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Abstract—An  experimental  and  numerical  study  of  electrical
contact for low currents  in sphere-plane set-up is presented. A
three-level  multi-scale  model  is  proposed.  We  use  the  finite
element  analysis  for  macroscopic  mechanical  and  electric
simulations.  It  takes  into  account  the  setup  geometry,  elasto-
plastic  mechanical  behavior  of  contacting  components  in  the
finite-strain-plasticity framework and electrostatic properties. A
sensitivity analysis with respect to the brass plastic behavior and
to the thickness of coating layers is also performed. The finite
element  results  are  used  for  an  asperity-based  model,  which
includes elasto-plastic deformation of asperities and their mutual
elastic interactions.  This  model  enables  us to simulate  the real
morphology  of  contact  spots  at  the  roughness  scale  using  the
experimentally  measured  surface  topography.  Finally,  the
Greenwood multi-spot  model  is  used to  estimate  the  electrical
contact resistance. This three-level model yields results which are
in good agreement with experimental measurements carried out
in this study.

Keywords:  electrical  contact,  elasto-plastic  material,
experimental measurements, multi-scale simulations.

I. INTRODUCTION

Electrical contacts can be critical components in electronic
systems. Their electrical resistance and life duration depend on
many  factors  such  as  life  cycles,  interaction  with  the
environment  (oxidation  and  corrosion),  surface  morphology,
surface chemistry and bulk material  electrical  properties  and
mechanical  behavior.  In  this  paper  we  study  both
experimentally and numerically the influence of the materials
properties  and  the  geometry  of  the  coating  layers  on  the
electrical contact resistance between a copper-beryllium sphere
indenting a brass flat substrate coated with nickel and gold.

Electrical  contacts  performances  and  reliability  critically
depend on the characteristics and evolution of the so-called real
area of contact, composed of numerous zones whose size and
distribution  are  determined  by  the  macroscopic  shape  of
bodies, the roughness of their surfaces,  their mechanical  and
electric properties as well as by mechanical loads and involved
electric  currents.  Contact  resistance  mainly  results  from the
constriction of current lines at these contacting spots. A project
has been set-up joining the efforts of two laboratories in the
fields  of  experimental  and  numerical  studies  to  clarify  the

interplay of  multiscale  and  multiphysics  mechanisms in this
complex interfacial region.

Phenomenon of electrical contact combines mechanical and
electric effects, as the electric current can pass mainly through
contact  spots  which  result  from  mechanical  deformation  of
contacting solids. Thus, if the coupling between the mechanical
and electric effects may be assumed unidirectional (which is
often the case for low currents and moderate loads) then this
coupled problem can be split  in two sub-problems: first, the
mechanical contact problem, second, the electrostatic problem
for the geometry obtained from the solution of the first. With
this  consideration  in  hand,  one  can  combine  independent
models for mechanical  and electrical  contacts. For the latter,
the  simplest  model  consists  in  approximation  of  the  real
conducting zone by a single  circular  conducting  spot  at  the
interface between semi-infinite planes [1]; for the case of two
finite cylinders contacting at a circular spot, first terms in the
Taylor's  expansion  of  the  solution  were  obtained  in  [2].  A
generalization  of  these  simple  models  is  the  multi-spot
Greenwood  model  [3],  which  approximates  the  contact
interface  by  a  cluster  of  conducting  circular  spots  at  the
interface  between  two conducting  half-spaces.  Some further
generalizations of this model are also available in the literature,
including  models  which  take  into  account  aging  of  contact
spots  prone  to  the  growth  of  oxide  films  [4],  models
considering the current density distribution inside contact spots
[5], models adapted for saturated contacts, when the electrical
contact  area  approaches  the apparent  contact  area  while  the
number of contact spots remains small [6], models including
interface  film  resistance  [7]  and  smoothed  version  of
Greenwood  model,  which  represents  the  discrete  sums  by
integrals with specific kernels [8]. 

Equivalently many models  exist  to  solve the mechanical
contact between rough surfaces, whose solution determines the
morphology  of  the  mechanical  contact  area,  which  may  be
considered as the upper boundary for the electrical contact area
[9].  Among these models  there  are  analytical  asperity-based
models [10-13], which approximate the effective roughness of
two contacting surfaces by a series of spherical or ellipsoidal
non-interacting  asperities,  with  specific  distribution  of  their
geometrical  properties,  which  in  turn  follow  the  random
process  roughness  model developed in [14,15].  A multiscale
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generalization of asperity based models is suggested in [16],
which  assumes  however  a  kind  of  scale  separation  in  the
surface roughness. A different approach is developed in [17],
which considers a full contact for varying spectral content as a
starting point, and next extends the result for the case of partial
contacts  [18].  These  models,  associated  approximations,
limitations and possible extensions are summarized in [19,20].
Apart  from  these  analytical  and  semi-analytical  models,
various  numerical  methods  may  be  used  to  solve  the
mechanical  boundary  value  problem with  contact  constrains
and explicitly integrated surface roughness for elastic [21-23],
visco-elastic  [24]  and elasto-plastic  material  models  [25,26].
Different approaches and results of these full-scale analyses are
summarized in [27].

In  weakly  coupled  electro-mechanical  contact  problems,
the  multiscale  and  multiphysics  model  is  essentially  a
combination  of  one  of  aforementioned  mechanical  and
electrical  models. It  is worth mentioning that the mechanical
part is sometimes simply neglected and the spot distribution is
either simulated by a random model or is obtained as a cross-
section of a rough surface (geometrical overlap model), see e.g.
[8,28,29]. We refer to following references [30-34], as to the
state of the art works, in which more complete and accurate
models  are  used  for  mechanical  and  electrical  contacts.
Moreover,  in  [34]  a  link  of  aforementioned  models  with  a
rather  different,  incremental  stiffness  approach  of  Barber  is
discussed [35]. In conclusion of the bibliographical review, it
should  be  remarked  that  the  electrical  contact  problem  is
essentially similar to the one of thermal conductance through
the same configuration of contact spots, under condition that
the thermal expansion of solids and convective heat exchange
are neglected. Hence, a rich bibliography on thermal contact
conductance [36,37] is partly relevant to our topic. 

Our  work  combines  within  a  unified  framework  several
numerical  models  for  mechanical  and  electrical  contacts.  A
mechanical  finite  element  model,  which  uses  accurate
constitutive  equations  to  capture  elasto-plastic  material
behavior,  allows  us  to  predict  the  structural  response  for
complex  loading  including  cyclic  loads  in  contact.  An
improved elasto-plastic asperity model with elastic interactions
between asperities is then used to capture the roughness effect
using  the  real  topography  of  ours  samples  measured  with
atomic  force  microscopy.  This  model  provides  us  with
statistically meaningful  results and allows us to estimate the
data dispersion . Finally, the original Greenwood model is used
to  analyze  the  electrical  resistance  of  contact  clusters.  This
model is validated on a series of fine experiments conducted in
the project.

In Section II, the general methodology is described. Section
III  presents  the  experimental  setup  and  corresponding
measurements.  The  numerical  approach  (finite  element
analysis) as well as the mechanical constitutive models which
are used in the simulations are discussed in Section IV. The
roughness of the contacting surfaces is analyzed in Section V;
the  multi-scale  electro-mechanical  model  and  the  associated
results are presented in Section VI, followed by a discussion.

II. METHODOLOGY

The  general  objective  of  the  study  is  to  predict  the
experimentally  observed  variation  of  the  electrical  contact
resistance  for  “real”  sphere-plane  contacts  under  cyclic

loadings using multiscale electro-mechanical  simulations. To
reach this objective, we integrate in the numerical model (1)
realistic  constitutive  material  models  (elasto-plastic  with
isotropic  and  kinematic  hardening),  (2)  an  accurate
representation of the roughness morphology of the contacting
bodies as measured by atomic force microscopy (AFM) and
interferometric  profilometry.  The  multiscale  nature  of  the
electric and mechanical contact manifests itself in a separation
of scales between the macroscopic geometry of the contacting
solids and the microscopic roughness on a smaller scale (Fig.
1). In our study we use this scale separation in the following
way.  First,  we  conduct  the  mechanical  simulation  of  the
indentation  for  various  materials  and  coating  thicknesses
assuming perfectly smooth surfaces (with no roughness).  At
every load step, a  complementary electrostatic simulation is
conducted to evaluate the electrical  contact  resistance.  Both
simulations  are  carried  out  using  a  finite  element  software
with implicit integration [38,39]. The effect of the roughness
and of the microscopic deformation of asperities is then taken
into  account  in  a  semi-analytical  model  of  interacting
asperities,  which  uses  the  real  roughness  topography.  This
model provides us with the exact morphology of the contact
spots, which is then used to estimate the contact resistance via
the Greenwood model (Eq. (4) in [3]). The sensitivity of the
mechanical  model with respect to material properties (initial
yield  stress)  and  to  the  thickness  of  coating  layers  is  then
analyzed.  The  numerical  results  are  compared  with  the
experimental data.

Fig. 1. Separation of scales in the electric and mechanical contact between
rough  solids:  (a)  the  macroscopic  scale  is  characterized  by nominally  flat
(smooth)  surfaces,  (b)  at  certain  magnification  the  discrete  nature  of  the
contact  is  revealed.  The real  contact  area  is  considerably smaller  than the
nominal  contact area predicted at macroscopic scale with the Hertz contact
theory; the real contact area can be approximated by a set of a-spots (c).

III. SAMPLES AND EXPERIMENTAL SET-UP

Cyclic indentation tests were performed on nominally flat
substrates by a copper beryllium ball of radius 1.75 mm. The
flats were one millimeter thick brass alloy CuZn30 [CW505L,
30 wt% Zn] planes coated with electrodeposited  nickel  and
gold  layers  both  1µm  thick.  Bare  CuBe  balls  were  used.
Particular attention was devoted to their surface. Several types
of experiments involving different surface finishes of the balls
were  performed.  The  balls  were  either  rinsed,  thoroughly
cleaned  or  mechanically  polished  before  the  measurements.
The  experiments  were  conducted  on  a  special  test  bench
depicted in Fig. 2. The ball is mounted in a holder and pressed
against the plate with a stepping actuator (1/10 μm by step),
which  is  controlled  by  a  displacement capacitive  sensor  (a
preliminary  calibration  procedure  permits to  convert  the



vertical displacement into the value of the normal force via the
stiffness of the guiding elastic rings). A water-cooling circuit
insures  the  thermal  stability  of  the  set-up,  specifically the
sensor’s  measurements.  The  elements  of  the  contact  are
connected to the electrical setup following the four-terminal
method. The electrical  circuit  includes a DC voltage/current
source, an electrometer and a digital voltmeter, all controlled
over the IEEE-488 bus. Once the required force is reached, a
DC current I =  10mA is  imposed  to  the  contact;  opposite
polarities are  used  to  eliminate  thermoelectric  voltages
(current-reversal method) [40]. Measurements of the potential
difference  (U)  enable  us  to  calculate  the  total  electric
resistance 

(1)
where  Rc is  the  contact  resistance  and  Rs is  an  additional
resistance due to the bulk parts of ball-holder and brass plane
between contact area and potential measurement terminals. In
the considered system  Rs is estimated to be about 0.09 m.
Under  assumption  of  elastic  Hertzian  contact  and  Holm's
electrical contact, the first term can be estimated as follows:

 (2)

where  R is  the  ball  radius,  a is  the  contact  radius,  * the
effective  resistivity,  E* the  effective  modulus,  and  *  is
usually taken as a mean resistivity of CuBe and CuZn. The
effective elastic modulus is considered for the pair CuBe and
CuZn

(3)

where v is the Poisson's ratio and E is the Young's modulus.

Fig. 2. (a) General layout of the contact resistance measurement setup: 1 –
rigid frame, 2 – capacitive force sensor, 3 – elastic washers, 4 – insulating
blocks, 5 – ball holder, 6 – CuBe ball, 7 – plane CuZn substrate coated with
Ni and Au, 8 – displacement  stepping motor. (b) Mounted CuBe ball,  two
wires (grey: current feeding, red: voltage measurement) and the water cooling
system (tube); (c) sample holder for the plate (7) with connections. 

Series  of  three  loading-unloading  cycles  were  performed  in
various  conditions  (ball  finish  and  indentation  zone).
Experimental data for a representative test  as well as the  the
range of experimental data obtained for different runs (shaded
area) are depicted in Fig. 3 which shows the evolution of the
measured resistance with respect to the applied load as well as
the analytical estimation from Eq. (1,2). The first loading is
observed to be distinct from the subsequent loading-unloading
curves because of the plasticity onset in the CuZn substrate.

After the first hardening the system follows a stabilized cycle:
the loading and unloading curves follow the same trajectories.
The  hysteresis  is  attributed  to  the  kinematic  hardening  in
CuZn.  The  variability  in  the  experimental  results  can  be
explained  by  differences  in  the  surface  states  of  the  balls
(including  roughness  and  contamination)  and  on  the  local
roughness of the plane at the location of the indentation.

Fig. 3. Experimental data and analytical estimation: left – normal scale, right
– logarithmic scale. Shaded area encloses all the experimental data points for
the  first  three  loading-unloading  cycles  for  different  ball  finishes  and  at
different  locations  on  the  plate.  The  data  points  show  three  cycles  of  a
representative  experiment;  the  dashed  line  shows  a  reference  analytical
estimation for elastic Hertzian contact Eq. (1,2) for Rs=0.09 m. Arrows with
the color code indicate the load direction.

IV. NUMERICAL SIMULATIONS AND MATERIAL MODELS

The macroscopic calculation is made on an axisymmetric
model,  as  shown in  Fig.  4.  A convergence  study has  been
performed in order to choose the optimum element size in the
contact  zone. Linear elements are used in the finite element
mesh to ensure an optimal contact treatment. The nickel and
gold layers are discretized by two element layers in thickness.
Elements in the vicinity of the contact have a size of 500 nm.
The number of elements in contact reaches more than 80 at the
peak  load.  A  prescribed  displacement  is  imposed  on  the
equatorial plane of the half sphere (A in Fig.4), which remains
flat due to a multi-point constraint condition, while the bottom
of the mesh representing the substrate (B in Fig.4) is fixed in
vertical  direction.  The  mechanical  simulation  allows  us  to
obtain the evolution of the radius of the contact surface with
respect to the applied force. At each load step, the two initially
separate  meshes  are  fused  in  the  contact  zone  for  the
computation of the electrical  problem. Doing so, there is no
discontinuity in electric potential at the boundary between the
sphere  and  the  plane.  The  electrical  model  at  macroscopic
scale thus assumes a perfect contact between the two bodies
(no resistive interfacial film). 

Non linear constitutive equations were used for the three
materials of the substrate (CuZn, Au and Ni), while an elastic



behavior is considered for the ball CuBe material model. In
each  case,  the  material  data  are  taken  from  literature
(respectively [41,42] and [43] for brass, gold and nickel). The
material models incorporate either only non-linear kinematic
hardening (Au, Ni) or a combination of isotropic and several
kinematic hardening (CuZn),  in order  to  correctly  represent
cyclic  responses  of  the  materials.  The  expressions  are
summarized below, Eq.(4-9).  The yield function,  f, in Eq.(4)
uses the von Mises invariant,  denoted by  J, of the effective
stress (the stress minus the kinematic variable), as  specified in
Eq.(5). The size of the elastic domain is defined by the sum of
the initial yield stress, y, and the isotropic hardening variable,
R.  Two material  parameters,  namely the possible amount of
hardening  Q and the parameter  characterizing the saturation
rate, b, are present in Eq.(6) to define isotropic hardening. The
expression  of  kinematic  hardening  has  a  driving  term
proportional  to the plastic strain rate,  and a fading memory
term  proportional  to  its  actual  value.  The  product  D(p)
characterizes the non linearity of the stress evolution inside a
cycle.  Its  initial  value  is  D and  the  final  D,  that  allows
representing a sharper hysteresis loop after a few cycles. The
variable  p brought into play in both Eq.(6) and Eq.(7) is the
cumulated plastic deformation, defined by its rate, as shown in
Eq.(9).

(4)

(5)

(6)

(7)

(8)

(9)

where  s is the deviatoric part of the stress tensor  σ,  the dot
represents the time derivative and the colon represents tensor
contraction.

A simple sensitivity analysis  was carried out with respect
to the yield stress of the brass: 53 MPa < σy < 550 MPa and to
the thickness of both coating layers in the range 0.5<h<3.0 μm
(for fixed σy=70 MPa). The resuslts are shown in (Fig. 5). For
the experimental range of loads used in the study, the yield
stress determines:

- if the contact is purely elastic (σy≈550 MPa),

-  if  the  first  load  is  elasto-plastic  and  the  subsequent  load
cycles are elastic (σy≈140 MPa),

-  if  a  purely  elasto-plastic  case  with  no  stabilized  cycle  is
obtained (σy≈53 Mpa).

The  parameters,  which  were  identified  from  above-
mentioned experiments [41-43] and used in the finite element
and multiscale analyses, are summarized in Table I.

Note that  our model cannot describe at the same time the
experimental cycle with superposed second and third loadings
as well as the first, second, and third unloading (Fig. 3). Since,
such a hysteresis, as we believe, is associated with the brass

response, this result indicates that a finer characterization of
the  material  behavior,  specifically  for  conditions  of  cyclic
loadings with a very large hydrostatic pressure is needed. The
imprecision in experimental measurement of the thickness of
both  the  Ni  and  Au  coatings  affects  only  marginally  the
results:  the  curves  obtained  for  different  thicknesses  (not
shown here) are very close to the reference one (both layers
are 1 μm thick).

Fig. 4. Finite  element  mesh  used for  mechanical  and electric  simulations:
general view and a zoom on the contact region with hardly visible nickel and
gold layers of 1 μm thickness each.

TABLE I. TABLE OF MATERIAL PARAMETERS

Parameter Material / Value(s)
Au Ni CuBe CuZn30

E (GPa) 70 160 130 110
ν 0.42 0.31 0.3 0.375

σy (MPa) 141 677 - 53, 70, 140, 550
b - - - 1.18

Q (MPa) - - - 20
C1 (GPa) 122 333 - 35
D1 (MPa) 332 251 - 1000

φ1 1 1 - 0.02
ω1 - - - 0.09

C2 (GPa) - - - 45
D2 (MPa) - - - 9550

φ2 - - - 0.8
ω2 - - - 9.8

C3 (GPa) - - - 70
D3 (MPa) - - - 10500

φ3 - - - 0.7
ω3 - - - 5.5

ρ (Ohms·μm) 2.33e-2 6.99e-2 8.25e-2 6.2e-2

V.   SURFACE ROUGHNESS

The  coated  brass  flats  roughness  was  characterized  by
AFM and profilometry. It  cannot be described as self-affine
fractal  with a  single  Hurst  exponent  (or  fractal  dimension).
Fig. 6 shows that it is a combination of the roughness naturally
present  in  rolled  brass  alloys  and  the  roughness  of
electrodeposited nickel and gold layers. The coated substrate
topography  (AFM  data,  5  scans  2048x2048  points)  can  be
characterized  by  its  power  spectral  density  (PSD)  in  two



orthogonal directions and by the height distribution; both are
depicted in Figs. 7-8, respectively. 

Fig. 5. Results  of  finite  element  analysis:  contact radius (left)  and electric
resistance (right) evolution in cycling loading. The shaded area spans all
experimental  results  and  the  dashed  line  is  the  reference  analytical
estimation for elastic Hertzian contact Eq. (1,2) computed for Rs=0.09
m.

Fig. 6. Example  of  roughness  measurements  (AFM)  on  the  coated  brass
substrate.

The  roughness  is  observed  to  be  anisotropic  (mainly
because of the rolling) with a particular scaling in terms of the
PSD;  the  height  distribution  is  not  Gaussian,  with  a  rather
pronounced tail, which arises due to numerous high asperities
(see Fig. 8). Rigorously, such a surface cannot be analyzed by
standard methods of the random process model [14,15,44]. It
should be noted that the surface anisotropy does not imply a
strong anisotropy of asperities, equivalently the isotropy of the
surface  does  not  imply  the  isotropy  of  asperities.  As  was
shown in [45],  according to the random process  model,  the
mean ratio of asperity principal  curvatures  is  approximately
three and the probability to find a circular asperity is zero.

The surface roughness was analyzed numerically. First the
data were filtered in Fourier space by a low pass cut-off filter
at  |k|=512.  Next  the  data  were  processed  to  identify  all
asperities  and  their  relevant  properties:  in-plane  coordinate
x,y,  peak height  z and principal curvatures  κ1,κ2.  These data
were then used in the following section to obtain the realistic
contact morphology (real contact area) for different loads and

various indentation zones. Note that the roughness of the ball
is not included here.

Fig. 7. Power spectral density of  the surface roughness in the direction  X
(left)  and Y (right):  gray triangles  represent all  the measured surfaces, red
circles correspond to the average data.

Fig. 8. Distribution  of  surface  heights:  gray  triangles  represent  all  the
measured surfaces, red circles correspond to the average data. In the inset an
example  of  a  high  asperity;  whose  population  changes  significantly  the
distribution tail.

VI. THREE-LEVEL MULTISCALE MODEL

A realistic  estimation of  the  electrical  contact  resistance
needs to take in consideration the roughness of the contacting
surfaces.  The  approach  in  this  work  is  based  on  the
consecutive use of three computational tools: 

(1)  a  finite  element  analysis  to  solve  the  indentation
problem for smooth coated substrate within finite strain
plasticity framework;

(2)  a  semi analytical  iterative tool based on elasto-plastic
deformation of elastically interacting asperities;



(3) Greenwood's model [3] to estimate the electrical contact
resistance through a localized cluster of a-spots:

(10)

where  ai is  the radius  of the  i-th contact  spot and  sij is  the
distance between centers of spots i and j.

In model (1) (described in detail in Section IV) for each
value of the load  F we obtain the contact radius  a0 and the
pressure distribution in the contact zone p(r), r<a0. For small
loads the contact  pressure  follows Hertzian distribution,  for
moderate  loads  accompanied  with  considerable  plastic
deformation, the contact pressure is almost uniform over the
contact zone and can be estimated [46] as  p=3σy, where  σy is
the yield  stress of the substrate  (we assume that  CuBe ball
remains in the elastic regime), for higher loads the plastic flow
and large deformations change the contact pressure profile in a
way that the contact pressure is higher near the edge of the
contact  zone.  Model  (1)  is  needed to take into account  the
plasticity at  macroscopic scale,  which is not possible in the
asperity-based framework (2). To make a link between these
two models, we make the following assumptions: 

(i) the apparent contact zone at the asperity scale lies within
the contact radius a0 obtained in model (1);
(ii) the asperities (position, peak height, principal curvatures)
are identified from real AFM topographies of the coated plane
and they are assumed to be spherical with the geometrically
mean curvature κ=√(κ1κ2);
(iii) the  asperities  are  indented  by  a  flat  circular  punch  of
radius a0;
(iv) the deformation of the asperities is governed by the Hertz
theory  with  effective  elastic  modulus  computed  for  the
combination of CuBe and Au;
(v) to  represent  the  irreversible  plastic  deformation  of  the
asperities the maximal value of the mean contact pressure is
fixed at 3σy, where σy is the yield stress of Au;
(vi) the elastic interaction between asperities is governed by
the elastic constants of the substrate CuZn.

Under  these  assumptions and  limitations,  model  (2)  can  be
properly used only for the first loading as the change of the
shape  of  asperities,  their  curvature  and  residual  bulk
deformation  are  non-trivial  to  take into account  even being
guided  by model  (1).  Thus,  our  objective  is  to  capture  the
variability  of  the  resistance  for  the  first  loadings  via
statistically  meaningful  series  of  simulations,  which  will
represent  an  upper  limit  for  the  resistance  in  the  stabilized
loading-unloading cycle. We then use model (3) to determine
the electric resistance of the contact clusters for a given load.
The contact-cluster configurations for each load results from a
single simulation within model (1) and multiple simulations
for different indentation zones on experimental surface, which
are obtained with model (2). The detailed description of this
multiscale resolution scheme will be soon available in [47].

The  contact  resistance  obtained  within  this  multiscale
model is depicted in Fig. 9 and compared with experimental

data. To estimate the variability of the results, model (2) was
used  to  simulate  indentation  at  100  different  locations  for
contact radii ranging from 2 to 30 µm with step of 2 µm. The
rigid stamp was squeezed on the substrate in 200 load steps;
however, for the analysis  only those simulation points were
retained, for which the resulting force lies within a 5% interval
of the force predicted by model (1). Two results of model (2)
were retained for this analysis with  σy=53 MPa and  σy=550
MPa.

Fig. 9. Comparison between the actual multiscale model (clusters of points:
blue for  σy=53 MPa and red for σy=550 MPa) and experimental results (the
shaded area represents  the range of experimental results for the first loading,
three distinct curves for the first loading are also shown). Different clusters of
points correspond to different contact radii (a=18, 20, 22, 24, 26 and 28 μm).

Fig.  10  shows  examples  of  contact  spot  configurations
calculated with the model for the contact radius a=10, 16 and
22 µm.  The anisotropy of  the  surface  is  easily  observed  –
contact spots are localized along several bands. One can see
that  for higher values of the contact  areas  the  a-spots grow
beyond the delimited space and start to merge. At this stage
the validity of models (2) and (3) becomes questionable and a
finer analysis would be required. Integration of more realistic
asperity  deformations  in  model  (2)  could  improve
significantly the precision of predictions. This can be done by
carrying out a series of finite element simulation of squeezing
axisymmetric  asperities with various geometrical  parameters
and  subsequently  fitting  their  response  (displacement-force-
contact  radius)  by  simple  polynomial  curves,  which  can
replace  Hertz  formula  in  model  (2),  as  was  done  in  [26].
Moreover,  a  further  improvement  of  this feature,  will  make
possible the simulation of cyclic loading on rough surfaces.

VII. CONCLUSION

In  experiments,  we  identified  a  model-cycle  (resistance
with respect to load) for moderate loads which consists in a
first distinct loading curve and  subsequent unloading-loasing
cycles, for which the resistance follows separate but stabilized
trajectories for unloading and loading paths (see Fig.  3). The
stabilized  loading-unloading  cycle  with  a  pronounced



hysteresis,  comes  from  a  kinematic  hardening  in  the  brass
substrate.  To  capture  the  non-linear  material  behavior,  our
mechanical  finite  element  analysis  uses  adequate  material
models, which include kinematic and isotropic hardening for
isotropic J2-plasticity [48]. In agreement with experiments, it
enables  us  to  distinguish  between  the  first  loading  and  the
subsequent cycles, however, the stabilized hysteresis, found in
experiments,  was  not  reproduced in simulations for  various
material  parameters.  The  electrical  contact  resistance
evaluated at macroscopic scale under assumption of perfectly
conducting interface does not display a stabilized cycle for the
range of tested material and geometrical parameters (see Fig.
5).   Such  a  strong  hysteresis  should  be  associated  with
kinematic hardening of the brass at macroscopic scale and of
CuBe and Au at the scale of asperities. Frictional dissipation
and adhesion may also contribute to this hysteresis.  For the
subsequent  studies,  the  frictional  contribution  has  to  be
considered and all material models have to be more properly
adjusted  especially  in  terms  of  the  kinematic  hardening.
However,  in  the  framework  of  the  currently  used  asperity
based model, the cyclic elasto-plastic deformation at asperity
scale cannot be properly taken into account, which is also the
case for most elasto-plastic models.

Fig. 10. a-spots in the multiscale model for different contact spot radius (a)
a=10 μm, (b) a=16 μm, (c) a=22 μm.

The roughness of the studied surface (rolled brass coated
with nickel and gold), while being frequently encountered in
real world applications, is not typical for theoretical models, in
which roughness is often assumed to be fractal, Gaussian and
isotropic.  The  surface  in  this  work  obeys  none  of  these
assumptions  and  requires  an  accurate  characterization  and
interpretation. For example, the contact spots, aligned in the
rolling direction,  form contact  (conducting)  bands separated
by non-contact regions (see Fig. 10).

Comparison between the three-level computational model
proposed in the paper and experiments shows that the model
captures quantitatively the evolution of the electrical  contact
resistance during the first loading. However, it cannot predict
the large variability of experimentally obtained results (this is
probably because of too different finishes of the ball used in
experiments).  On  the  contrary,  the  model  predicts  the
narrowing of the resistance values dispersion with increasing
load, while in the experiments the variability remains large for
high loads (compare dots with shaded area in Fig. 9). There
are several reasons for this discrepancy:

1. apart  from  the  contact  roughness,  the  contact
resistance is also associated with possible presence of oxide

films  or  other  contamination  on  contacting  surfaces:  the
electrical  contact  area is not equivalent to the mechanical
contact area and can be significantly smaller in presence of
poorly conducting spots [9];
2. the roughness and the surface state of the CuBe ball
was  neglected  (probably  it  is  the  most  critical
approximation);
3. the  passage  from  the  finite  element  macroscopic
result  to  the  asperity  based  model  requires  a  lot  of
assumptions, which in realistic case are only partly satisfied
(see Section IV);
4. the asperity based model cannot take into account the
merge of contact zones associated with different asperities
[49] and the curvature variation of asperities;
5. Hertz contact theory even being extended to elasto-
plastic  material  behavior  cannot  take  into  account  the
layered  composition  of  the  substrate  and  the  finite  strain
hardening as well as it cannot capture a cyclic loading with
kinematic hardenings.

To avoid the oversimplification of the elasto-plastic Hertz
contact  used  for  asperities,  one  may  use  a  properly  tuned
heuristic model based on a series of finite element simulations
of a single asperity on a layered substrate [26]. To overcome
the  ensemble  of  the  aforementioned  difficulties  of  the
multiscale model a full scale finite element [26] or boundary
element  model  for  elasto-plastic  material  [50]  (or  their
combination) with an  accurate  representation  of  the  surface
roughness should be used. This mechanical model should be
complemented  with  a  subsequent  full  scale  finite  element
simulation  of  the  current  flux  through  the  contact  interface
similar to what was done in [31]. However, to solve properly
both the mechanical  and electric  problems at  the roughness
scale,  a  significantly  finer  meshes  would  be  needed,  see
discussions  in  [22,51].  This  task  appears  realistic  in  the
present state of hardware and finite element software. 

Note  that  such  a  weak  electro-mechanical  coupling  is
possible only for low electric currents as the Joule heating in
the  interface  is  negligibly  small  and  thus  does  not  affect
material  properties  of  contacting  elements.  However,  when
considering high electric currents a strongly coupled thermo-
electro-mechanical  model  with  roughness  should  be
introduced similar to [31].

Finally, regardless all inherent drawbacks,  the three-level
multiscale  and  multiphysics  model  for  electrical  contacts
yields reasonable results in good agreement with experiments.
The  model  uses  the  real  roughness  topography and has  no
adjustable parameters, only material mechanical and electrical
properties.
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