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Abstract An elastic layer slides on a rigid flat governed

by Coulomb’s friction law. We demonstrate that if the

coefficient of friction is high enough, the sliding localizes

within stick–slip pulses, which transform into opening

waves propagating at intersonic speed in the direction of

sliding or, for high Poisson’s ratios, at supersonic speed in

the opposite direction. This sliding mode, characterized by

marginal frictional dissipation, and similar to carpet fold

propagation, may result in inversion of the frictional force

direction; at longer time intervals, the system demonstrates

stick–slip behavior. The mechanism is described in detail,

and a parametric study is presented.

Keywords Friction � Slip pulses � Opening waves �
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1 Introduction

Frictional slip on interfaces, which separate solids with

different elastic properties (referred to as bi-material

interfaces), controls propagation of interfacial mixed mode

cracks in composite materials [17], energy dissipation in

brake systems [4, 35] and fault slip [31, 41, 44]. Regard-

less of the huge difference in scales between these

examples, frictional sliding demonstrates scale-invariant

properties, which enable to mimic Earth-scale phenomena,

such as earthquakes, in the laboratory [9, 51]. However, the

scaling laws and the coupling of different mechanisms

involved in frictional slip are not yet fully understood and

present an active research area in mechanical, physical and

geophysical communities [14, 31, 36, 48]. Difficulties in

studying the elastodynamic frictional sliding on bi-material

interfaces originate in unknown exact interface laws,

complex interaction of the surface and the body waves as

well as non-trivial interplay of the involved time and spa-

tial scales. The fact that the slip occurs on the bi-material

interface implies that the frictional slip locally changes the

contact pressure, which is not the case for similar materials.

For the Coulomb’s friction law, this strong coupling

between normal and tangential tractions results in a

mathematically ill-posed problem or flutter instability [34,

39, 40] for a wide range of combinations of materials and

friction coefficients. For example, for material pairs for

which a generalized Rayleigh interface wave does not

exist, the frictional slip is well posed only if the coefficient

of friction is below a certain limit: In the case of contact

between an elastic half-space and a rigid flat, this limit is a

unity [40]. Above this limit, the well-posedness depends on

the Poisson’s ratio m and the coefficient of friction f [34].

In this Letter, we demonstrate that the mathematical ill-

posedness loses its destructive effect for a finite system,

whose frictional dynamics appears to be governed by the

structural dynamics. We report accurate numerical results

showing that the frictional sliding in the ‘‘ill-posed’’ regime

propagates as a series of stick–slip pulses. These pulses,

after had run a certain distance, transform into stick–slip–

opening waves; both modes of slip propagation imply very

low frictional dissipation. The mechanism is described in

detail, and a parametric study is presented.
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2 Methods

We consider (Fig. 1) an infinitely long elastic layer of

height H (Young’s modulus E, Poisson’s ratio m, mass

density q) pressed against a rigid flat by a constant dis-

placement Uy\0 applied on the top and resulting in uni-

form interface pressure p. The contact interface is governed

by Coulomb’s friction law with constant coefficient of

friction f independent of velocity and slip distance. From

the physical point of view, this implies that at small scale

the interface and adjacent materials are assumed to be time

independent and not affected by generated frictional heat.

The solid is sheared at a constant velocity V0 � cs applied

on the top surface, where cs is the shear wave celerity. We

use the finite element method with implicit time integration

to solve the elastodynamic equation with contact and

frictional constraints.

We solve this problem for an elastic layer of length k.
To imitate an infinite elastic layer, periodic boundary

conditions were used on lateral sides (displacement degrees

of freedom of corresponding nodes are coupled). The

simulations were carried out in in-house displacement-

based finite element software Z-set [12, 20]1. To avoid

spurious internal wave reflections, we used a regular

structured finite element mesh of square-shaped linear

elements with reduced integration (one Gauss point per

element). To verify the mesh convergence, we used finite

elements with the side h ¼ H=32;H=64;H=128. Implicit

Hilber–Hughes–Taylor [26] time integration scheme was

used with a moderate dissipation of high-frequency modes

a ¼ 0:1. The method establishes the following general

time-discrete equations of motion:

M€utþDt þ ð1� aÞKutþDt þ aKut ¼ ð1� aÞFtþDt
ext þ aFt

ext;

whereM is the mass matrix, K is the stiffness matrix, Fext is

the vector of external forces, u; _u; €u are vectors of dis-

placement, velocity and acceleration, respectively, the

upper index refers to time, and Dt is the time step. Plane

strain formulation with infinitesimal deformations is used.

We solved elastodynamic equation of motion

r�r ¼ q€u;

where r is the Cauchy stress tensor and €u is the accelera-

tion vector. The stress–strain relationship is given by

Hooke’s law r ¼ Em
ð1þmÞð1�2mÞ tr ðeÞI þ E

ð1þmÞ e, where tr ðeÞ
is the trace of the deformation tensor and I is the second

rank identity tensor. Since we consider small strain elas-

ticity, the strain tensor is given by e ¼ 1=2ðruþ urÞ. The
boundary conditions are the following: On the top of the

rectangle y ¼ H, vertical displacement uy ¼ �0:001H is

prescribed, which results in contact pressure

p ¼ UyEð1� mÞ=½Hð1þ mÞð1� 2mÞ�; on lateral sides,

periodic boundary conditions are imposed for every couple

of corresponding nodes uxðx ¼ 0; yÞ ¼ uxðx ¼ k; yÞ and

uyðx ¼ 0; yÞ ¼ uyðx ¼ k; yÞ; these conditions are kept con-

stant during the simulation. On the contact interface, the

classic Hertz–Signorini–Moreau contact conditions are

used [50, 52]:

p� 0; uy � 0; puy ¼ 0

and frictional conditions for Coulomb friction are [50, 52]

jrxyj � f jpj � 0; j _uxj � 0; ðjrxyj � f jpjÞ _ux ¼ 0;

where rxy is the tangential traction on the contact surface

defined as rxy ¼ t � r � n, where n is the unit outward nor-

mal and t is the unit tangent vector. The frictional contact

constraints are taken into account via a direct method,

which uses local stiffness matrices to resolve the contact

constraints within a nested loop separated from the global

convergence loop, in which contact and frictional forces

enter as external forces, and the method was developed

in [21, 27].

The elastic layer was first loaded by vertical displace-

ment uy, and next the top surface was sheared by ux until

jT=Nj ¼ 0:95f , where

T ¼
Zk

0

rxydx; N ¼
Zk

0

pdx

are the tangent and the normal forces, respectively; both

initial steps are solved quasi-statically (without dynamic

effects). Next, a dynamic simulation started (initial velocity

field is zero), the top surface is sheared at a constant rate

_ux ¼ V0, and this rate is chosen to be significantly smaller

than the shear wave celerity; for most simulations pre-

sented in the Letter, we used V0 ¼ 10�5cs.

In almost all simulations, we used Young’s modulus

E ¼ 1000 Pa, mass density q ¼ 1000 kg/m3, H ¼ 25 m,

Poisson’s ratio was varied in the range m 2 ½0; 0:49�, and

Fig. 1 Problem setup: infinite elastic layer of thickness H with

imposed period k slides on a frictional interface with a rigid flat being

sheared at constant rate V0

1 For a single case, the simulations were run also in commercial finite

element software ABAQUS, which properly reproduced the results

obtained with our software.
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the coefficient of friction was varied in the range

f 2 ½0:5; 2:�. The time step was chosen as Dt � 0:5m=cs.

To verify the validity of results, various mesh periods were

tested k ¼ 2H; 4H; 6H, mass density was varied as q ¼
0:1; 10; 1000 kg/m3, and the time step was adjusted pro-

portionally to q1=2. In all cases, the slip dynamics retains all

its properties. Different shear rates were also tested

V0=cs ¼ 10�6; 5 � 10�6; 10�5; 5 � 10�5; 10�4, they can

change the slip dynamics at longer time scales, but for

moderate shear rates the initial frictional drop and the

formation of slip pulses and opening waves were observed

for the most of studied parameters. Higher shear rate

V0=cs ¼ 10�4 for some parameters may suppress the

inversion of frictional force. Note that the influence of the

shear rate was not the focus of the present study and

requires a detailed analysis.

2.1 Remark on the Choice of the Time Step

and the Mesh Density

The time step in implicit time integration can be arbitrarily

large as the method is unconditionally stable; however, too

large time steps smooth out rapid wave dynamics leading

to slow structural dynamic simulation. But if the time step

is chosen sufficiently small, of the order of stable explicit

time step (Courant–Friedrichs–Lewy condition), the wave

dynamics is finely resolved and for time steps Dt\1m=cs,

the choice of the time step does not affect the solution for

quasi-stationary regime, where only major slip pulses sur-

vive and secondary ones die.

The mesh size is a more critical parameter, but it affects

only the short transitional period from the start of sliding

up to the localization of slip pulses. According to [34], for

high enough friction coefficients, the homogeneous slip is

unstable and the amplitude of interface displacements

grows with an exponent proportional to the wavenumber

or, in our case, to the inverse of mesh size. This destabi-

lization may result in localization of stick–slip pulses

spaced by a single finite element. However, this instability

is only observed within the stabilization cycle before the

finite size of the system manifests itself. When the system

starts to act as a whole, only major slip pulses localize

(their number is determined by the ratio of height to period

and the slip front celerity); at this stage, the mesh size does

not change solution characteristics, if a sufficient number

of elements is used enabling to capture all relevant fields’

variations. We tested meshes with 32, 64 and 128 elements

in height, and for the stabilized quasi-periodic solution we

could capture quantitatively equivalent results. To sum-

marize, the dependence on mesh and time step exists, and it

is slightly more subtle than in classic dynamic simulations,

but this dependence is eliminated in the stable regime when

the finite size of the system manifests itself. Note that to get

rid of any manifestation of the ill-posedness, one may use

Prakash–Clifton regularization of frictional law [15, 29,

38, 39]. However, we believe that introducing the regu-

larized friction law at the interface will not affect the

qualitative results within the stable regime.

3 Mechanism of Frictional Sliding

At reaching the critical shear stress s ¼ f jpj, the frictional

interface, initially in stick (pinned) state, starts to slip

uniformly. But since this uniform slip is unstable for high

friction coefficients [34], after a short transitional period,

slip localizes within several slip pulses propagating along

the interface (see an example in Fig. 2 obtained for

m ¼ 0:2, f ¼ 1:5, E ¼ 1000 Pa, q ¼ 1000 kg/m3, H ¼ 25

m, k ¼ 50 m, V0=cs ¼ 10�5). Material velocity, slip

velocity and opening profiles at distinct time moments,

which correspond to times marked with white dashed lines

in Fig. 2, are depicted in Fig. 3 (an animation of the slip

onset and formation of slip and opening pulses is provided

in supplemental material [46]). Evolution of frictional

force for a longer time interval (Fig. 2d) is similar to the

classical stick–slip behavior. Note, however, that here this

global stick–slip dynamics emerges from propagation of

rapid slip pulses within time intervals corresponding to

frictional drops; in other time intervals, the entire interface

remains in stick state accumulating elastic energy. Note

also that the frictional drops, except the very first one,

occur when T=N � 1 regardless of the fact that the local

coefficient of friction f ¼ 1:5.

The observed local propagation mode is referred to as

train of slip pulses [2, 13, 17]; solitary pulses in finite

systems were also observed [8]. For moderate Poisson’s

ratios, slip pulses propagate at intersonic celerity cp
(cs\cp\cl), where cl is the longitudinal wave celerity. Life

period of many of these initially formed pulses is short:

Being filtered by wave dynamics and the resonance of the

finite size system, their propagation speed and slip intensity

decrease before they arrest in a manner rather similar to

what was observed in [29]. However, the major pulses

keep going through the interface at the constant speed.

After a certain propagation distance, an opening occurs

within the slip pulse. This opening implies that the inter-

face can slide almost without local slipping and thus

without any energy dissipation. One may think of a carpet

fold analogy: A carpet can be moved along a surface by

simply propagating a fold, which requires much less energy

than sliding the entire carpet [19]. However, here the

opening starts at location where the slip velocity reaches its

maximum (Fig. 3c–e); thus, a marginal frictional
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dissipation still takes place. The opening pulses demon-

strate a self-sustained behavior and have a certain ‘‘iner-

tia,’’ so that their propagation often results in bringing the

contact surface ahead of the top one. This unconventional

mechanism results in inversion of the frictional force

direction and thus in instantaneous negative apparent fric-

tion (Fig. 2c). It is partly similar to the snap-through

instability with accompanied negative dynamic stiff-

ness [32]. The frictional dissipation is marginal in this slip

mode; thus, the total energy is approximately conserved.

The elastic energy liberated within the first frictional drop

via stress waves is partly restored in the solid being sheared

in the opposite direction (Fig. 3f). However, in the par-

ticular case of the softly applied shear load via a

‘‘pusher’’ [9, 42], this stored energy will be also liberated.

Such a huge drop in frictional force down to negative

values was observed in molecular dynamic simula-

tions [45, 48]; also, within a simple stick–slip model (a

rigid block pulling by a spring over a frictional surface

under velocity weakening friction with the static and

kinetic coefficients of friction fs [ fk) the spring force may

change the sign if fk\fs=2. Evidently, for systems gov-

erned by Coulomb friction with the coefficient of friction

f independent of velocity and slip distance, frictional drop

is impossible in the quasi-static case when inertial effects

are neglected. For elastodynamic case, it was argued that

the apparent kinetic friction (the ratio of the tangential to

the normal force) at bi-material interfaces should be

smaller than the local one [2] or even vanish com-

pletely [1, 39]. This is possible due to the drop of contact

pressure within the slip pulse theorized by Weertman [49].

However, to the best of our knowledge, the changing of the

frictional force direction was not observed at macroscopic

scale.

4 Bibliographical Remarks

The opening waves, also known as Schallamach waves, is a

familiar phenomenon in rubber friction [7, 23, 43]: When a

rigid slab slides over a rubber substrate at moderately high

velocity, the relative motion between two solids occurs in

Fig. 2 Spatiotemporal maps showing formation and propagation of

a slip pulse ( _ux [ 0) and b opening wave (uy [ 0), which result c in a

drop of frictional reaction (ratio of tangential T to normal force N on

the interface) down to negative values; longitudinal, shear and slip

wave celerities are denoted cl; cs; cp, respectively; maps (a,b) and the

frictional force (c, red line) are shown for V0=cs ¼ 10�5, and

frictional forces plotted in gray in (c) are for V0=cs 2 ½10�6; 10�4�. In
(d), the ratio T / N for the same simulation is plotted for a longer time

interval, and t ¼ 0 corresponds to T=N � 0:95f (Color figure online)

Fig. 3 Instantaneous maps of material velocity in the elastic layer,

slip velocity and opening on the interface are presented for f ¼ 1:5,

m ¼ 0:2, V0=cs ¼ 10�5 at a t � 787 s, b t � 840 s, c t � 890 s, d
t � 960 s, e t � 1010 s, f t � 1077 s; deformed state is scaled by a

factor 150; dashed line shows the configuration just before the slip

starts
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the form of detachment waves and the energy is dissipated

mainly in the bulk of the rubber. This phenomenon is

qualitatively similar to our opening waves; however, the

physics of the Schallamach waves, which propagate at

smaller speeds than what is observed here, includes vis-

coelastic material behavior and adhesion on the contact

surface, both of which are not present in our model. The

possibility of detachment waves was also speculated

in [18, 19] either for similar materials or for frictionless

contacts; however, some inconsistency in energy balance in

these results was pointed out in [22]. Possibility of

detachment was discussed in numerous works [3, 49], but

obtaining rigorous theoretical results is associated with

great mathematical difficulties. Nevertheless, the detach-

ment waves on frictional interfaces, different from Schal-

lamach waves, were induced in atomistic simulations [24]

and, for the first time, were obtained in finite element

simulations for a setup with rotational symmetry in [35].

5 Stick–Slip and Stick–Slip–Opening Pulses

Here, we consider in detail the formation of an intersonic slip

pulse and the mechanism of its self-sustained propaga-

tion [3, 25, 49]. The strong coupling between normal and

shear tractions on bi-material interface creates favorable

conditions to reach the frictional limitwithin a local zone and

make slip occur and propagate in the direction of sliding of

the softer material [6, 11, 15]. Since the study of a solitary

pulse in a periodic system is problematic and the number of

stable pulses depends on the ratio k=H and on the pulse speed

cp, we consider a train of stick–slip pulses propagating along

the interface at constant speed cp. Let l denote the spacing

between pulses and s the width of the pulse. Such type of

motion was conjectured theoretically [1, 2, 13], observed in

experiments [17] and in simulations [15, 17]. However, in

theoretical findings too restrictive conditions were imposed:

The mean slip velocity on the interface was assumed to be

equal to the shear velocity V0. This condition is natural if the

motion is assumed stationary, it is equivalent to the following

relation _�ux ¼ V0l=s, where _�ux is the mean slip velocity in the

pulse. Such a stationary solution is observed for low coeffi-

cients of friction. However, such a stationary train of pulses

cannot result in a huge frictional drop bringing the system in

a global pinned state. Moreover, we observe that the contact

surface may be brought ahead of the top one; thus, the link

between the local and the global speeds should be stated as an

inequality

_�ux �V0l=s:

Hence, to characterize the train of stick–slip waves, we

have four unknowns cp; s; l; _�ux and one inequality.

5.1 Pulse Celerity

As observed in simulations, in most cases the slip front

propagates in the sliding direction (direction of the

imposed shear) at intersonic velocity cp (see Fig. 2 for an

example, and Fig. 4b and Table 1 for the summary).

Thanks to the similarity between propagation of the mode

II crack and the slip front [5, 28, 37, 47], to find the slip

pulse celerity, one may resort to the help of results obtained

for intersonic cracks at the interface between an elastic

solid and a rigid substrate [33]. It was shown that the sign

of the product between vertical displacement at a certain

distance behind the crack tip and the contact pressure ahead

of the crack tip is determined by the sign of ðcp=cs �
ffiffiffi
2

p
Þ.

Since the pressure ahead of the slip pulse is always com-

pressive (negative), the vertical displacement is positive if

Fig. 4 a Intersonic opening waves propagating in the direction of

sliding, which are accompanied with high frictional drop, were

observed for Poisson’s ratios and friction coefficients marked with a

square (double square for cases with inversion of frictional force),

diamonds mark supersonic opening fronts propagating in the opposite

direction, open circles correspond to parameters, for which opening

was not observed, and parameters corresponding to theoretical flutter

instability for slip without opening [34] are located in the wedge zone

bounded by a dash-dotted line. b shows celerities of opening waves

for different combinations of Poisson’s ratios and friction coefficients;

cl, cs as well as the critical value [33]
ffiffiffi
2

p
cs are also plotted. Examples

of slip localization are shown in spatiotemporal maps (black zones

correspond to stick state, colored zones correspond to slipping) (c–f)

for ðm ¼ 0; f ¼ 1:5Þ, ðm ¼ 0:2; f ¼ 1:1Þ, ðm ¼ 0:3; f ¼ 1:1Þ and

ðm ¼ 0:45; f ¼ 1Þ, respectively; the latter combination of parameters

results in supersonic slip and opening pulses propagating in the

direction opposite to sliding
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cp\
ffiffiffi
2

p
cs; thus, propagation at this speed is favorable for

opening. In almost all simulations, in which slip and, in

subsequence, opening fronts propagate in the direction of

sliding, their celerities were found to be confined in the

interval cs\cp\
ffiffiffi
2

p
cs. The slip front celerity weakly

depends on the coefficient of friction, and, in general, the

most energetic pulses are obtained for friction coefficients,

which result in cp �
ffiffiffi
2

p
cs.

In Table 1 slip pulse celerities cp are provided for several

combinations of parameters, which result in opening waves.

Celerity of slip fronts is positive if they propagate in the

direction of sliding, and negative if they propagate in the

opposite one. The data are obtained for E ¼ 1000 Pa, q ¼
1000 kg/m3, and k ¼ 2H; the average celerity is measured

over a time period of 200 s using a threshold in the slip

velocity _ux, and is also verified geometrically. The slip

celerity remains almost constant when a major slip pulse is

localized and does not change when the opening occurs, at

least within the precision of simulations and measurements.

For m ¼ 0 and f ¼ 2, in contrast to all other studied combi-

nations of parameters, the slip front propagates in the sliding

direction at supersonic speed; however, this result does not

contradict the theoretical basis [2]. More generally, it is

usual in nonlinear dynamic systems that for certain combi-

nations of parameters several stable (unstable) solutions

coexist, whose realization depends on initial conditions.

Probably, here we face a similar situation.

5.2 Pulse Period

A relation can be established between cp and the period

length l. Since the slip pulse propagates at intersonic

celerity, it radiates a shear Mach wave which propagates in

the bulk inclined at angle hs ¼ arccosðcs=cpÞ with respect

to the rigid flat. Being reflected from the top surface, the

Mach wave returns to the frictional interface and might

create favorable stress state to initiate or sustain another

pulse. Thus, l ¼ 2H tanðhsÞ ¼ 2H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p=c

2
s � 1

q
, and if

cp �
ffiffiffi
2

p
cs, then l � 2H. This hypothesis was numerically

verified for f ¼ 1:5, m ¼ 0:2 by varying the ratio

k=H ¼ 2; 4; 6, resulting in 1, 2, 3 major slip-opening pul-

ses. The last unknown, slip length s, remains undetermined.

5.3 Summary

Opening waves were observed for certain combinations of

friction coefficients and Poisson’s ratios (Fig. 4). Such

waves are accompanied with frictional drop (but it does not

necessarily lead to inversion of the frictional force). This

result holds for all shear velocities in the considered

interval V0=cs 2 ½10�6; 10�4� (see Fig. 2c). For high Pois-

son’s ratios, within a certain interval of coefficients of

friction, slip and opening pulses propagate at supersonic

celerity cp [ cl in the direction opposite to the sliding; their

supersonic celerity is compatible with theoretical

results [2]. For higher friction coefficients, slip pulses

propagate again in the direction of sliding at intersonic

celerity. Seemingly unrealistic, the supersonic slip propa-

gation does not contradict the causality in the system with

maximal signal speed equal to the longitudinal wave speed

cl. It means simply that the slip advancement is not a result

of the local deformation due to the slip, but due to elastic

waves traveling in the elastic layer; some experimental and

numerical results on supersonic slip can be found in [16,

17, 30]. The time interval of the frictional drop and its

value are not affected by the applied shear velocity V0. The

time step and mesh density affect the slip dynamics only

within the transitional phase as discussed in Sect. 2.1, but

do not alter the formation of major slip pulse and its

transformation into opening wave if the time step is small

enough to resolve accurately the wave dynamics.

6 Conclusion

Experimental verification of the observed phenomena may

be carried out on a setup with rotational symmetry [35],

which would ensure an initial uniform stress state; non-

uniform stress distribution, usual for finite size contacts,

results in triggering frictional slip before the local frictional

Table 1 Slip front celerity in (m/s) for various combinations of

Poisson’s ratios and coefficients of Coulomb friction

Poisson’s ratio, m

f 0. 0.1 0.2 0.3 0.4 0.45 0.49

0.50 �5.250

0.80 �5.253

0.90 �2.506

0.95 �2.523

1.00 �2.523

1.05 0.851 0.825 �2.511 �5.248

1.10 0.861 0.829 0.857

1.15 0.843 0.824 0.880 0.858

1.20 0.861 0.921 0.875 �2.504 �5.085

1.30 0.708

1.40 0.708

1.50 0.982 0.882 0.774 0.679 0.656 �5.399

1.80 0.945 0.831 0.764 0.717

2.00 1.213 0.723 0.666 0.659 0.607

cs 0.707 0.674 0.645 0.620 0.598 0.587 0.579ffiffiffi
2

p
cs 1.000 0.953 0.913 0.877 0.845 0.830 0.819

cl 1.000 1.011 1.054 1.160 1.464 1.948 4.137

In the last three lines, cs;
ffiffiffi
2

p
cs; cl are provided
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limit f is reached on the global scale. Thus, in finite systems

the apparent or global coefficient of static friction f sgl should

be smaller than the local friction f, which is compatible

with experimental observations [9, 10]. In this light, the

behavior of frictional system with a uniform stress distri-

bution resembles the process of supercooling: The slip may

not start before the entire interface reaches the frictional

limit, but when it does, the process is rapid and energetic.

On the contrary, in systems with stress heterogeneities,

easily triggered slip front may propagate along the entire

interface resulting in global sliding [9, 28].

The sliding mechanism discussed in this Letter adds a

new piece to the puzzle of elastodynamic sliding under

Coulomb’s friction law in finite size systems, but the full

picture is still missing especially in the region of high

coefficients of friction and Poisson’s ratios. The prospec-

tive study is planned to focus on the dynamics at longer

time intervals.
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