additives; the chemistry and passivation
face itself (e.g. metal, one of its oxides, a previously formed tribofilm). Overall, it is evident th
ching complex tribo-chemical problems requires a multidisciplinary and multiscale approach. This
ecognised both from a modelling and experimental perspective and put into practice in an increasi
r of studies that are making progress by combining tribometry, chemical and topographical surfa
erization with fluid dynamics, contact mechanics and molecular modelling (e.g. Ref. [330, 362, 36

plications

last section of this review illustrates a few modern application domains of tribology. We have select
les that present interesting opportunities for the modelling community.

nable interfaces

tion is often considered to be predefined by surface chemistry and structure. Yet, tuning frictio
lly dynamically, has many applications ranging from clutches to haptic displays. Over the la
s, some interesting approaches towards tunability have emerged. While many of those have be
entally realized, an understanding of the fundamental dissipation processes, as well as support fro

ng for further optimization, is often lacking. Tuning friction traditionally takes two routes: eith
h morphology or chemistry. Recently, dynamic control with external electric or magnetic fields h
en pursued [375]. As we discussed in the lubrication section above, surface texturing is a tradition
use morphology to tune the frictional behavior of lubricated interfaces.
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of4: Interface with strain-induced surface patterning. Lateral strain modifies the geometry and wetting behavior, offer
ial route to tunable tribological properties. Such interfaces have received little attention in modeling. Images adapt
0].

tunability of interfaces, for example, in the concept of switchable adhesives achievable via t
ulation of near interfacial chemistry and dissipation, control of contact area, or through mechanic
ctural switching of adhesive compliance or geometry” [376], is related to adhesive failure and govern
ture mechanics. Even simple geometric structures, bumps on a surface can be use to tune the fricti
s normal load response of soft interfaces [377]. Other means to control friction make use of biomimeti
mple, to design kirigami-activated textured surfaces on highly deformable materials that mimic t
n the skin of snakes in achieving directional frictional properties [378]. In this case, geometry rath
e constitutive properties of the material dictates the frictional performance. Since geometry can
d on-the-fly, interfacial properties of such textured surface are in principle switchable. This is t
morphing interlockers, enabling switchable mechanical adhesion [379]. Figure 14 shows an examp
rface with switchable wetting properties [380].
ilar principles apply to the class of architected materials or metamaterials that add functionality
als through their geometry rather than their material properties. An interesting application in th
n is the use of friction within the internal features of a metamaterial unit cell to dissipate ener
eversible energy dissipation can be achieved in these metamaterials even with metals and cerami

ical and finite element models have been shown to trace the hysteresis observed in experiment
, but the use of constant friction coefficients to capture “internal” contacts in these models appears
fficient in accurately matching the results. Another way of frictional control stems from the structur
g of contact interface pairs using combinations of low and high friction materials. Such an alterati
e achieved by mechanical actuation such as, for example, inflation in soft robots, which can ensu
eneous friction across the macroscopic contact interface and promote a directional motion, as w
r worm-like locomotion [382]. Miniaturization of such a frictional control can lead to a smart fricti
in a more continuum sense. In contrast to asymmetric friction mentioned above, a heterogeneo
al control can ensure locomotion in any direction.
aforementioned contact-related architected materials are relevant even without internal friction

tion. Even the inclusion of frictionless internal contact interactions, resulting in strong anisotrop
etry of elasticity, provides interesting emerging phenomena including wave-control, filtering and a
n [383]. Other interesting implementations of the contact interaction inside the material inclu
hical woven structures [384], interpenetrating lattices [385], entangled “granular” structures [38
pologically interlocking materials [387, 388].
another way of friction control comes from electromagnetic field operating at mechanisms from atom
ctural scales and spanning triboelectric generators, geological drilling, automotive braking and effi
spacecraft systems, biological systems, and magnetic spintronics and others; 25 interesting examp
vided in a review paper [375]. New developments include the realization that voltage-induced flu
s in the electronic properties can enhance energy barriers [389] and a more detailed understandi
electrostatic fields can induce dipole reorientation thereby allowing dynamical switching betwe
sliding and stick-slip motion [390]. However, one may want to address the question in this but al
cases, if electrostatic fields of 4 GV/m or greater are meaningful given that the breakdown fie
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h of air (3 MV/m) or even that of diamond (2 GV/m) are clearly exceeded. Finally, the vibration
of friction, known since the 50s [391, 392], to the best of our knowledge did not bring breakthrou
ries but some micro- and structural-scale models were improved [393, 394].
last decade has also seen the development of several solutions based on hydrogels, which ha

een adopted to obtain dynamic friction control by manipulating the interplay between the polym
k, its composition and surface properties, and the surrounding fluid [395, 396, 397]. It has be
that tunability can be obtained e.g. through different gel’s networks and functionalisations and
lating external fields [398, 399] and that surface properties, such as roughness and pillar geomet
ignificantly affect the contact area and the mechanical response, leading to complex friction behavio
have been successfully developed to explain some of the experimentally-observed mechanisms, e
able friction [401], or the reduction of friction and wear in composite hydrogels for cartilage mim
However, much of the modeling work does not address the intimate coupling between stimuli a
n modulation, therefore failing to provide universal understanding and better design strategies f
el-based solutions; progress in this area could certainly unlock their full potential for several so
applications.
tchable properties can also be achieved in microgels, which are small particles of hydrogels. Unde
g and control of their tribological properties saw much progress in recent years. In Ref. [403], t
s developed dual-responsive microgels, surface-functionalized with PEG or PDMAEMA, which allo
ependent tuning of swelling behavior and surface properties in response to thermal and pH chang
demonstrate a unique decoupling of the two attributes. Modelling and simulations of such microg
rovide extra insights into their behavior and enable tailoring these materials for specific use-cas
ly to hydrogels and microgels, the use of polymer brushes has been recently advocated to manip
erfacial friction, especially in boundary lubrication in the presence of soft contacts [404]; howev
of coarse-grained MD simulations to predict their behaviour has resulted in discrepancies betwe

tational and experimental observations, which can only be resolved by producing models that aim
e experimentally imposed velocities and obtainable grafting densities [405].
uid crystals (LCs) have also been adopted to tune friction, most often by inducing viscosity modulati
ic layers via the addition of nematic and rod-like LCs to the lubricating fluids [406, 407]. T
isms for tunable friction include shear-induced alignment, i.e. when the shear flow can cause t
lecules to align with the direction of the flow, and control through external fields (see e.g. [408
y the LC can be oriented by applying an external electric or magnetic field, which affects viscosi
nsequently, friction. Despite a number of attempts to use theory and simulations to shed light on L
our and their effect of various lubrication regimes [409, 410], and the fact that molecular simulatio
rovided fundamental insights into how tunable friction works with LCs, limited research has be
sing MD simulations to investigate the surface induced alignment of LCs and the individual a
stic effect of topography and chemical functionality of a surface [411]. Progress in such simulatio
provide unique insight and allow exploring properties that are difficult to measure experimentally.
integration of LCs as active constituents in liquid crystal polymers (LCPs) has enabled remarkab
over surface characteristics. Specifically, LCPs can exhibit dramatic and reversible surface topograp
nges when exposed to light [412] or temperature fluctuations [413], consequently allowing for tunab
modulation. Expanding on this principle, numerous other stimulus-responsive polymers (SRP

rt polymers, are detailed in the literature. These advanced polymeric materials are characteriz
r ability to undergo adaptive physicochemical transformations in response to various environment
ations. These perturbations include temperature, solvent ionic strength, modified solvent conditio
ia co-solvent/co-non-solvent addition), UV–vis light irradiation, redox potential, and the applicati
ric fields. When anchored to surfaces, these SRPs impart dynamic control over interfacial fricti
hesion [414]; being able to model these complex interactions, which is yet unexplored in the tribolo
ould provide us with better tools and more opportunities to develop new disruptive solutions
y control friction.
ch progress was achieved in recent years on haptic feedback technologies for different kinds of huma
e interfaces. The tribological community contributes considerably to this progress with experimen
deling. Modern technology does not reduce the feedback to mechanical haptic perception both for
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ted [415, 416] and nerve stimulated [417] but can also include thermal effects [418, 419]; combin
k is termed multi-mode haptic feedback. More relevant reviews can be found on this topic [42
hile numerous tribological studies on finger-surface interaction can also be found in the literatu
23, 424, 425]. Controlling friction due to the electroadhesion effect was studied experimentally a
ically in [426, 427] and revealed the key role played by the skin surface roughness and the nature
chscreen coating. It was argued that reducing the effective thickness of the coating can drastica
e the human tactile sensing experience.

nergy harvesting

he past decade, there has been a significant surge in investigations of tribological interfaces in t
e of applied electric fields as well as in the exploitation of tribological interactions to harvest ener
ith the proliferation of triboelectric nanogenerators - TENGs) and for the control of critical interfac
energy devices and components in which electric fields can be manipulated to achieve active tuni

ion. This section reviews recent advances made in these areas with focus on key fundamental disco
d progress achieved using advanced theories and simulations. A critical overview of how advanc
gical models can help us obtain new disruptive solutions for energy devices is also provided.
area that has seen an exponential growth in research activities in the last decade is triboelect
(TE), which is the generation of static electricity through contact or rubbing. The phenomen
posedly been known much before Thales of Miletus (6th century B.C.), who is usually but false
d with its discovery [428]. While electron transfer clearly is the front-runner charge-transfer mec
between metals, TE of insulators is frequently said to be poorly understood, despite a plethora
ed theories [3]. Interestingly, Nernst’s [429] generic but rigorous argument was forgotten for a lo
radients in temperature, stress, and chemical composition and even more so their discontinuities
gical) interfaces all lead almost unavoidably to the flow of ions if present. An important point th
ve been overlooked in this regard is that the nature and the number of ions produced from origina
l (zinc-phosphate) molecules can sensitively depend on all three invariants of the stress tensor th
uring a (tribo-) stress induced chemical reaction [336]. Almost all TE theories only consider t
ties of unstressed substances as reference. Thus, the question to be researched might not be wh
echanism explains all TE between dielectrics but which mechanism dominates under what circum

. This offers great opportunities for the modeling of charge transfer using molecular simulation
er, popular reactive force fields fail to describe redox reactions and more generally electron tran
en DFT suffers from this problem as it equalizes the chemical potential of electrons throughout t
ion. Consequently, contact-induced electron-transfer between insulators could only be simulated
g a generic, proof-of-concept potential to which the oxidation states of individual atoms was add
enologically as a discrete, internal atomic degree of freedom [430].
plays a crucial role in processes like printing, photocopying, electrospraying, and can lead to issues li
al damage to microelectronics, disruptions in pharmaceutical processes, and increased friction a
losses in industrial applications. It has only very recently (since 2012) been adopted in nano- to micr
evices to convert mechanical energy into electricity with the advent of TENGs [431]. Triboelect
nerators are a promising technology that harnesses tribocharges for energy, enabling self-power
, portable devices, and more, contributing to sustainable energy sources and the Internet of Thin
he fourth industrial revolution requires multifunctional arrays of sensing systems from air quality
health monitoring [433]. TENGs are ideally suited to provide a reliable and sustainable electrici
for these systems by harvesting the mechanical energy that exists all around us. Networks of TENG
ready been successfully developed to harness energy from a wide range of sources, including: hum
g (through devices sewn into clothing) [434], wind gusts (with oscillating flags) [435], and sea wav
floating buoys) [436]. Many different working modes, material combinations and geometries have no
sted, with different TENGs showing better performance for various forms of mechanical energy [43
pite advancements in controlling charge output, the optimization of TENGs has been largely heuris
the lack of a solid theoretical foundations. Modelling the generation of triboelectric (nano-)curren
solid-solid and solid-liquid interfaces, is still based on the adoption of experimentally-found t

ges surface densities. This is mainly due to the complexity of the phenomenon under investigati
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dependence on the system being studied (solid-solid or solid-liquid), the modality of generation
(contact, sliding, wetting), the materials at play (and their position in the triboelectric series [437

e characteristics of the surfaces and their evolution, to name a few. Furthermore, the mechanism
ing charge generation, even in the simplest contact-separation modality whereby consecutively pre
releasing two optimally paired surfaces produces charges and alternating currents (see Figure 15(a
fundamental research and models and theories developed at the smallest scales, while the influen
graphy and materials microstructural properties require mesoscale models; the information obtain
smaller scales must then be used as inputs to generate accurate models at the continuum scales aim
icting the behaviour and optimising the design of TENGs.
ile significant progress has been made in some of the areas identified above, they have been system
ent and sporadic. At the smallest of scales, researchers have attempted to explain why phono
tunneling plays a role in the generation of electromotive forces. The fundamental quantum mecha
chanism that leads to an electromotive force between all co-moving bodies, suggesting that this
gin of triboelectric charging, potentially paves the way for the development of a microphysical theo
ict the tribo-charges displacement [439]. Other fundamental studies have suggested a mechanis
tributes triboelectricity to the flexoelectric effect, which is present in all materials. [440]. This stu
that flexoelectric potential differences induced by inhomogeneous strains at nanoscale asperities dri
arge separation, which has opened new routes to investigate the triboelectric effect and extensio
These, combined with other flexoelectricity studies (e.g. [442, 443]), have the potential to impa
f the research in this area and its exploitation. These theoretical models, which also include t
electric effects [444], have explained some aspects but have not yet provided predictive capabilit
lable engineering solutions, hampering the development of practical devices.
n in the case of polymers, whose triboelectric behavior has been extensively studied, there is ongoi
about whether the mechanism involves ionic transfer, material transfer, or electronic transfer. Th
inty also applies to polymers like polytetrafluoroethylene (PTFE), known for its high triboelect
. Recent ab initio investigations have shown that PTFE’s triboelectricity is closely related to its ele
structure and defluorination [445]. As shown in Figure 15(b-c), this can, in the presence of negligib
w and stuck charges, be directly applied to explain macroscopic behaviour and to demonstrate ho
ination enhances the triboelectric output of a TENG by an order of magnitude [438].
king at larger scales models, much effort has been recently devoted to the incorporation of surfa
ess at the micro- and meso-scales. In particular, a unified model (for dielectric-to-dielectric TENG
ds consideration of surface roughness to the established distance-dependent electric field model h
cently developed and further extended [446, 447]. The model is applicable from first touch to near
te contact, provided that deformation remains elastic, and has obvious advantages compared to loa
ndent approaches. Incorporating the effect of surface roughness has also been shown to provide bett
ion of TENGs performance using multiscale experiments coupled to theoretical analysis [448].
earch has also boomed when considering liquid-solid contact electrification and the capacity to colle
from water-based TENGs. In this case, charge generation is associated with the formation of t
double layer, with a multi-step process recently rationalised by looking at the electronic structu
ctron transfer mechanisms at the smallest scales [449, 450, 451]. Many other models have be
ating charge transfer at the larger scales, with the majority of efforts focusing on surface design
ise hydrophobicity to optimise charge transfer. A recent contribution has also looked at the intrin
etween wetting (and de-wetting) dynamics and triboelectrification; using multiscale modelling too
orous analyses, the authors have been able to link electric outputs with the surface structure a
the mechanisms that govern the performance of water-based TENGs [452]. This type of modelli

important routes for surface and materials design for practical applications in this context and t
TENGs as sensor for wettability and contamination.
generation of tribocharges, as a consequence of dynamic contact, can also be adopted to genera
d nanocurrents suitable to precision medicine applications. Indeed, triboelectrification has be
fabricate neuromorphic tactile system, where a biological mechanoreceptor was mimicked by using
comprising a self-powered pressure sensor and a bistable resistor neuron [453], as well as implement
rol cell regeneration and proliferation, or to provide bacteria suppression [454]. Electrical fields a
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5: Schematics of working principle and possible governing mechanisms of contact-separation (CS) mode TENG
ram of the pushing/releasing mechanism to generate the triboelectric signal. The proposed working principles o
u CS TENG are also depicted: during approach (b) the electrostatic barrier lowers and enables the forward flow

; during the contact stage (c) charging is governed by the competition between the larger electron transfer prompt
creasing defluorination and a backflow generated by a smaller interface separation. Images adapted from [438].
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al signaling are indeed essential in cellular processes. Triboelectric stimulation can thus indu
amming and proliferation of fibroblasts for wound skin healing, or it can enhance the proliferati
ural differentiation of mesenchymal cells, to cite a few [454]. Electrical stimulation is also one of t
ug methods used to inhibit and control the growth of microorganisms, such as under soft tissue [45
ove mentioned applications of triboelectricity-enhanced tissue interactions would strongly bene
theoretical understanding of the underpinning physics, currently lacking.
ther area of interest in the context of the exploitation of the triboelectric effect are tribotron
ransistors. Researchers have shown that the coupling of a MoS2 phototransistor and a TENG in slidi
an be used to improve the photoresponsivity of the device for photodetection [456]. Other effor
ore recently been focusing on the use of TENGs to produce flexible and self-powered photodetecto
large-area tribotonic transistors [458], and multibit tribotronic nonvolatile memory for intellige
entation and self-powered wearable devices [459]. Such applications would certainly benefit fro

n-depth research and advanced modelling efforts to unravel the coupling mechanisms and optim
evices.
ning now to the explicit use of electric fields (EFs) to control friction, the emerging trends embraci
cation and the acceleration of the adoption of electric vehicles has propelled advancements in lub
chnology for new operational environments under electric fields. Research has been conducted ov
s on the effect of EFs generated by the EVs on lubricant performance, with a field referred to “T
rochemistry” [460]. Research has particularly blossomed in this area, recognising the considerab
unities for using applied EFs both to promote desirable and to suppress unwanted lubricant intera
ith rubbing surfaces. The quest for better performance driven by nanoscale phenomena has led
attempts to investigate electrotunable friction and lubrication using molecular dynamics simulation
sing canonical aqueous systems [461] and ionic liquids [462, 463]. Sustained efforts have been ma
lop consistent methodologies to explain the key mechanisms driving the surface response (both
f reaction and wall slip) and identifying key challenges, such as preventing electrical shortcuts a
ing optimal mixtures of the most promising compounds with organic solvent. In this field there is
eed to link the research at the molecular scales with larger scale simulations (including the effect
roughness and changes at the fluid-solid interfaces) and explore the effect of alternating voltage
g tribological interactions to maximise the impact in terms of friction control and wear reduction,
w compounds and formulations can be promptly used to promote the energy transition.

atteries

performance of all-solid-state batteries is critically influenced by the dynamic behavior of acti
ces, such as the contact between the lithium metal electrode and the solid-state electrolyte. T
on of this interface during charge/discharge cycling involves multiple mechanical and chemical pr
spanning from the macroscale of the contact down to the nanoscale. These processes—includi
al, electrochemical, and chemo-mechanical phenomena [464]—depend strongly on battery operati
ons, such as current density and stack pressure [465], and quantitatively govern ionic charge trans
interface [464]. Solid-state electrolytes (SSEs) are generally classified into two main categories:
ic solids and ii) solid polymer electrolytes, each associated with distinct multiscale mechanisms
harge transfer [466]. The origin of interfacial phenomena in such systems is primarily determin
interrelated factors: (i) the chemical and electrochemical compatibility between the electrodes a
nd (ii) the stability of intimate (mechanical) contact between the mating surfaces.
oor wetting between inorganic SSEs and molten lithium metal, as well as electrode surface roughe
uced by lithium stripping/plating cycles, drastically affects ionic charge transfer due to the reduc
) contact area where such transfer occurs [467]. More generally, the contact dynamics at the ele
SE interface play a key role in all-solid-state batteries, as achieving stable and nearly full intima
between active interfaces is essential. At the cathode/SSE interface, volumetric changes occur duri
iation of the cathode, leading to cyclic and long-term evolution of surface micro- to nano-roughne
ctro-mechanical characteristics. While similar effects may occur at the anode/SSE interface, the m
l complexity is further exacerbated on the cathode side because conventional cathodes are composit
e materials, conductive additives, binders, and interface coatings. This composite nature results
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lly anisotropic and inhomogeneous bulk electromechanical properties [464]. For example, the role
rheology in the contact mechanics of cathode active particles has been investigated under the a
on of smooth contacting surfaces. In particular, plasticity has been shown to play a key role duri
endering process of the active cathode layer, strongly influencing its overall mechanical properti
differing unloading stiffness behaviors in compression and tension [468].

the lithium metal/SSE interface, the anode can shift by several micrometers during charge/dischar
[467]. Maintaining contact under such interface roughening requires a relatively large effective wo
sion. In practice, however, the effective adhesion between lithium anodes and SSEs is usually lo
rises from the large volume changes of the lithium metal during cycling—which increase the elas
nergy at the interface and act effectively as a repulsive force—as well as from poor interfacial wettin
sulting reduction in true contact area increases the interfacial impedance and, consequently, the loc
density. Together with other critical factors (such as the SSE elastic modulus, the viscoplasticity
metal, and compressive stresses at the interface), these conditions promote dendrite growth throu

E, which can ultimately lead to short circuits [467].
ough contacts, the true contact area can often be increased by applying a relatively soft adhesi
, which lowers the elastic strain energy at the interface and raises the effective work of adhesion. B
y, poor electrode/SSE contact can be mitigated using lithiophilic polymer interlayers (e.g., polyeth
ide [464]) [466]. However, thermal expansion mismatch typically induces thermal strains duri
, which can cause warping, peeling, or cracking of the electrolyte [466]. In addition, even at ope
potentials, side reactions may occur and form passivating interphase layers at the electrode/SS
ce, whose thickness influences the mechanical contact area [464].
contact pressure applied between the electrode and SSE during stacking is a key factor, as predict

tact mechanics. Experiments on Li/LLZO interfaces [465] show that the true contact area (me
for example, by acoustic impedance) depends nonlinearly on pressure during cycling. A thresho
ressure is required to mitigate continuous void formation, although it does not completely suppre
tructural evolution [465]. More recently, ceramic inclusions in polymer interlayers of solid compo
trolytes (SCEs) have been shown to enhance battery performance [186]. This improvement w
ted to the evolving contact area, influenced by polymer viscoelasticity and dendrite growth at t

oretical understanding of the interface science occurring in electrode/SSE interactions is typica
d on two different length scales of observation. On one side, first principle calculations have be
used to study the chemical and electrochemical stabilities of electrode/SSE interfaces, however
um description of such interactions is still limited [467]. Equally important, modeling approach
lectronic and atomic scale to phenomenological (continuum) models need to be coordinated wi
ther in hybrid formulations in order to make quantitative predictions of the contact [469]. As
le, the fundamental physical, chemical and electrochemical properties (such as electron tunnelin
onductivity, adhesion, etc.) predicted from ab-initio models could be incorporated in large-sca
enized formulation of the contact mechanics to provide a more predictive macroscopic picture
de/SSE contact and its impact on the overall battery performance.
nanometer scale observation, the interface ionic resistance can be predicted with the adoption of t
ce potential map model [470], based on bulk, surface and defect properties determined with densi
nal theory (DFT), even taking into account changes in the cathode with the actual state of charg
ionic resistance at the interface is indeed considered the battery technology bottleneck, due to

ental impact on the power performance, Coulombic efficiency, and short cycling life [470]. On t
um level, contact mechanics has been adopted to investigate the interface impedance stability when
ontact pressure is applied to the stack, with a deterministic [471] or multiscale [472] approach, showi
hium diffusivity is actually enhanced by mechanical stresses. The diffusion of lithium within the SS
o been analyzed by including the chemical potential gradient as driving source (of diffusion) [43
tingly, a marked asymmetry is found in the interface evolution characteristics during plating/strippi
nsequence of the reaction heterogeneity, mostly due to the non-uniform pressure and temperatu
utions [473].
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closed-form frequency response function of a chemoelastic half plane has been only recently deriv
and applied to the cylinder contact geometry. The theory could be adopted as well to build
lastic contact mechanics based on Persson’s formalism. Nevertheless, the contact interface in
electrode/SSE interaction might be far from being described by the typical roughness small slo
tion, such as during the occurrence of dendrites on the anode/SSE side. Interestingly, also t
ng process can be characterized by a random void accumulation on the anode [475], however, wi
dic void accumulation resembling the bubble production process in a liquid phase [475]. As such, t
on of a Li anode void morphology has been modelled by the nucleation and growth theory [475].
ignificant challenge inherent in the aforementioned numerical approaches is the comprehensive e
ntal acquisition of both bulk and localized properties (e.g. at grain boundaries in SSE). The relat
needed for a robust parametrization and subsequent validation of pertinent models. Standard e
ntal methodologies encompass electrochemical characterization, advanced imaging techniques (X-r
ted tomography, neutron and magnetic resonance imaging, in-situ (S)TEM), spectroscopic analys
ical and thermal property assessment, and full-scale battery performance evaluation [476].
m a tribological perspective, the biggest challenge [477] is the prediction of the anode/SSE conta
ics during dissolution, whose fundamental picture is shown in the schematic of Fig. 16a for a
SSE interface [478, 476]. In particular, the bottom-left schematic illustrates sustained interfac
, which occurs when vacancies created by Li stripping diffuse more rapidly than Li+ ions migra
he influence of the anodic current. Conversely, the bottom-right schematic demonstrates void growt
tter arises when the anodic current density surpasses the rate of vacancy replenishment, either
n or mechanical deformation, leading to the nucleation and inward propagation of voids within the
ecent in-operando X-ray computed tomography investigations, illustrated in Figure 16b [478, 47
abled the temporal mapping of Li/SSE interfacial contact. Colored pixels delineate contact region
lack pixels indicate a lack of contact (corresponding contact area variations are presented in 16
points). The contact area is shown to decrease as time increases, due to a lithiation-induced surfa
ning, in agreement with the aforementioned fundamental picture.
findings just discussed show that multiscale contact mechanics modeling is imperative for simulati

pact of microstructural and material property evolution on interface degradation. This degradati
nsically linked to three primary chemo-mechanical challenges: Dendritic growth originating from L
nodes, structural instability within composite cathodes, and solid electrolyte degradation driven
mation of unstable interphases. The standard multiscale methodology typically integrates DFT
ometer scale, often off-line coupled with various continuum electro-chemo-mechanical formulation
inantly employing FEM and/or Phase-Field Models (PFM) [479].
ecent multiscale, three-dimensional, time-dependent contact model delineating the evolution of t
interface under stack pressure incorporates critical factors such as the surface roughness of both
E, Li elasto-plasticity, Li creep, and the dynamics of Li metal plating/stripping [480]. The study
odel established a correlation between contact elasto-plasticity and the ratio of Li yield strength
roughness, highlighting its significant influence on the formation and progression of Li dendrites a
Notably, the contact mechanics problem was addressed using fast Fourier transform-based numeric
s, a technique commonly employed in tribological research. The Butler-Volmer equation was utiliz
ntify the effect of pressure on the stripping rate. A key finding was the observation of significant
reep at the Li/SSE interface under pressure, even at ambient temperatures [480].
Ref. [481], a transient, three-dimensional finite-element model of the evolution of a lithium ano
stripping and plating is developed with Sierra/Solid Mechanics. The contact model incorporat
lastic and elastic–plastic deformation, alongside single-scale roughness. The interface between t
or and lithium is represented as a liquid electrolyte in this case. Charge and species transpo
all materials are coupled at the lithium/separator and lithium/electrolyte surfaces using a modifi
Volmer equation. Evaluation of the galvanostatic, steady-state electrochemical response across t
separator gap revealed a strong dependence of interfacial reaction kinetics on applied pressure a
d lithium yield strength.
ore sophisticated interface model, detailed in Ref. [482], integrates multiscale phenomena—specifica
ce interactions, vacancy hopping, and plastic deformation—through a hierarchical hybrid workflo
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6: a), Schematic of the anode/SSE contact mechanics during dissolution, for a Li metal/SSE interface. b) In operan
mputed tomography results in terms of Li/SSE interfacial contact [478]. Colored pixels delineate contact regions, wh
xels indicate a lack of contact. c), contact area variations corresponding to b), with yellow points). Image adapt
6].

45



Journal Pre-proof

This w M
models n,
incorpo lf-
affine s a-
cancy h la-
tions a ng
barrier ry,
yield th

The ed
to sust nd
the op O
interfa th
recent

A k a-
pacity in
the pre is
require eir
electro nd
adopte ial
nanovo al
reactio of
electric he
vicinity ×
300–40 a-
turing us
plastic n-
drite g nt
lithium

The of
novel e ies
[485], o of
lithium

6. Co

Thi ch
areas — -
ulation es.
While ng
how ph en
made i er
than p he
adapta cs,
to an e

A c n,
such a up
can sig he
presenc re
has be re
the inh n-
trivial al
contact nd
Jo

ur
na

l P
re

-p
ro

of

orkflow combines DFT simulations, kinetic Monte Carlo (kMC) and FEM. At the macroscale, FE
the evolution of Li surface contact against a rigid solid electrolyte under mechanical compressio
rating creep deformation governed by experimentally derived constitutive laws and assuming a se
urface roughness. Concurrently, a DFT-informed KMC model simulates nanoscale Li striping, v
opping, and accumulation proximal to the Li/SSE interface. In particular, plane-wave DFT calcu
re employed to determine the Li vacancy formation energy landscape and corresponding Li hoppi
s in both the bulk and interfacial regions. These barriers, in conjunction with transition state theo
e Li hopping rates utilized in the kMC simulations [482].
simulations reveal that the steady-state contact area fraction and the effective overpotential requir

ain a given current density depend strongly on the specific interface (Li vs Li2O, LLZO, or LiF) a
erating conditions, such as stack pressure and stripping current density. In particular, the Li/Li2
ce exhibits exceptionally rapid Li diffusion near the Li/SSE interface, in quantitative agreement wi
experiments, validating the hybrid modeling approach.
ey challenge for the effective application of PFMs in electrochemical simulations, despite their c
to elucidate thermodynamically driven microstructure evolution at electrode/SSE interfaces, lies
requisite of a robust free energy functional capable of capturing kinetic phenomena. However, th
ment is frequently unmet, as many current phase-field simulations for battery materials simplify th
lyte as ideal [483]. In a recent study [484], a realistic chemo-electro-mechanical PFM is described a
d to elucidate how Li penetrates SSE in the co-presence of grain boundaries (GB) and interfac
ids. Temporal evolution of the interfacial free energy (Allen–Cahn equation), the electrochemic
n kinetics (Butler–Volmer), the Cahn–Hilliard equation for species transport, and the equations
and mechanical equilibrium are taken into account. To simulate lithium dendrite formation in t
of these nanoscale GBs and interfacial nanovoids, the simulation domain —measuring 200 nm

0 nm— was populated with multiple GBs, encompassing the lithium-metal anode and an SSE fe
a rough surface with triangular protrusions. The simulation sequence involved initial continuo
deformation at the Li/SSE interface, subsequently followed by phase-field modeling of lithium de
rowth. This investigation reveals a strong correlation between grain-boundary-anisotropy-depende
-ion transport and the presence of interfacial nanovoids.
development of quality interface evolution models is also particular important for the investigation
lectrode/SSE physics, such as for interfacial morphogenesis applied to Li metal solid state batter
r for anode-free solid-state batteries [486] (here the ‘anode free’ terminology refers to the lack
present at the negative electrode upon cell assembly).

nclusions

s review highlighted recent progress in modeling tribological phenomena across a spectrum of resear
from traditional theory-driven topics, where increasingly precise comparisons between theory, sim

s, and experiments have been made, to emerging fields where modeling is still in its early stag
AI is revolutionizing tribology — as it is across all scientific and engineering fields — by transformi
enomena are modeled and systems optimized, progress continues and important advances have be
n conventional modeling approaches. This includes, but is not limited to, recent systematic rath
henomenological extensions of boundary-element methods beyond the linear-response regime, or t
tion of valid, modern approaches, such as Persson’s theory of (rubber) friction and contact mechani
ver increasing number of applications.
ommon trend in modern research is that phenomena are no longer studied primarily in isolatio
s the friction between two idealized flat surfaces separated by a lubricant. Such a simple set
nificantly underestimate friction coefficients by failing to capture instabilities that only arise in t
e of sufficiently large, roughness induced spatio-temporal stress fluctuations. In recent years, the
en growing emphasis on coupling different aspects of tribological systems, which are key to captu
erent complexity of interactions depicted in Figure 1, like the one just alluded to. This includes no
effects arising from the interplay between out-of-plane and in-plane elastic deformations in mechanic
s, the combined influence of surface roughness and lubricants, triboelectricity, tribofilm formation a
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on, or the synergistic role of (multi-scale) roughness, adhesion and viscoelasticity. Beyond coupli
l phenomena, researchers are also actively developing and integrating diverse modeling strategies
quential and concurrent — to better capture these complex interactions in the specific tribologic
t, where capturing mechanochemical interactions is as important as successfully modeling fluid flo
formations.
pite continued progress in traditional modeling approaches, the integration of AI with convention
s might currently represent the most promising research direction. This is evident in already matu
lications, such as the use of machine-learned potentials that strike an unrivaled balance between t
cy of density-functional-theory based modeling of tribochemical phenomena and the computation
cy of classical force fields. AI also shows great promise in overcoming human-imposed limitations
utive model development. For instance, machine learning can effectively characterize slip-bounda
ons between lubricants and solid surfaces as functions of temperature, pressure, and shear rate. As
ample, generative AI can help design entirely new lubricant molecules or surface topographies. The
can then be ‘pre-tested’ in molecular or continuum simulations to screen for specific tribologic

ties. However, significant opportunities for further effective combination of AI with traditional mo
emain. One example is the simulation of contact opening between nominally flat viscoelastic soli
ort-range adhesion. While this might appear as a relatively simple “single-physics” problem, it prov
onally challenging due to its intrinsically multi-scale nature in both space and time, compounded
ly slow mesh-size convergence. Another addition to traditional modeling approaches is the integrati
rimental data in near real-time, exemplified by emerging digital twin frameworks. These framewor
e potential for predictive, continuously updated tribological models, while simultaneously enabli
ions to directly inform and optimize practical applications.
pite all methodological progress, the aim of modeling extends beyond producing accurate numbe
mized surface geometries—it must also deepen our qualitative understanding. Such insights co
o emerge even from single-method approaches. Examples include the sensitivity of tribochemic
n products to multiple stress tensor elements, as well as advances in understanding traditional sy
.g., zinc-phosphates) and the formation of protective carbonaceous films. Atomistic and microsca
ng have also fundamentally reshaped our grasp of metallic friction and wear by linking tribologic
or to microstructural evolution. Simulations reveal how deformation mechanisms—dislocation act
in boundary sliding—govern friction across scales, offering predictive insights beyond experiment
These findings have identified strategies to control friction through grain refinement, surface en
, and multilayered structures, enabling tailored materials for applications from aerospace to vacuu
tion.
ilar detailed insights are now targeted for emerging fields like haptic feedback, soft robotics, a
adhesion, as well as the broader role of friction in multifunctional systems. A key challenge remai
bly incorporate electrical effects, particularly in triboelectricity—one of the oldest and most debat
ena. While triboelectric nanogenerators already harness this effect to convert motion into stor
energy, even basic questions persist: What are the dominant charge carriers? The answer remai
even for seemingly simple systems, like a raindrop moving past slushy ice in a thundercloud. Wh

tanding why the skies end up positively charged and the Earth negative may not be central
gy, cracking this ancient puzzle might just spark a few more answers—and perhaps even a lightni
inspiration within tribology and beyond.
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acture instabilities in a brittle crystal, Nature 455 (7217) (2008) 1224–1227. doi:10.1038/nature07297.
Bair, C. McCabe, P. T. Cummings, Comparison of nonequilibrium molecular dynamics with experimental measu
ents in the nonlinear shear-thinning regime, Phys. Rev. Lett. 88 (5) (2002). doi:10.1103/physrevlett.88.058302.
. Jadhao, M. O. Robbins, Probing large viscosities in glass-formers with nonequilibrium simulations, Proc. Natl. Ac
i. U. S. A. (2017). doi:10.1073/pnas.1705978114.
. Jadhao, M. O. Robbins, Rheological properties of liquids under conditions of elastohydrodynamic lubrication, Trib
tt. 67 (3) (2019) 66. doi:10.1007/s11249-019-1178-3.
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. L. Popov, T. Požar, A. Prasad, G. Prieto, C. Putignano, M. H. Rahman, S. B. Ramisetti, S. Raumel, I. J. Rey
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