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Abstract

This thesis deals with the problem of a thin fluid flow in narrow interfaces between
contacting solids subject to a normal loading, which is relevant for a range of tribo-
logical and engineering applications, as well as for geophysical sciences. The treatment
of this problem requires coupling between fluid and solid mechanics, further compli-
cated by contact constraints and potentially complex geometrical features of contacting
surfaces. In this thesis a monolithic finite-element framework for handling frictional
contact, thin incompressible viscous flow and transfer of fluid-induced tractions to the
solid is developed. Additionally, we considered fluid entrapment in “pools” delimited by
contact patches and formulated a novel trapped-fluid element using a non-linear com-
pressible constitutive law. This computational framework makes use of image analysis
algorithms to distinguish between contact, fluid flow and trapped fluid zones. The con-
structed framework is suitable for both one- and two-way coupling approaches. First,
the developed framework was applied to a study of a fluid trapped between a deformable
solid with a wavy surface and a rigid flat. We showed how the contact area and the
global coefficient of friction evolve under increasing external load, depending on fluid
and solid properties and on the slope of the surface profile. Next, we studied a thin
fluid flow between a rigid flat and a deformable solid with a model geometry or random
surface roughness. An approximate analytical solution for the fluid flow across a wavy
contact interface was derived and compared with numerical results. We showed that for
a range of physically relevant parameters, one-way coupling underestimates the interface
permeability and the critical external load needed to seal the interface, compared to the
two-way approach. A refined non-local phenomenological law for macroscopic perme-
ability of rough contact interfaces was proposed. Finally, the developed framework was
used to calculate the evolution of the fluid leakage through a metal-to-sapphire contact
interface using an elasto-plastic material behaviour and real measurements of surface
roughness.

Résumé en français

Cette thèse traite du problème de l’écoulement d’un fluide dans des interfaces étroites
entre des solides en contact sous un chargement normal, ce qui est important pour de
nombreuses applications en tribologie, ingénierie et géophysique. Le traitement de ce
problème nécessite de prévoir un couplage entre la mécanique des fluides et celle des
solides. Les contraintes liées à la présence du contact, ainsi que les caractéristiques spé-
cifiques de la géométrie de surface rajoutent un niveau de complexité significatif. Dans
cette thèse, un solveur monolithique par éléments finis permettant la gestion du contact
frottant, des écoulements visqueux incompressibles et du transfert des efforts induits par
le fluide sur le solide est développé. De plus, la possibilité que le fluide se retrouve piégé
dans des cavités délimitées par des zones de contact est prise en compte par l’élaboration
d’un nouvel élément dit “de fluide piégé”, qui utilise une loi de comportement compress-
ible non linéaire. Le code résultant de cette méthode comprend des algorithmes d’analyse
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d’image permettant de distinguer les zones de contact, d’écoulement de fluide et de fluide
piégé. En outre, le code convient aux approches de couplage uni- et bidirectionnel. Le
cadre développé a été appliqué dans un premier temps à l’étude d’un fluide piégé entre
un solide déformable présentant une surface de contact ondulée et un plan rigide. Pour
un système soumis à une charge externe croissante, nous avons examiné l’évolution de
la surface de contact et du coefficient de frottement global en fonction des propriétés du
fluide et du solide, ainsi que de la pente du profil de surface. Nous avons ensuite étudié
l’écoulement d’un fluide entre un plan rigide et un solide déformable avec une géométrie
modèle ou une surface rugueuse. Nous avons obtenu une solution analytique approchée
qui gouverne le flux de fluide à travers une interface de contact ondulée, et cette dernière
a été comparée à nos résultats numériques. Enfin, nous avons montré pour un intervalle
de paramètres physiquement pertinents, que le couplage unidirectionnel sous-estime, par
rapport à une approche bidirectionnelle, la perméabilité de l’interface ainsi que la charge
externe critique nécessaire à la fermeture de l’interface. Une loi phénoménologique raf-
finée de perméabilité macroscopique des interfaces de contact rugueuses a été proposée.
Enfin, le cadre développé a été utilisé pour calculer l’évolution de la fuite de fluide à
travers une interface de contact métal sur saphir en utilisant un comportement matériau
élasto-plastique et des mesures réelles de la rugosité de surface.
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Chapter 1

Introduction

Résumé de Chapitre 1 “Introduction”

Dans le premier chapitre, nous présentons le sujet principal de cette thèse : l’écoulement
d’une couche mince de fluide dans les interfaces de contact, problème important pour de
nombreuses applications d’ingénierie et de géophysiques. Ce problème, qui est important
pour de nombreuses applications en ingénierie et géophysique, nécessite la résolution d’un
problème couplé entre la mécanique des fluides et des solides. Les contraintes de contact,
ainsi que les caractéristiques déterministes ou rugueuses de la géométrie de surface, ra-
joutent un niveau de complexité significatif. Dans un premier temps, nous proposons une
revue bibliographique de la description des surfaces rugueuses et des modèles analytiques
et numériques de contact. En raison de la rugosité de la surface, le fluide peut se retrou-
ver piégé dans des cavités formées par des zones de contact, offrant ainsi une capacité
de charge supplémentaire et réduisant le frottement entre les surfaces en contact. Nous
proposons une discussion sur les traitements expérimentaux et analytiques existants du
problème de fluide piégé. Nous décrivons ensuite différentes approches d’interaction
fluide-structure (unidirectionnelles et bidirectionnelles, partitionnées et monolithiques)
et mettons en évidence les modèles les plus pertinents pour le problème étudié. Enfin,
nous élaborons le premier objectif de cette thèse qui est le développement d’un schéma
de couplage monolithique bidirectionnel pour le problème à l’étude. Le deuxième objectif
est l’application de ce schéma pour la comparaison des approches de couplage uni- et
bidirectionnelles ainsi qu’à l’étude de l’influence du fluide piégé.

The problem of thin fluid flow in narrow interfaces between contacting or slightly
separated deformable solids appears in numerous contexts from tribological, engineering
and biological applications to geophysical sciences. Rigorous handling of such problems
requires the resolution of a strongly non-linear contact problem, which is further com-
plicated by a multi-field coupling of essentially interrelated fluid and solid mechanics.
Moreover, the free volume1 between contacting surfaces depends on their initial geom-
etry, which can be rather complex, may have deterministic features or, at a certain
magnification, may be considered as randomly rough (self-affine) down to atomistic
scale.

Numerous applications of the problem of thin fluid flow in contact interfaces include
sealing engineering [Müller and Nau, 1998], lubrication in elasto-hydrodynamic and
mixed regimes [Sahlin et al., 2010, Stupkiewicz and Marciniszyn, 2009], functioning of
human joints [Caligaris and Ateshian, 2008]. Such an interaction between fluids and
solids in contact is also relevant for hydraulic fracturing [Bažant et al., 2014], extraction

1By free volume, here, we mean the space between solids available for fluid to occupy.
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12 CHAPTER 1. INTRODUCTION

of shale gas and oil from rocks and at larger scales in landslides [Viesca and Rice,
2012], slip in pressurized faults [Garagash and Germanovich, 2012] and basal sliding of
glaciers [Fischer and Clarke, 1997].

1.1 Contact between rough surfaces

The roughness of contacting surfaces has strong implications in mechanics and physics
of contact [Whitehouse, 2010, Thomas, 1999]. Since the contact between solids occurs
on separate patches corresponding to asperities of surfaces, [Archard, 1953, Archard,
1957, Greenwood and Williamson, 1966, Bowden and Tabor, 2001], the real contact
area is a fraction of the apparent one. The evolution of their ratio under increasing
external load determines essential contact properties such as friction, wear, adhesion,
is responsible for heat transport through contact interfaces, and, moreover, determines
the electric contact resistance. At the same time, the distribution of the free volume
between contacting surfaces governs the fluid transport along the interface and thus is
responsible for leakage/percolation phenomena, see for example [Dapp et al., 2012, Paggi
and He, 2015].

The roughness or more generally the surface morphology may contain deterministic
features (turned surfaces [Pérez-Ràfols et al., 2016], patterned surfaces [Prodanov et al.,
2013, Sahlin et al., 2010]) or be purely random, self-affine [Nayak, 1971] down to atom-
istic scale [Krim and Palasantzas, 1995, Ponson et al., 2006]. Surface morphology may
be affected by surface processing, underlying microstructure and its deformation [Šiška
et al., 2006, Bao-Tong and Laird, 1989], corrosion and oxidation. The resulting surface
geometry can be characterized by numerous parameters and characteristics: standard
deviation of heights and the height gradient, height distribution (in particular, its kur-
tosis and skewness), power spectral density, spectral moments, fractal dimension and
others.

The roughness of many natural and engineering surfaces may be described as a self-
affine two-dimensional manifold with a power spectral density (PSD) which decays as
a power law of the wavenumber [Power and Tullis, 1991]. At the macroscopic scale the
PSD might have a plateau [Majumdar and Bhushan, 1991], while longer wavelengths
determine the shape of contacting surfaces. For mechanical contact problems, since
in most applications only the highest asperities come in contact, an approximation
of the roughness by a number of isolated spherical or elliptic asperities results in a
accurate and helpful model [Archard, 1957, Greenwood and Williamson, 1966, Bush
et al., 1975, Greenwood, 2006], especially in case of a small real contact area.

Analytical models for mechanical contact based on either the notion of asperi-
ties [Greenwood andWilliamson, 1966], combined with the random process model [Nayak,
1971, Greenwood, 2006, Carbone and Bottiglione, 2008], or on the Persson’s model [Pers-
son, 2001, Manners and Greenwood, 2006, Dapp et al., 2014] provide an approximate
solution for the evolution of the contact area with the applied pressure. More rigorous re-
sults can be obtained if local asperity deformation model is complemented by long-range
elastic interactions between asperities as it was done in [Ciavarella et al., 2008, Yastre-
bov et al., 2011, Yastrebov, 2018]. Accurate numerical simulations, free of assumptions
of analytical models, predict an intermediate result for contact area evolution between
the asymptotic linear evolution for asperity based models and Persson’s error-function
solution [Hyun et al., 2004, Putignano et al., 2012, Prodanov et al., 2014, Yastrebov
et al., 2012, Yastrebov et al., 2015, Yastrebov et al., 2017b].



1.2. TRAPPED FLUID IN CONTACT INTERFACE 13

Figure 1.1: Morphology of the contact interface between an elastic half-space with
a rough surface and a rigid flat under increasing external load, numerical simulation
results [Yastrebov et al., 2015]: black is the real contact area, white is the “free” out-of-
contact area and red is the “trapped” out-of-contact area, bounded inside non-simply
connected contact patches.

1.2 Trapped fluid in contact interface

Lubrication, i.e. separation of contacting surfaces by a fluid lubricant, is an efficient
mechanism for friction and wear reduction. However, if the applied external load, push-
ing the contacting bodies together, is high enough or if the sliding velocities are small,
the hydrodynamic pressure developing in the fluid is not sufficient to separate the solids,
and asperities of both surfaces can get in direct contact despite the presence of the lu-
bricant, inevitably increasing friction. This scenario corresponds to the so-called mixed
regime, at which the load-bearing capacity is split between the fluid and the contact
areas. For even higher pressures and lower velocities, the whole load is carried by the
mechanical contacts, this regime is termed as the boundary lubrication, see [Hamrock
et al., 2004, Azushima, 2016] for details. On the other hand, under increasing external
load the lubricating fluid may be trapped in valleys (pools) delimited completely by
the contact zone. Fig. 1.1 shows an example of the morphology of the contact inter-
face between two elastic half-spaces with rough surfaces under external load [Pei et al.,
2005, Carbone and Bottiglione, 2008, Putignano et al., 2012, Yastrebov et al., 2017b].
Note that the fraction of the trapped out-of-contact area (highlighted by red colour),
surrounded by contact patches, is significant.

The entrapment of the fluid in the interface can have a strong effect on the contact
properties, especially if the fluid is highly incompressible [Persson et al., 2012, Matsuda
et al., 2016]. First, the trapped fluid resists the compression, and thus opposes the
growth of the real contact area. Second, the applied external load is shared between
contacting asperities of the bodies and the pressurized fluid, so that the trapped fluid
provides an additional load-carrying capacity (even in absence of relative tangential
motion), reducing the normal pressure in the contact spots between the solid bodies.
If the Coulomb’s law of friction is assumed valid at contact spots, i.e. the maximal
frictional traction is proportional to the normal pressure, then the maximal macroscopic
frictional force (of the whole contact interface) is proportional to the integral value of
the normal pressure over the real contact area. Consequently, by taking into account the
presence of the pressurized trapped fluid, a reduction of the global (apparent) coefficient
of friction should take place.

The effect of lubricant entrapment on reduction of friction was first recognized in the
study of cold metal forming processes [Kudo, 1965, Nellemann et al., 1977], in [Azushima
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and Kudo, 1995] authors performed experiments on the sheet metal drawing test and
identified three states, corresponding to different levels of the external pressure. Low
values of external load are supported completely by the mechanical contact between
asperities, and both global and local coefficients of friction are equal. At medium range
of pressures, the global coefficient of friction decreases with increasing load due to closing
of lubricant pools and generation of hydrostatic pressure in the fluid, which supports a
part of the external load. At even higher load, fluid escapes from the pools and permeates
into the contact zones, so that both the real contact area and the coefficient of friction
decrease with increasing load. This effect is however biased by the fact that the real
contact area does not evolve linearly under high pressures [Archard, 1957], but rather as
a concave function of pressure [Persson, 2001, Yastrebov et al., 2017b], thus also resulting
in formal decrease of the friction coefficient in contact spots. The experimental results
together with finite-element simulations of the problem of entrapment and permeation
of the fluid into the contact interface during upsetting of a cylinder were presented
and aforementioned states were also identified in [Azushima, 2000, Azushima et al.,
2011]. An extensive experimental study of lubricant entrapping and escape in plane
strip drawing processes was presented in [Bech et al., 1999].

The behaviour of trapped fluid accounts for a significant reduction of friction in tire-
road contact [Scaraggi and Persson, 2012]. In biological sciences the effect of trapped
lubricant in human joints was investigated in the view of reduction of friction between
rough cartilage surfaces [Soltz et al., 2003, Chan et al., 2011]. The concept of trapped
fluid rises in the study of fatigue cracks in the rolling contact, which considers the
process of crack growth due to pressurized fluid lubricant, forced inside of the crack by
the external load and trapped there [Bower, 1988]. The trapped fluid problem is also
relevant to the geophysical studies: a landslide or an earthquake can be caused by an
elevation of the pressure of the fluid in the pores inside the rock, see for example [Viesca
and Rice, 2012, Garagash and Germanovich, 2012]. The effect of the trapped fluid is
also of interest for the study of basal sliding of glaciers, [Cuffey and Paterson, 2010]: the
melt water, which is responsible for the lubrication, flows in a linked system of cavities
in the interface between the glacier and the bedrock, and may be trapped there. Finally,
the trapped fluid problem is also of importance, in general, for poromechanics [Yu and
Cheng, 2002, Dormieux et al., 2002, Budiansky and O’connell, 1976, Coussy, 2004].

An important theoretical result highlighting the effect of the trapped fluid on the
contact problem was obtained in [Kuznetsov, 1985]. In this paper, the Westergaard’s
celebrated analytical solution for the problem of contact between a regular wavy surface
and a rigid half-plane [Westergaard, 1939] was extended by taking into account the
presence of a compressible fluid, trapped in the valleys between contacting asperities.
Kuznetsov’s solution demonstrates how the external pressure is divided between the
fluid and the solid contact, which results in the decrease of the global coefficient of
friction under increasing external load. However, due to the assumptions (i) that the
wavy surface behaves as a flat one and that Flamant’s solution [Johnson, 1987] holds
for every surface point, and (ii) that the horizontal component of the fluid pressure is
negligible, Kuznetsov’s solution cannot describe the escape of the lubricant and depletion
of the real contact area. Limitations of Kuznetsov’s solution will be analysed in detail
in this dissertation. Recently an analytical solution was proposed for the problem of
sliding of a rigid periodical punch along a viscoelastic Winkler’s foundation with the
incompressible fluid present in the gap [Goryacheva and Shpenev, 2012].

Despite a significant attention to the problem of the trapped fluid in the contact
interface, a few questions remain open, such as: the mechanism of the trap opening,
the evolution of the real contact area and of the global coefficient of friction during this
process, and also the distribution of the frictional shear tractions in the contact interface
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under external normal loading in the presence of the pressurized fluid in the interface.
Note that these questions cannot be addressed in the framework of the boundary element
method (BEM) based on the Flamant’s solution, since it assumes infinitesimal slopes
of the surface roughness, which is, as we will show, a too restrictive assumption for
the considered problem. We will address these questions in the current study in the
framework of the finite-element method (FEM).

1.3 Fluid-structure interaction approaches

The problem of the thin fluid flow in contact interfaces belongs to a vast domain of
fluid-structure interaction (FSI) problems, which involve deformation and/or motion of
the solids interacting with the internal and/or external fluid. These problems are of very
wide range, spanning from deformation of airplane wings and rotor blades subjected to
the sub- or supersonic air flow [Farhat et al., 2003, Bazilevs et al., 2011] to modelling of
the blood flow [Bazilevs et al., 2006, Gerbeau and Vidrascu, 2003] and heart valves [van
Loon et al., 2006, De Hart et al., 2003], scaling up to suspended bridge instabilities
under wind load [Païdoussis et al., 2010], ship stability [Wackers et al., 2011] or large
iceberg’s capsize in water [Sergeant et al., 2018]. All these problems correspond to
different space and time scales, operating conditions and other requirements, therefore
a unified FSI approach fit for all cases does not exist, and rather different techniques
have been developed for particular problems.

Many problems of fluid-structure interaction, such as aeroelasticity and haemody-
namics, correspond to the case of the high-Reynolds-number flow. Therefore, different
mesh density, and often different time stepping, are required for the solid and fluid
domains. Furthermore, the fluid domain evolves due to motion and deformation of
solids. A number of methods have been used to overcome the associated computational
complexity, such as arbitrary Lagrangian-Eulerian method [Donea et al., 1982, Takashi
and Hughes, 1992], fictitious domain method [Baaijens, 2001, De Hart et al., 2003], im-
mersed boundary method [Peskin, 2002, Mittal and Iaccarino, 2005] and extended finite
element method [Mayer et al., 2010, Gerstenberger and Wall, 2008]. On the contrary,
fluid flow in contacting or slightly separated interfaces is usually of low Reynolds number
and, moreover, the thickness of the fluid film is usually much smaller than other length
scales. In this case general Navier-Stokes equations could be readily simplified down
to the Reynolds equation for the viscous flow [Hamrock et al., 2004]. This simplifica-
tion permits to use compatible meshes for the fluid and the solid domains and, under
assumption of constant pressure through the film thickness, to define the Reynolds equa-
tion on the so-called lubrication surface, so that specific methods discussed above are
not required, see [Stupkiewicz and Marciniszyn, 2009, Stupkiewicz et al., 2016]. This
approach is also used in the current study.

1.3.1 One-way and two-way coupling approaches

From the point of view of the underlying physical processes, FSI strategies can be divided
into one-way and two-way coupling approaches. In the context of thin fluid flow through
contact interfaces, the former implies that the solution of the solid mechanics problem
defines the distribution of the free volume in the interface, which can be occupied by the
fluid flow, however the fluid pressure does not affect the deformation of the solids, i.e.
the fluid problem is solved assuming rigid walls of the solids. In the two-way coupling
this approximation is dropped down, and the fluid-induced traction acting on the surface
of the deformable solid is taken into account.

In elastohydrodynamic lubrication regime, as well as for non-contact seals, two-
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way coupling is often used, see [Stupkiewicz and Marciniszyn, 2009, Stupkiewicz et al.,
2016, Yang and Laursen, 2009]. However, for the important case of contact seals, or
more generally if contact is present in the interface, one-way coupling was rather utilized
in previous studies, see [Dapp et al., 2012, Dapp and Müser, 2016, Pérez-Ràfols et al.,
2016]. It is widely assumed that the deformation of the solids results mainly from
the contact interaction and the fluid pressure effect on the solid is negligible, since the
contact pressure at asperities is considerably higher than the physically relevant fluid
pressure. However, to the best of the author’s knowledge, the range of validity of one-
way coupling for problems involving thin fluid flow in contact interfaces, depending on
the surface geometry, material properties and the fluid pressure, has not been studied
yet.

1.3.2 Partitioned and monolithic implementation approaches

From the implementation point of view two distinct approaches for any FSI problem
exist: partitioned and monolithic. The former is based on two different solvers for the
fluid and solid sub-problems, and in order to take into account the coupling, one- or
two-way data exchange between them must be established. Furthermore, a certain it-
erative process is required to obtain the convergence. The utilization of the partitioned
approach benefits from modularity, since different solvers tailored for the sub-problems
could be used [Küttler and Wall, 2008, Matthies and Steindorf, 2003], however, con-
vergence and stability of such a scheme could raise issues, and special techniques may
become necessary, see, for example [Heil, 1998]. On the contrary, under the monolithic
approach all equations which govern sub-problems and the interaction between them
are rendered into a single system, and upon its solution, degrees of freedom (DOF)
values corresponding to both sub-problems are obtained simultaneously [Hübner et al.,
2004, Michler et al., 2004, Heil, 2004]. The data exchange in this case is not needed,
the stability and convergence are easier to obtain, however, solution of the vast system
of algebraic equations is necessary. Nevertheless, for the problem under discussion this
last issue is not relevant, since the number of unknowns in the interface is considerably
smaller than in the bulk of the solid, if, for example, finite-element discretization is used.

Elastohydrodynamic lubrication problems are often solved under the monolithic ap-
proach [Stupkiewicz et al., 2016, Stupkiewicz and Marciniszyn, 2009, Yang and Laursen,
2009], whilst for the contact sealing problems the partitioned approach is generally pre-
ferred [Pérez-Ràfols et al., 2016]. Moreover, as was already mentioned, the problem
is often solved under the one-way coupling approach and using the assumption of the
infinitesimal slopes of the surface profile and the small deformation formulation. Bound-
ary element method [Pérez-Ràfols et al., 2016] and Green’s function molecular dynam-
ics [Dapp et al., 2012] are frequently used for the mechanical contact problem and the
Reynolds equation is often solved by the finite-differences method.

1.4 Objectives

In accordance with the discussed above, the first objective of this dissertation is to de-
velop a robust computational framework aimed at solving coupled problems involving
fluid flow in contact interfaces. A detailed description of this framework is presented
in Part II of the thesis, while Part III is devoted to the application of the constructed
framework to relevant problems. In particular, we will compare one-way and two-way
coupling approaches for the problem of thin fluid flow in contact interfaces, which rep-
resents the second objective of the dissertation. To make this comparison quantitative,
we will use an integral parameter of the interface, e.g. the effective transmissivity, and
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study its dependence on the material properties and fluid pressure. In addition, we will
discuss the effect of the trapped fluid on the contact problem: investigate the possibility
for fluid to escape the trap. The study of the evolution of the contact area and of the
global coefficient of friction under increasing external loading, depending on the material
properties of the solid and of the fluid, and also on the slope of the surface profile, is
also of interest.

We note that the two-way coupling of the mechanical contact and fluid flow sub-
problems could require rather frequent and considerable data exchange in case of parti-
tioned approach. Moreover, if a significant number of trapped fluid pools appear in the
interface (which is possible, for example, in case of contact between rough surfaces or
deterministic surfaces with dimples), then a resolution under the partitioned approach
becomes even more complicated, since the history tracking of trapped zones is needed.
The monolithic approach appears beneficial for our purposes and, therefore, will be ap-
plied throughout this study. Furthermore, we will use the finite-element method in order
to make possible application of the proposed framework for different surface geometries
(e.g. with finite slopes of the profile), under larger deformation formulation and with
different material models of the solid (e.g. elastoplastic, viscoelastic, etc).
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Chapter 2

Governing equations

Résumé de Chapitre 2 “Les équations gouvernant”
Dans le deuxième chapitre, nous examinons l’énoncé de la forme forte du problème
couplé du flux de fluide dans les interfaces de contact, sous l’hypothèse de couches
minces. Premièrement, le problème de mécanique du solide est formulé en consid-
érant séparément les contraintes de contact unilatérales et le frottement. Ensuite, le
problème de mécanique des fluides est exposé : la dérivation des équations de Navier-
Stokes est analysée et nous dérivons aussi leur forme simplifiée par rapport à l’équation
de Reynolds pour l’écoulement de couches minces de fluide. De plus, nous présentons
les équations régissant le comportement d’un fluide soumis à une pression hydrosta-
tique, équations pertinentes pour le piégeage du fluide dans l’interface de contact. Enfin,
nous regroupons toutes ces équations et discutons la partition de l’interface en zones de
contact, d’écoulement de fluide et de fluide piégé, ainsi que les détails de l’énoncé du
problème couplé.

In this chapter we discuss the general statement of the coupled problem of the thin
fluid flow in contact interfaces. First, we provide the formulation of the continuum
solid mechanics problem, considering separately contact constraints, and then proceed
to the statement of the continuum fluid mechanics problem with the emphasis on the
thin film flow case. Additionally, we present equations governing the hydrostatically
pressurized fluid, relevant if the fluid entrapment in the contact interface is taken into
account. Finally, we group together all aforementioned equations and discuss details of
the coupled problem statement.

2.1 Continuum solid mechanics
We introduce here briefly basic concepts of solid mechanics, which are necessary for
subsequent discussions. More details of theoretical formulations may be found in various
textbooks, for example, in [Muskhelishvili, 2013, Lurie and Belyaev, 2005, Lurie, 2012,
Besson et al., 2009, Ibrahimbegovic, 2009].

Let us choose an orthogonal coordinate system with unit vectors ex, ey, ez. Each
point of the solid in the reference configuration Ω0, which usually corresponds to the
initial (undeformed) state, is defined by a vector X = [X,Y, Z]ᵀ, hereinafter we denote
by (·)ᵀ the transpose operator. Components of X are also often termed as the material
coordinates. The position of the same point in the current (deformed) configuration Ω
is given by a vector x = [x, y, z]ᵀ. The displacement vector u = [u, v, w]ᵀ of each point
is calculated as:

u = x−X, (2.1)

19
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Figure 2.1: Reference (initial) configuration X ∈ Ω0 and current (deformed) configura-
tion x ∈ Ω of the deformable solid; u = x−X is the displacement vector field.

i.e., in other words, u is a vector field which describes the transformation of the solid
from configuration Ω0 to Ω, see Fig. 2.1.

2.1.1 Strain and stress tensors

In order to describe the deformation process locally, we introduce the deformation gra-
dient tensor F as

F = ∂x

∂X
, (2.2)

determinant J = detF > 0 of which is called the Jacobian and must be positive to
avoid self-penetration of points of the solid. Substituting (2.1) into (2.2) we may write:

F = I + ∇̃u, (2.3)

where I is the unit tensor and ∇̃(·) is the gradient of the vector field with respect to
the reference coordinates X.

In order to evaluate how a displacement of a point differs from a rigid body motion,
strain tensors are introduced. For example, the Cauchy-Green strain tensor C is defined
in the reference configuration as:

C = F ᵀ · F . (2.4)

However, since in the initial state ∇̃u = 0, and, accordingly, C = I, it is often more
convenient to use the Green-Lagrange strain tensor E, which vanishes in the undeformed
configuration:

E = 1
2 (C − I) = 1

2
[
∇̃u+

(
∇̃u

)ᵀ
+
(
∇̃u

)ᵀ
· ∇̃u

]
. (2.5)

In the index notation tensor E may be written as:

Eij = 1
2

(
∂ui
∂Xj

+ ∂uj
∂Xi

+ ∂uk
∂Xi

∂uk
∂Xj

)
, (2.6)

where ui and Xi (i = 1, 2, 3) are corresponding components of the vectors u and X,
respectively, and summation over repeating indices is assumed.
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Figure 2.2: Normal σnn and tangential σt components of the traction vector σ(n),
corresponding to a normal n.

Furthermore, in the current (deformed) configuration the Almansi strain tensor e is
defined as:

e = 1
2
[
I − F−T · F−1

]
= 1

2 [∇u+ (∇u)ᵀ − (∇u)ᵀ · ∇u] , (2.7)

where ∇(·) is the gradient of the vector field with respect to the actual coordinates x,
or, in the index notation,

eij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi
− ∂uk
∂xi

∂uk
∂xj

)
. (2.8)

Note that tensor e is connected to the Green-Lagrange tensor E via transformation

E = F ᵀ · e · F . (2.9)

It is also important to note that in the infinitesimal strain theory (which will be
used in certain parts of this dissertation), the displacement gradient is assumed small
compared to unity, i.e. ‖∇u‖ � 1. Therefore, nonlinear (second-order) terms of strain
tensors may be neglected, and both Green-Lagrange tensor E and Almansi tensor e can
be linearised down to the so-called small (infinitesimal) strain tensor ε:

Eij ≈ eij ≈ εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
. (2.10)

The infinitesimal strain theory therefore does not differentiate between reference and
current configurations.

The stress state in the solid can also be described in both considered configurations:
in the current by the Cauchy stress tensor σ and in the reference configuration by the
first Piola-Kirchhoff stress tensor P , which are connected via a transformation:

P = Jσ · F−ᵀ. (2.11)

According to Cauchy’s fundamental theorem, the traction (stress) vector σ(n) in any
point of the body is computed with respect to a normal n to an arbitrary plane passing
through that point as:

σ(n) = n · σ. (2.12)
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For a point located on the surface of the solid, if n is the outward normal at this point,
Eq. (2.12) yields the surface traction vector.

Furthermore, it is often convenient to consider separately normal and tangential
(shear) components of the traction vector, see Fig. 2.2. The normal traction σn is
defined as the following dot product:

σn = σ(n) · n = n · σ · n, (2.13)

while the tangential component σt is described by a vector lying in a plane orthogonal
to the normal n:

σt = (I − n⊗ n) · σ(n) = σ(n) − σnn, (2.14)

where ⊗ is the tensor product. Equivalently, the tangential traction vector can be
described by a pair of coordinates {σ(1)

t , σ
(2)
t } in the local coordinate system {τ 1, τ 2},

associated with the plane orthogonal to the normal vector n:

σt = σ
(1)
t τ 1 + σ

(2)
t τ 2. (2.15)

It is important to note, that the resolution of the contact problem, which is in
the center of discussion of this thesis, includes finding the actual contact zone on the
surface of the solid and the distribution of contact tractions in this zone. Therefore,
the description of the contact problem in the deformed state appears preferable, and,
where appropriate, we will consider stress and strain tensors associated with the current
configuration.

2.1.2 Boundary value problem

The general statement of the boundary value problem, studied in solid mechanics, reads:
∇ · σ + fv = 0 in Ω (2.16a)
σ(n) = σ0 on Γσ (2.16b)
u = u0 on Γu, (2.16c)

where (2.16a) is the static local balance of momentum equation, fv is the vector density
of volume forces, (2.16b) are the Neumann boundary conditions with a prescribed surface
traction σ0, defined at the part of the solid’s surface Γσ ⊂ ∂Ω, and (2.16c) are the
Dirichlet boundary conditions with a prescribed displacement u0, defined on Γu ⊂ ∂Ω,
see also Fig. 2.1. Note that the balance of angular momentum is assumed in this problem,
which dictates the symmetry of the Cauchy stress tensor, i.e. σᵀ = σ.

Note also that the problem statement (2.16) must be complemented by a relevant
constitutive law, which defines the relation between stress and strain tensors. For ex-
ample, in case of linear isotropic elastic solid, this relation is provided by the Hooke’s
law:

σ = λ trace(ε)I + 2µε, (2.17)

where λ and µ are the Lamé constants (elastic moduli). However, a physically realistic
material behaviour can be much more complex, described by nonlinear hyper-elastic,
plastic, viscous constitutive laws, or by a certain combination of those. At the same
time, the coupled framework, formulated in this thesis, concerns processes occurring
in contact interfaces and permits arbitrary constitutive laws for the underlying solids.
Therefore, details of more complex material behaviour laws are not essential for the
developed framework and are not discussed here, while the interested reader is referred
to [Besson et al., 2009, Wriggers, 2008, Ibrahimbegovic, 2009].
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2.2 Contact mechanics
Throughout this dissertation we consider the problem of the unilateral contact between
a deformable solid and a rigid flat. This set-up is chosen to simplify the formulation of
the contact problem and to concentrate the discussion on the handling of the fluid/solid
coupling. Moreover, under linear isotropic elasticity and infinitesimal strain assumptions
this set-up is equivalent to the case of contact between two deformable bodies (if the
“single” solid has an effective surface geometry and elastic modulus, which take into
account geometric features and elastic properties of the two solids, respectively), see,
for example, [Barber, 2003]. However, this equivalence does not hold in the general case
of inelastic material response, frictional contact and/or large deformations formulation.
Nevertheless, the numerical framework, developed here for the case of unilateral contact,
can be extended to handle the problem of contact between two deformable solids with
arbitrary surface geometries. At the same time, the problem statement with one of the
contacting solids being rigid is also relevant, when the elasticity modulus of this solid
is sufficiently higher than that of the other body. This is the case, for example, in tire-
road contact, see [Scaraggi and Persson, 2012], and in rubber sealing applications, see
[Persson and Yang, 2008].

2.2.1 Hertz-Signorini-Moreau conditions

Let us consider first frictionless non-adhesive contact between a deformable solid Ω and
a rigid flat; the latter can be defined by a normal ν and any point c belonging to the
plane, see Fig 2.3. In this case the contact is unilateral, i.e. the motion of the solid is
restricted to the half-space on one side from the plane. To formalize this constraint, we
introduce a scalar function gn, termed as the normal gap:

gn(x) = (x− c) · ν, (2.18)

which represents a signed distance from a point x on the surface of the deformable body
to the rigid plane:

• gn > 0, when the point is separated from the plane (i.e. is not in contact)

• gn < 0, when the point penetrates the plane (which is not admissible),

• gn = 0, when the point is on the plane (i.e. is in contact).

Since the position of the rigid flat is fixed in this problem set-up, the normal gap depends
only on the current coordinate x and can be evaluated using any point c belonging to
the plane.

Let us denote by Γ ⊂ ∂Ω a part of the surface of the solid which may come in contact
with the rigid flat for a given external loading process, i.e. the potential contact zone.
While by definition of the gap function gn ≥ 0 on Γ, we introduce also Γc ⊂ Γ, termed
as the active contact zone and defined as the part of the surface, which is currently in
contact with the rigid flat, i.e. gn = 0 on Γc. Consequently, we may write that gn > 0
on Γ \ Γc.

The constraint on the normal gap gn ≥ 0 on Γ can be stated in another way, which
will be important for subsequent derivations. Remembering that x = X + u, we may
write:

gn = (x− c) · ν = (X − c) · ν + u · ν = gn0 + u · ν ≥ 0 ⇐⇒ u · ν ≥ −gn0, (2.19)

where gn0 = (X − c)·ν is the initial normal gap, observed in the reference configuration.
Note also that on the active contact zone Γc the normal to the surface of the deformable
body is n = −ν, and, therefore, u · n = −u · ν = gn0 holds on Γc.
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Figure 2.3: Unilateral contact between a deformable solid and a rigid flat: Γ is the
potential contact zone, and Γc ⊂ Γ is the active contact zone.

At the same time, we may consider how the contact interaction affects the traction
vector σ(n) on the surface of the solid. First, friction is neglected, and therefore the
tangential component of the traction vector is zero on the potential contact zone, i.e.
σt = 0 on Γ. Secondly, since only non-adhesive contact is considered, the normal
traction component is non-positive, i.e. σn ≤ 0 on Γ. Furthermore, due to the nature
of the contact interaction, the active contact zone is compressed: σn < 0 on Γc, while
the non-contact part of the surface is free of traction: σn = 0 on Γ \Γc. Note that often
the absolute value of the normal traction component is termed as the contact pressure:
pc = |σn|. For brevity, and to follow terminology of other studies, we will also use this
term for σn, bearing in mind the difference in sign.

Constraints on the normal gap and on the normal traction, resulting from the contact
interaction, may be combined together to form the following set of conditions:

gn ≥ 0, σn ≤ 0, σn gn = 0 on Γ, (2.20)

or, using the introduced notations of potential Γ and active Γc contact zones:{
gn = 0, σn < 0 on Γc

gn > 0, σn = 0 on Γ \ Γc,
(2.21)

with a special case of gn = 0 and σn = 0 corresponding to ∂Γc, i.e. to the boundary of the
active contact zone. Constraints (2.21) are known as Hertz-Signorini-Moreau conditions,
or, from the point of view of the optimization theory, may be termed as Karush-Kuhn-
Tucker conditions, see also [Kikuchi and Oden, 1988, Wriggers, 2006, Yastrebov, 2013].
Therefore, the conditions (2.20) together with the non-friction condition (σt = 0 on Γ),
complement the general problem statement (2.16).

2.2.2 Frictional constraints

Now let us consider the same unilateral contact problem, as in Section 2.2.1, but with
the interfacial friction taken into account. In this case, when the solid comes into contact
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with the rigid immobile flat, the traction vector arising in the active contact zone has
not only the normal component σn, but also the tangential one σt 6= 0, which is caused
by the frictional interaction, see Fig. 2.4.

In general, the frictional traction may be a function of multiple parameters:

σt = σt(σn, σ̇n, ġt, t, . . .), (2.22)

where σ̇n is the rate of the contact pressure, ġt is the tangential sliding velocity of a point
on the solid’s surface with respect to the rigid flat, t is time. However, in this dissertation
we will limit the consideration to the classical non-associated Coulomb’s friction law.
For a discussion of non-classical frictional models and their implementation in the finite-
element framework the reader is referred to [Johnson, 1987, Wriggers, 2006] and also
to [Mróz and Stupkiewicz, 1994, Stupkiewicz and Mróz, 1999, Stupkiewicz, 2001].

xs xc

σt

Γσ Γu

Γσ Γu

σn

σt

σn

gt

(a)

(b)

C

C

ex

ez

ex

ez

xc= xs

Figure 2.4: Unilateral frictional contact: (a) material point C is in the stick state, and
xs is the position it adheres to; (b) point C is in the slip state, and gt is the tangential
slip with respect to the stick position xs.

According to the classical Coulomb’s law of friction, the shear resistance of the
contact interface depends on the contact pressure, and the direction of frictional traction
is opposite to the sliding direction:

σt = σt(σn, s), (2.23)

where s is a unit vector, which describes the direction of sliding:

s =


ġt
‖ġt‖

, ‖ġt‖ > 0

0, ‖ġt‖ = 0.
(2.24)
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Let us consider an arbitrary point C on the surface of the solid, defined by material
coordinates Xc in the reference configuration. Let us assume that this point belongs to
the active contact zone, then it can be present in one of the two states: stick or slip.

In the stick state, see Fig. 2.4(a), the point C adheres to the so-called stick position,
i.e. its current coordinates xc remain equal to xs, which are the coordinates that this
point occupied once it came into the stick state. The point stays in stick while the
norm of the frictional traction vector is less than (or equal to) a certain critical value,
proportional to the contact pressure at the same point:

‖ġt‖ = 0, ‖σt‖ ≤ µ |σn| , (2.25)

where µ is the coefficient of proportionality, termed as the coefficient of friction (CoF).
Once the frictional traction reaches the critical value, the point starts sliding, which

corresponds to the slip state, Fig. 2.4(b). In this state, the direction of the frictional
traction is opposite to the one of the relative sliding velocity of the point C with respect
to the rigid flat, and the norm of σt equals exactly to the aforementioned critical value:

σt = −µ |σn| s. (2.26)

Therefore, in addition to the Hertz-Signorini-Moreau conditions (2.20), taking the
classical Coulomb’s friction into account results in the following frictional constraints,
which correspond to the two possible active contact states:

• Stick: ‖ġt‖ = 0, ‖σt‖ ≤ µ |σn|,

• Slip: ‖ġt‖ > 0,σt = −µ |σn| s.

Frictional constraints can be also viewed as a combination of a slip rule, a frictional
criterion and a complementarity condition, respectively:

ġt = ‖ġt‖
σt
‖σt‖

, ‖σt‖ ≤ µ |σn| , ‖ġt‖ (‖σt‖ − µ |σn|) = 0, (2.27)

see [Alart and Curnier, 1991].

2.3 Continuum fluid mechanics
Here we will outline briefly the derivation of Navier-Stokes equations, which define the
mechanics of a viscous fluid in the general case, and then discuss their simplification
down to the Reynolds equation for the thin film flow. For more details an interested
reader is referred, for example, to the textbook [Hamrock et al., 2004], notations of
which will be used here.

2.3.1 Derivation of Navier-Stokes equations

Let us consider the fluid flow between two solid surfaces, which may have macroscopic
velocitiesU1 andU2, respectively, and study the stress state of a fluid element (particle),
see Fig. 2.5. Note that the zero slip conditions at the fluid-solid interface are assumed.
Due to the effect of the viscosity, stresses in fluid increase with the deformation rate. In
case of the Newtonian fluid this relationship is linear:

τij = η

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
, (2.28)

where τij are shear stresses (components of the stress tensor σ, s.t. i 6= j), η
[
N · s/m2]

is the coefficient of proportionality, which is termed as the absolute viscosity, and Ui
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(i = 1, 2, 3) is a component of the velocity vector U = [U, V,W ]ᵀ. Since U = u̇, where
u is the displacement vector, introduced in (2.1), terms in parenthesis in (2.28) describe
the shear strain rate and can be seen as a measure of the distortion of the fluid element.
Note that, similarly to the solid mechanics case, the balance of angular momentum
requires the symmetry of the stress tensor, i.e. τij = τji.

Furthermore, we introduce the hydrostatic pressure p in the fluid as the average of
the normal stresses:

p = −1
3 (σx + σy + σz) , (2.29)

where we used a simplified notation: σx = σ11, σy = σ22 and σz = σ33, i.e. the term
in brackets is equal to the trace of the stress tensor σ. Note that the minus sign was
used since hydrostatic pressure is always compressive, while positive normal stresses
correspond to a tensile loading.

Due to the similarity in description of solid and fluid mechanics, we may write normal
stresses, according to the constitutive relationship (2.17), as:

σi = λ (∇ ·U) + 2η∂Ui
∂xi

, (2.30)

where λ and η play the roles of the two Lamé parameters, λ being the second viscosity
coefficient, and ∇ ·U is the divergence of the velocity vector, sometimes termed as the
dilatation. By summing up expressions for the three normal stresses σi and using the
introduced above hydrostatic pressure p, we arrive at the following equality:

p = −
(
λ+ 2

3η
)
∇ ·U , (2.31)

which permits us to exclude the second viscosity coefficient λ and write the normal
stresses finally as:

σi = −p− 2
3η∇ ·U + 2η∂Ui

∂xi
. (2.32)

For the subsequent derivation it is important to introduce the total derivative of the
fluid velocity vector U = [U, V,W ]ᵀ, which is considered as a function of the spatial
coordinates and time:

U = U(x, y, z, t). (2.33)
Therefore, the total time derivative of the first component of the velocity vector reads:

DU

Dt
= ∂U

∂t
+ ∂U

∂x

∂x

∂t
+ ∂U

∂y

∂y

∂t
+ ∂U

∂z

∂z

∂t
, (2.34)

U2

U1 σx

σz

τzx τxz

Ux

Uz

z

x
Figure 2.5: Laminar fluid flow between two surface with macroscopic velocities U1 and
U2. Note that the fluid velocity and stress components corresponding to the y-direction
are not shown to avoid overcrowding.
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while derivatives of two remaining components are obtained by replacing U with V and
W , respectively. Since x = X + u, where X is the position in the fixed reference
configuration, we may write that ẋ = u̇ = U, ẏ = v̇ = V, ż = ẇ = W and arrive at the
following expressions: 

DU

Dt
= ∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+W

∂U

∂z
, (2.35a)

DV

Dt
= ∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+W

∂V

∂z
, (2.35b)

DW

Dt
= ∂W

∂t
+ U

∂W

∂x
+ V

∂W

∂y
+W

∂W

∂z
. (2.35c)

Therefore, the total derivative describes the change of velocity of a fluid element as it
moves in space, while the first term in the right hand side of each equation in (2.35) is
termed as the local derivative and shows the variation of the velocity at a fixed point
during time.

Finally, we write down the equations of the dynamic equilibrium, cf. (2.16):

ρ
DU

Dt
= ∇ · σ + fv, (2.36)

where ρ is the fluid density, fv is the vector density of the volume forces, while ρ (DU/Dt)
is the vector density of the inertia forces. Substituting the introduced above expressions
for the stress components (2.28) and (2.32), we arrive at Navier-Stokes equations:

ρ
DU

Dt
= −∇p+ 1

3∇ (η∇ ·U) +∇ · (η∇U) + fv, (2.37)

where ∇U is the gradient of the vector field U . Note that the terms proportional to the
fluid viscosity η are called the viscous forces. Note also that the system (2.37) consists of
three equation for four unknowns: three components of the velocity vector U, V,W and
the hydrostatic pressure p. The required fourth equation is provided by the principle of
mass conservation, and is termed as the continuity equation, see Section 2.3.2.

2.3.2 Continuity equation

First, we introduce the mass flux vector qm as the mass of fluid flowing per unit time
through a unit area:

qm = ρU , (2.38)

where ρ is the fluid density and U is the velocity vector.

∂S

n
qmV

Figure 2.6: Outflow of fluid from a volume V, bounded by a surface S: n is the outer
normal to a surface element ∂S and qm is the mass flux vector.
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The principle of mass conservation states, that the outflow of mass from a volume
equals to the decrease of mass in this volume. It results in the integral form of continuity
equation:

dm

dt
+
∫∫
S

(qm · n) dS = 0, (2.39)

wherem is the mass of fluid inside the volume V , surface S is the boundary of the volume
V , and n is the outer normal to this surface, see Fig. 2.6. Applying the divergence
theorem: ∫∫

S

(qm · n) dS =
∫∫∫
V

(∇ · qm) dV, (2.40)

and considering mass as the volume integral of the fluid density:

m =
∫∫∫
V

ρ dV, (2.41)

we arrive at the differential (local) form of the continuity equation:

∂ρ

∂t
+∇ · (ρU) = 0. (2.42)

If the fluid is considered incompressible, i.e. the density ρ is constant, the continuity
equation reduced to a simpler form:

∇ ·U = 0, (2.43)

which states that the divergence of the velocity field is zero in every point of the flow.

2.3.3 Reynolds equation

The Reynolds equation is a simplified case of the general Navier-Stokes equations (2.37),
valid for thin fluid films, which are studied in the theory of lubrication [Hamrock et al.,
2004]. This simplification is obtained under following assumptions:

(i) the flow is laminar;

(ii) viscous shear forces dominate over inertia forces;

(iii) fluid volume forces are negligible;

(iv) fluid film thickness is small, relative to other lateral dimensions.

Although not explicitly used in the subsequent derivation, an additional assumption of
sufficiently small slopes of solid’s surfaces, bounding the fluid film, is required in certain
applications. Omitting this assumptions results in inconsistencies between predictions
of the Reynolds equation and solutions of full Navier-Stokes equations, for example, in
the problem of the fluid flow through fractures, see [Brown et al., 1995].

We will start the derivation of the Reynolds equation, introducing the following
dimensionless variables and parameters, see also Fig. 2.7:

x̄ = x

l0
, ȳ = y

b0
, z̄ = z

h0
, t̄ = t

t0
,

Ū = U

U0
, V̄ = V

V0
, W̄ = W

W0
, (2.44)

ρ̄ = ρ

ρ0
, η̄ = η

η0
, P = h2

0
η0U0l0

p,
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where l0, b0 and h0 are the characteristic lengths of the fluid channel in x, y and z
directions, respectively, l0/b0 ∼ 1, t0 is time scale, U0, V0 and W0 are the characteristic
velocity components in the three directions, ρ0 and η0 are the relevant scales for the
density and the viscosity, respectively. The assumption (iv) of the thin flow requires,
therefore, that h0/l0 � 1 and h0/b0 � 1.

Using the introduced scales, we may consider the Reynolds number R, which is a
quantity describing the ratio between the inertia and the viscous forces:

R = ρ0U0l0
η0

. (2.45)

However, in the fluid film lubrication theory, due to the difference between the scale for
the channel thickness h0 and scales for other lateral dimensions (l0 and b0), the modified
Reynolds number is defined for each of three spatial directions, see also [Hamrock et al.,
2004]:

Rx = ρ0U0h
2
0

η0l0
, Ry = ρ0V0h

2
0

η0b0
, Rz = ρ0W0h0

η0
. (2.46)

Note that the first two modified Reynolds numbers Rx and Ry are of order h0/l0, and
so is the third one (Rz), since, in accordance with the assumption (iv), we may consider
the ratio W0/U0 to be of the same order as h0/l0. Therefore, the assumption of the
thin flow (iv) also implies that the viscous forces dominate over the inertia, i.e. the
assumption (ii).

Substituting expressions (2.44) into the Navier-Stokes equations (2.37) and neglect-
ing terms of order h0/l0, h0/b0 and smaller, we obtain the following equations for the
dimensional variables: 

∂p

∂x
= ∂

∂z

(
η
∂U

∂z

)
(2.47a)

∂p

∂y
= ∂

∂z

(
η
∂V

∂z

)
(2.47b)

∂p

∂z
= 0, (2.47c)

where inertia and volume forces are not present. Moreover, the last equation (2.47c)
immediately states that the fluid pressure is constant across the thickness of the film
and is a function of the x and y coordinates only: p = p(x, y).

U2

U1z

x

Ux
Uz

~h0

l0

Figure 2.7: Fluid flow in a thin channel between two solids: h0 is the characteristic
thickness of the fluid film, and l0 is the scale of the lateral extent of the channel in
the x-direction. Note that the scales corresponding to the y-direction are not shown to
avoid overcrowding.
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U2

U1

z

x

h(x,y)

Figure 2.8: Fluid flow in a thin channel between two solids: one of the two surfaces is
flat and aligned with the plane z = 0, while the other surface is given by an equation
z = h(x, y), where h determines the film thickness.

Without adding any assumptions to what was outlined above, we may consider for
simplicity that the surface of the one of the solids forming the channel is flat and aligned
with the plane z = 0, while another surface is given by an equation z = h(x, y), where
h represents the film thickness, see Fig. 2.8. If, under the assumption (iv), we consider
the constant viscosity in the z-direction, then equations (2.47a) and (2.47b) can be
integrated twice along the film thickness, providing velocity components as:

U = ∂p

∂x

z2 − zh
2η + U1

(
1− z

h

)
+ U2

z

h
, (2.48a)

V = ∂p

∂y

z2 − zh
2η︸ ︷︷ ︸

Poiseuille term

+V1

(
1− z

h

)
+ V2

z

h︸ ︷︷ ︸
Couette term

(2.48b)

where the following boundary values for velocity components were used:

z = 0 : U = U1, V = V1; (2.49a)
z = h : U = U2, V = V2. (2.49b)

Therefore, the fluid velocity profile along the film thickness is parabolic. Note that in
the expressions of velocity components U and V the Poiseuille and the Couette terms
were outlined: the former corresponds to the pressure-driven flow between immobile
walls, while the latter describes the shear-driven flow, which is solely due to the relative
motion of solid walls, see Fig. 2.9.

It is important to note here, that using the obtained expressions for the fluid veloc-
ity (2.48), we may write down the viscous shear stresses acting on the solid surfaces, for
example, at z = 0:

τzx|z=0 =
(
η
∂U

∂z

)∣∣∣∣
z=0

= −h2
∂p

∂x
− η (U1 − U2)

h
, (2.50a)

τzy|z=0 =
(
η
∂V

∂z

)∣∣∣∣
z=0

= −h2
∂p

∂y
− η (V1 − V2)

h
, (2.50b)

which will be used below.
Since the fluid pressure does not depend on the z-coordinate, both equations (2.47a)

and (2.47b) can be considered on the so-called lubrication surface, which we will denote
by Γf. This can be one of the surfaces of the two solids, or an intermediate surface
between them, see [Stupkiewicz et al., 2016] for more details. For the present case it
is natural to consider the plane z = 0 as the lubrication surface. Thus, for each point
(x, y) on the plane z = 0 we compute the volumetric fluid flux, integrated over the film
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Figure 2.9: Velocity profiles for: (a) Poiseuille pressure-driven flow between immobile
walls; (b) Couette shear-driven flow due to the relative motion of the walls; (c) Combi-
nation of the Poiseuille and the Couette flow.

thickness, in the x and y directions as:

qx =
h∫

0

U dz = − h3

12η
∂p

∂x
+ U1 + U2

2 h, (2.51a)

qy =
h∫

0

V dz = − h3

12η
∂p

∂y
+ V1 + V2

2 h. (2.51b)

In the following, for brevity, we will term the in-plane vector q with components qx and
qy simply as the fluid flux vector.

Now, we integrate also the local form of the continuity equation (2.42) across the
film thickness:

h∫
0

[
∂ρ

∂t
+ ∂

∂x
(ρU) + ∂

∂y
(ρV ) + ∂

∂z
(ρW )

]
dz = 0. (2.52)

Considering also the constant density ρ across the fluid film, and using the Leibniz rule
for differentiation under the integral sign, we find that:

h∫
0

∂

∂x
(ρU) dz = ∂

∂x

 h∫
0

ρU dz

− (ρU)|z=h
∂h

∂x
= ∂

∂x
(ρqx)− ρU2

∂h

∂x
, (2.53)

where the definition of the fluid flux component qx (2.51a) was used. Similarly for the
y-component:

h∫
0

∂

∂y
(ρV ) dz = ∂

∂y
(ρqy)− ρV2

∂h

∂y
, (2.54)
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while the z-component may be integrated directly to give:
h∫

0

∂

∂z
(ρW ) dz = ρ (W2 −W1) , (2.55)

where W1 and W2 are z-components of the velocity vector at z = 0 and z = h, respec-
tively. Finally, substituting expressions (2.53)-(2.55) into integrated continuity equa-
tion (2.52), and using formulas (2.51a) and (2.51b), we arrive at the general form of the
Reynolds equation:

h
∂ρ

∂t
− ∂

∂x

(
ρh3

12η
∂p

∂x

)
− ∂

∂y

(
ρh3

12η
∂p

∂y

)
+ (U1 + U2)

2
∂(ρh)
∂x

+ (V1 + V2)
2

∂(ρh)
∂y

− ρU2
∂h

∂x
− ρV2

∂h

∂y
+ ρ (W2 −W1) = 0. (2.56)

The Reynolds equation permits a number of reduced forms. If we limit the study
to only tangential relative motion of solid surfaces, then W1 = 0, while the velocity
z-component at z = h can be expressed as W2 = U2 ∂h/∂x+ V2 ∂h/∂y, and, therefore,
three last terms in (2.56) vanish. If fluid is assumed incompressible, i.e. the fluid density
ρ is constant, then the Reynolds equation takes the form:

∂

∂x

(
h3

η

∂p

∂x

)
+ ∂

∂y

(
h3

η

∂p

∂y

)
= 12Ũ ∂h

∂x
+ 12Ṽ ∂h

∂y
, (2.57)

where Ũ = (U1 + U2) /2 and Ṽ = (V1 + V2) /2. If, additionally, the fluid is isoviscous,
i.e. the viscosity η is constant, the Reynolds equation is:

∂

∂x

(
h3 ∂p

∂x

)
+ ∂

∂y

(
h3 ∂p

∂y

)
= 12ηŨ ∂h

∂x
+ 12ηṼ ∂h

∂y
, (2.58)

Finally, if, in addition to aforementioned assumptions, solids are motionless, the Reynolds
equation is reduced to the following form:

∇ ·
(
h3∇p

)
= 0, (2.59)

which will be used throughout this dissertation. Accordingly, in this latter case the fluid
flux vector, defined in (2.51), reads:

q = − h3

12η∇p, (2.60)

where ∇(·) := ∂(·)/∂x ex + ∂(·)/∂y ey.

2.3.4 Boundary conditions for the Reynolds equation

The Reynolds equation in the general form (2.56), as well as in any of the reduced
forms (2.57)-(2.59), is defined on the lubrication surface Γf. In order to complete the
statement of a boundary value problem for the thin fluid flow, this equation has to be
considered together with a relevant set of boundary conditions, such as:{

p = p0 on γp (2.61a)
q ·m = q0 on γq, (2.61b)

where (2.61a) are Dirichlet boundary conditions with a prescribed fluid pressure p0 and
(2.61b) are Neumann boundary conditions with a prescribed fluid flux q0, defined on
curves γp ⊂ ∂Γf and γq ⊂ ∂Γf, respectively, and m is an outward normal to Γf, see
Fig. 2.10. Note that γp ∪ γq = ∂Γf and γp ∩ γq = ∅.
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x
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Figure 2.10: Sketch for the boundary value problem statement for the thin fluid flow.

2.4 Hydrostatic fluid models

As was mentioned in the first chapter, one of the objectives of this study is to take into
account the possibility of fluid entrapment in the contact interface. Therefore, we will
consider here the behaviour of a hydrostatically pressurized fluid trapped in a domain
completely bounded by the solid’s surface. Since the fluid pressure is assumed uniform in
the whole volume of a trapped pool, the Reynolds equations for the fluid flow, derived in
the previous section, is not relevant here. We will describe the behaviour of the trapped
fluid using an additional equation, which takes the form of a constraint on the trapped
volume in case of incompressible fluid model, or the form of a constitutive relation
between the fluid pressure and the relative change of volume, if the fluid compressibility
is taken into account.

If the trapped fluid is assumed incompressible, the required constraint is straightfor-
ward: the fluid volume V must be constant. However, the pressure developed in such
fluid pocket can rise significantly, so that the assumption of the incompressible fluid
becomes invalid, and, therefore, the fluid compressibility must be taken into account in
this case. The relation between the fluid pressure and its volume change can be formal-
ized by considering the bulk modulus K, which is defined as the ratio of infinitesimal
pressure increase to the relative decrease of the volume:

K = −V dp

dV
. (2.62)

In the constant compressibility model, K is simply a coefficient of proportionality be-
tween the relative change of the fluid volume and the pressure change:

p = p0 +K

(
1− V

V0

)
, (2.63)

where p0 is the fluid pressure at some reference volume V0 (for example, at the moment
of formation of the trapped fluid pocket) and p is the fluid pressure corresponding
to a smaller volume V . Note, that using the linear compressible model, an ideal gas
equation could also be considered in the trapped zone, which is relevant for a gaseous
fluid: pV = nRT ; assuming an isothermal process, we obtain:

p = p0

(
1 + V0 − V

V

)
. (2.64)

However, the constant compressibility model (2.63) does not provide satisfactory
results for most of the fluids used in real-life lubrication problems, since a significant
dependence of the compressibility modulus K on the pressure p takes place [Kuznetsov,
1985]. The simplest model, and yet quite precise for most of lubricating fluids, which
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takes into account this dependence, is the linear compressibility model, see [Kuznetsov,
1985, Nellemann et al., 1977]. According to this model, K is linearly evolving with
pressure:

K = K0 +K1p, (2.65)

where K0 [Pa], K1 [dimensionless] are model parameters: K0 is the value of the bulk
modulus in unpressurized state, and K1 is the tangent of the linear dependence. The
affine expression (2.65), substituted into (2.62), upon integration results in the following
non-linear relation between the fluid pressure and its volume change, cf. (2.63):

p =
(
K0
K1

+ p0

)(
V

V0

)−K1

− K0
K1

, (2.66)

where, again, p0 is the pressure at volume V0 and the pressure p corresponds to a smaller
volume V .

2.5 Coupled problem statement

In the end of this chapter we use the discussed above description of the solid and fluid
continuum to provide the general formulation of the coupled problem statement, which
will be studied in this dissertation.

We consider a problem of a thin fluid flow in contact interface between a solid with
an arbitrary surface geometry and a rigid flat. Let us denote by Ω the deformable solid
and by Γ ⊂ ∂Ω the part of its surface, which represents the potential contact zone, i.e.
defines the extent of the contact interface. At the same time, Γ determines the maximal
possible extent of the domain, where the solid interacts with the fluid. For concreteness,
we shall assume that the surface of the solid is given by a function z(x, y), while the
rigid plane is z = 0.

The resolution of the coupled problem under discussion requires subdivision of the
surface Γ into following parts, according to the local status2 of the interface, see Fig. 2.11:

Γ = Γc ∪ Γfsi
ntf⋃
i=1

Γtf
i , (2.67)

where Γc is the active contact zone, where normal contact tractions are non-zero, Γfsi is
part of the solid’s surface, which interacts with the flowing fluid and where the surface
tractions are equal to the corresponding tractions in the fluid (so-called fluid-structure
interface), Γtf

i , i = 1, ntf, are trapped fluid zones, i.e. parts of the surface Γ which are
out of contact, but completely delimited by non-simply connected contact patches.

The partition of the interface, introduced in (2.67), requires several explanatory
remarks. First, by definition of the active contact zone, Γc ∩ Γfsi = ∅ and Γc ∩ Γtf

i =
∅ ∀i = 1, ntf. Note also, that Γfsi∩Γtf

i = ∅ ∀i = 1, ntf, i.e. even though all trapped pockets
contain the same fluid, as the one present in the fluid-flow domain, the behaviour of the
trapped fluid is not governed by the Reynolds equation. Furthermore, each trapped
zone is considered separately from others, i.e. Γtf

i ∩ Γtf
j = ∅ ∀i = 1, ntf, j = 1, ntf, i 6= j,

since the behaviour of the fluid in each pocket depends on the volume of this pocket
at the moment of its formation, and also on corresponding fluid pressure, see Sec. 2.4.
Finally, we term by Γf the projection of Γfsi on the rigid plane z = 0, which shall serve
as the lubrication surface, where the Reynolds equation for the fluid flow is defined.

2By local status in this context we mean the location of each point of the interface in the active
contact zone, fluid flow, or one of the trapped fluid zones.



36 CHAPTER 2. GOVERNING EQUATIONS

Γf Γc

Γfsi

ΓuΓσ Ω

γq ΓcΓtf
1

Γf(Γfsi) γp

(a)

(b)

z

x

y

x
m

n

ν

Figure 2.11: Sketch of the problem under study: (a) contact between a solid and a rigid
plane with fluid present in the interface; (b) view of the contact interface. Notations: Γc

is the active contact zone, Γf is the lubrication surface (where the Reynolds equation is
solved), Γfsi is the fluid-structure interface, Γtf

1 is a trapped fluid zone, see (2.67). Note
that Γf is the projection of Γfsi on the rigid flat.

2.5.1 Solid mechanics problem with unilateral contact

The deformation of the solid (in absence of the fluid) is governed by the balance of
momentum equation complemented by the contact and boundary conditions:

∇ · σ(u) + fv = 0 in Ω (2.68a)
gn(u) ≥ 0, σn(u) ≤ 0, gn(u) σn(u) = 0 on Γ (2.68b)
u = u0 on Γu (2.68c)
n · σ = σ0 on Γσ (2.68d)

where (2.68a) is the static local balance of momentum equation (see Section 2.1), (2.68a)
are the Hertz-Signorini-Moreau conditions of the non-adhesive frictionless unilateral
contact (see Sec. 2.2), (2.68c) are the Dirichlet boundary conditions with a prescribed
displacement u0 and (2.68d) are the Neumann boundary conditions with a prescribed
surface traction σ0.

If the interfacial friction is taken into account, then the following frictional con-
straints complement the problem statement (2.68):

‖σt‖ < µ |σn| , ‖ġt‖ = 0 on Γstick (2.69a)

σt = −µ |σn|
ġt
‖ġt‖

, ‖ġt‖ > 0, on Γslip, (2.69b)

where µ is the coefficient of friction (CoF) in the classic Coulomb’s model, Γstick and Γslip

are the stick and slip contact zones, respectively: Γstick ∩ Γslip = ∅, Γstick ∪ Γslip = Γc. It
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is important to note, that the constraints (2.68b) do not take into account the coupling
of the contact problem with the fluid flow and/or trapped fluid problems. When this
coupling is considered (especially in case of the two-way approach), the problem becomes
much more complicated, since additional constraints governing the non-contact part of
the interface Γ \ Γc appear. In other words, Hertz-Signorini-Moreau conditions need to
be amended since the pressure in non-contact zones is non-zero (and is unknown). Note
that in the subsequent simulations the active contact zone Γc emerges in the convergence
loop of the Newton-Raphson method, which will be utilized for the resolution of this
strongly non-linear problem.

2.5.2 Thin fluid flow

The thin fluid flow in governed by:
∇ ·

[
gn(u)3∇p

]
= 0 in Γf (2.70a)

p = p0 on γp (2.70b)
q ·m = q0 on γq (2.70c)

where (2.70a) is the Reynolds equation for isoviscous incompressible Newtonian fluid (see
Section 2.3, note that the tangential relative motion of the solid walls is not considered
here, whereas the normal motion is assumed to be quasi-static), p(x, y) is the fluid
pressure field defined on the lubrication surface Γf, which is a projection of the fluid-
structure interface Γfsi on the rigid flat (z = 0), (2.70b) are the Dirichlet boundary
conditions with a prescribed fluid pressure p0 and (2.70c) are the Neumann boundary
conditions with a prescribed fluid flux q0, defined at γp ⊂ ∂Γf and γq ⊂ ∂Γf, respectively,
m is the outward normal to Γf, and the fluid flux q was defined in (2.60). Note that for
each point (x, y) ∈ Γf the thickness of the film is computed as the normal gap gn(u) of
the corresponding point (x, y, z) ∈ Γfsi.

2.5.3 Fluid-structure interface

The equilibrium of the solid and fluid tractions on the fluid-structure interface Γfsi needs
to fulfill the following equation:

σ · n = −p n− gn(u)
2 ∇p on Γfsi, (2.71)

where the term on the left-hand side is nothing but the surface traction vector of the
solid: σ(n) = σ · n. The first right-hand side term is the normal traction due to the
hydrostatic pressure, while the second one is the tangential traction due to viscous shear
stresses in the fluid that act on the solid’s surface (here, it results from the Poiseuille
flow, see Eqs. (2.50a)-(2.50b) in Sec. 2.3). However, note that the gradient operator
in (2.71) is defined on the lubrication surface Γf as ∇(·) := ∂(·)/∂x ex + ∂(·)/∂y ey.
Therefore, the second term in (2.71) is not exactly perpendicular to the outward nor-
mal n to the surface Γfsi. Nevertheless, this slight inconsistency is justified (at least
partially) by the requirement of small slopes of the surface geometry for validity of
the Reynolds equation in certain applications (see discussion in Sec. 2.3) and is often
accepted in elasto-hydrodynamic lubrication problems, see, for example, [Stupkiewicz,
2009, Stupkiewicz et al., 2016].

We recall also, that in the derivation of the Reynolds equation (see Sec. 2.3.3),
the scale h0 for thickness of the fluid film, represented here by the normal gap gn,
was assumed to be much smaller than the lateral extent of the channel l0 (and also
relevant wavelengths of the surface spectrum). Using definitions of scales, introduced
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in (2.44), we observe that the absolute value of the normal component of the traction
vector |σn| = p ∼ P , where P is the scale for the fluid pressure. At the same time, the
magnitude of the tangential component of the traction vector in the fluid ‖σt‖ ∼ h0 P/l0,
i.e. smaller than the normal one by an order of h0/l0. Due to this difference in scales,
the effect of fluid shear stresses on the deformation of the solid is often neglected in
lubrication problems, see [Stupkiewicz, 2018].

However, in sealing applications, studies of the elasto-hydrodynamic lubrication
regime show a noticeable effect of the shear tractions on the seal’s leakage, see [Stup-
kiewicz and Marciniszyn, 2009]. Besides, it is important to note, that the difference in
scales between normal and shear traction components is valid only if the pressure drop
occurs over a length ∼ l0, i.e. the change of pressure is sufficiently gradual. This may
not be the case, for example, in contact seals, when the external load is close to the
critical value, under which the interface is completely sealed (the fluid leakage ceases).
Just before that happens, a fluid path which connects chambers under different pressure
exists, and almost the whole pressure drop occurs over a narrow and short constriction
located on this path, see [Persson and Yang, 2008, Persson, 2010]. At this constriction,
due to a locally high pressure gradient, the tangential traction becomes of the same
order of magnitude as the normal term. Therefore, for the sake of completeness, we
will consider both normal and shear components of the fluid-induced traction in the
numerical framework presented in following chapters.

It is important to note also, that we do not need to consider the so-called no-slip
condition (i.e. zero flow velocity at the fluid-structure boundary), as, for example,
in [Farhat et al., 1998], since it is already taken into account in the derivation of the
Reynolds equation (2.59).

2.5.4 Trapped fluid zones

The hydrostatic pressure ptfi , developed in the i-th trapped fluid zone, is applied to the
surface of the solid body as the normal traction:

σn = −ptfi on Γtf
i , i = 1 . . . ntf, (2.72)

which has a form similar to the Neumann boundary condition for the solid mechanics
problem, cf. (2.68d). However, the pressure ptfi is a priori unknown, and to take into
account the behaviour of the trapped fluid, we will use hydrostatic fluid models discussed
in Sec. 2.4. Thus, if the fluid in trapped zones is assumed incompressible, then the
following constraint on the fluid volume V tf

i in the i-th trapped zone is considered:

V tf
i = V tf

i0 , (2.73)

where V tf
i0 is the volume of the fluid in the i-th trapped pool at the moment when it

was formed. Due to the increasing external load, which brings the solid in contact with
the rigid flat, the fluid pressure inside of trapped zones also increases and may become
significantly higher than the pressure in the fluid-flow domain. Therefore, while still
assuming incompressible fluid in the Reynolds equation (2.70a), for the trapped fluid
zones we may consider compressibility models discussed in. Sec. 2.4.

If the trapped fluid compressibility is taken into account, then instead of (2.73) a
constitutive relation between the fluid pressure and its volume change is to be provided.
In the case of constant fluid bulk modulus K this equation is given by:

ptfi = ptfi0 +K

(
1− V tf

i

V tf
i0

)
, (2.74)
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Figure 2.12: Schematic diagram showing dependencies between coupled sub-problems.

where ptfi0 is the initial pressure of the trapped fluid, corresponding to the volume V tf
i0 .

In the case of pressure-dependent fluid bulk modulus K = K0 + K1 p
tf
i , the relation

becomes nonlinear and takes the following form:

ptfi =
(
ptfi0 + K0

K1

)(
V tf
i

V tf
i0

)−K1

− K0
K1

. (2.75)

In the discussed above statement of the coupled problem involving contact, fluid
flow and trapped fluid pools, we assume that the fluid occupies the whole free volume
between the contacting surfaces. Accordingly, the volume of the fluid in the i-th pool
V tf
i is equal to the volume of the gap Vi(u) between the surface Γtf

i and the rigid flat:

V tf
i = Vi(u) =

∫
Γtf
i

gn(X + u)(−n · ν) dΓ, (2.76)

where n is the outward normal to the surface Γtf
i , and ν is the normal to the rigid flat,

see Fig. 2.11. However, in the Chapter 7 of this dissertation we will study the problem of
the trapped fluid in the contact interface, excluding the fluid flow. In that context only
we will consider a more general statement of the trapped fluid sub-problem, allowing a
partial filling of the trapped pool by fluid, i.e. V tf

i < Vi(u).

2.5.5 Remarks on the coupled problem

Equations, discussed in Sections 2.5.1-2.5.4, demonstrate essential dependencies between
coupled sub-problems, see also a schematic diagram in Fig. 2.12. On the one hand,
the fluid film thickness, necessary for solving the Reynolds equation, is defined by the
current normal gap gn(u), i.e. by the displacement field u. On the other hand, the fluid
pressure field p determines fluid-induced tractions on Γfsi, see (3.41d). However, not
only the thickness of the fluid film is defined by u, but the fluid-flow domain Γf itself
depends on the solution of the contact problem. Likewise, the morphology of the contact
area determines the existence and the extent of trapped fluid zones Γtf

i . Trapped fluid,
in its turn, creates additional pressure applied to the surface of the solid, see (2.72).

Apart from an intrinsic nonlinearity of this multi-field problem, the dependence of
fluid-flow domain Γf and trapped fluid zones Γtf

i on the resolution of contact constraints
creates an additional complexity. Moreover, it can be enhanced by a possibly sophisti-
cated morphology of the contact area resulting from deterministic or random features
of the surface geometry. Another significant difficulty is encountered in handling edge
effects, e.g. enforcing continuity of surface tractions across boundaries between con-
tact and fluid-flow zones ∂Γc ∩ ∂Γfsi, and also between contact and trapped fluid zones
∂Γc ∩ ∂Γtf

i i = 1, ntf. Below we will discuss in detail our recipes of partitioning the
interface and handling the multi-field problem.
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Finally, we note that the presented problem set-up corresponds to the two-way cou-
pling approach, which considers reciprocal dependencies between sub-problems. The
one-way coupling for this problem, which neglects the action of the fluid pressure on
surface of the solid, can also be studied, if corresponding equations are omitted, e.g.
Eqs. (2.71) and (2.72).
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Chapter 3

Variational formulation of the
coupled problem

Résumé de Chapitre 3 “Formulation variationnelle du prob-
lème couplé”

Le chapitre 3 est consacré à la forme faible du problème couplé, dont la forme forte
a été présentée dans le chapitre précédent. Premièrement, nous énonçons la formula-
tion variationnelle du problème de mécanique du solide avec le contact (avec et sans
frottement). En particulier, nous discutons de la manière dont le contact conduit au
problème de minimisation sous contraintes (ou, de manière équivalente, à l’inéquation
variationnelle) et décrivons la méthode pour sa résolution. Ensuite, nous incorporons le
problème d’écoulement de fluide dans la forme faible et gérons l’équilibre des tractions
fluide et solide à l’interface fluide-structure. De plus, nous considérons le travail virtuel
dans zones de fluide piégé, qui s’ajoute à la forme faible. Enfin, nous présentons la
formulation variationnelle du problème couplé, en considérant les approches de couplage
unidirectionnel et bidirectionnel.

In this chapter we will discuss the weak statement of the coupled problem, formu-
lated in the previous chapter. In particular, we will provide the variational formulation
for the solid mechanics problem with contact constraints and for the fluid mechanics
problem in case of thin fluid flow. We will incorporate the equilibrium of fluid and solid
tractions on the fluid-structure interface into the weak form, and also take into account
the influence of trapped fluid zones. We will finalize our discussion by outlining the
variational formulation of the coupled problem as a whole, considering both one-way
and two-way coupling approaches.

3.1 Weak formulation of the solid mechanics problem with
contact constraints

In this section we will address the weak formulation of the solid mechanics problem with
contact constraints, presented in the strong form in Section 2.5, Eqs. (2.68)-(2.69). We
will search for a weak solution of this problem represented by a vector-valued function
u ∈ H1(Ω), by which we mean that each component of the vector u belongs to the
Sobolev space H1(Ω):

u ∈ H1(Ω) =
{

(u1, u2, . . . , udim) | ui ∈ H1(Ω), 1 ≤ i ≤ dim
}
, (3.1)

43
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where “dim” stands for the dimension of the physical space, i.e. number of components
in vector u; see [Adams and Fournier, 2003, Kikuchi and Oden, 1988] for more details
and definitions.

3.1.1 Homogeneous Dirichlet boundary condition

First, we note that the problem under discussion involves an inhomogeneous Dirichlet
boundary condition (2.68c). In order to apply available theoretical results, this problem
statement needs to be transformed to a one with homogeneous (zero) Dirichlet bound-
ary conditions, which can be achieved without losing generality, see, for example [Evans,
2010]. To show that, we consider a simpler boundary value problem, which includes the
local balance of momentum equation (2.68a) only with the Dirichlet boundary condi-
tion (2.68c): {

∇ · σ(u) + fv = 0 in Ω (3.2a)
u = u0 on Γu. (3.2b)

It is important to note, that we may consider the known function u0 ∈ H1/2 (Γu),
defined only on the boundary Γu ⊂ ∂Ω, as a trace of some other function w ∈ H1(Ω),
i.e. w = u0 on Γu. Then the function ũ = u−w belongs to a linear subspace V of the
Sobolev space H1(Ω), defined as:

V =
{
u ∈ H1 (Ω)

∣∣∣ u = 0 on Γu
}
. (3.3)

Next, assuming linearity of σ(u), we note that function ũ ∈ V is a weak solution of the
following problem: {

∇ · σ(ũ) + f̃v = 0 in Ω (3.4a)
ũ = 0 on Γu, (3.4b)

where f̃v = fv + ∇ · σ(w). Therefore, without losing generality, in the remaining of
this chapter we will consider the problem (2.68)-(2.69) with a homogeneous Dirichlet
boundary condition

u = 0 on Γu, (3.5)

instead of (2.68c). Nevertheless, in the numerical resolution of the solid mechanics prob-
lem, e.g. using the finite-element method, inhomogeneous Dirichlet boundary conditions
can be readily considered. They can be enforced either by direct altering the global tan-
gent matrix and the residual vector, or, alternatively, using the method of Lagrange
multipliers or the penalty method, see, for example [Utku and Carey, 1982].

3.1.2 Weak form of the contact problem

Now, since homogeneous Dirichlet boundary conditions are considered, the solution u
will also belong to the space V, defined in (3.3). Moreover, we shall introduce contact
constraints into the variational formulation by considering functions from a subset K of
V, defined as follows:

K = {u ∈ V | u · ν ≥ −gn0 on Γ} , (3.6)

where ν is the normal to the rigid flat, and gn0 is the initial gap, see (2.19). Let us
assume that u is the “classic” (strong) solution of the contact problem, then, naturally,
u ∈ K. We will consider also an arbitrary function v ∈ K, note that the function
δu = v − u, which we will term as the test function (or the virtual displacement),
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also satisfies the homogeneous Dirichlet boundary conditions (3.5), i.e. (v − u) ∈ V.
Multiplying the local balance of momentum equation (2.68a) by this test function and
integrating over the volume of the solid Ω, we obtain:∫

Ω

(∇ · σ(u) + fv) · (v − u) dΩ = 0, ∀v ∈ K. (3.7)

Next, integrating by parts and applying the divergence theorem, we arrive at:∫
Ω

σ(u) : (∇v −∇u) dΩ−
∫
Ω

fv (v − u) dΩ−
∫
∂Ω

n · σ(u) · (v − u) dΓ = 0, (3.8)

where {:} is the double inner product (contraction) of second-order tensors, and we used
dΓ for the elementary surface area, i.e. dΓ ≡ d(∂Ω). Observing that n ·σ is nothing but
the traction vector σ(n), we may divide the integral over the surface ∂Ω into the two
parts where σ(n) 6= 0: Γσ with non-trivial Neumann boundary conditions (prescribed
traction σ0) and the active contact zone Γc to obtain:∫

Ω

σ(u) : (∇v −∇u) dΩ−
∫
Ω

fv (v − u) dΩ−

∫
Γσ
σ0 · (v − u) dΓ−

∫
Γc

σ(n) · (v − u) dΓ = 0, ∀v ∈ K (3.9)

which we will term as the weak form for the contact problem. We will consider first the
frictionless case, and after that discuss the contact problem with friction.

3.1.3 Variational formulation for the frictionless case

We recall that the traction vector can be divided into normal and tangential components.
In the frictionless case σt = 0 on Γc and thus σ(n) = σnn. Considering the integrand of
the contact term, we observe that:

σ(n) · (v − u) = σn (n · v − n · u) = σn (n · v − gn0) ≥ 0, (3.10)

where we used that n · u = −ν · u = gn0 on Γc, since u is the solution of the contact
problem and satisfies (2.68b), and n · v = −ν · v ≤ gn0 on Γc, since v ∈ K. Thus,
n · v − gn0 ≤ 0, while σn ≤ 0 on Γc also due to (2.68b). Therefore, the last integral
in (3.9) is non-negative and we arrive at the following inequality:∫

Ω

σ(u) : (∇v −∇u) dΩ−
∫
Ω

fv (v − u) dΩ−
∫

Γσ
σ0 · (v − u) dΓ ≥ 0, ∀v ∈ K, (3.11)

which is termed as the variational inequality characterizing the solution u ∈ K of the
frictionless unilateral contact problem (2.68). It may be written in a more abstract form:

Find u ∈ K such that: a(u,v − u)− f(v − u) ≥ 0, ∀v ∈ K, (3.12)

where a(·, ·) is a bilinear form defined on V×V:

a(u,v) =
∫
Ω

σ(u) :∇v dΩ, (3.13)
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and f(·) is a linear functional on V:

f(v) =
∫
Ω

fv · v dΩ +
∫

Γσ
σ0 · v dΓ. (3.14)

The variational inequality (3.12) is equivalent to the following constrained minimization
problem:

Find u ∈ K such that: J0(u) = inf
v∈K

J0(v), (3.15)

where the functional J0(v) is defined as:

J0(v) = 1
2 a(v,v)− f(v). (3.16)

It is important to note that we obtained the variational inequality (3.12), instead of
a standard variational principle (i.e. equality) used in solid mechanics, because of the
presence of contact constraints, introduced through the restriction of the space of ad-
missible functions to K ⊂ V. For more details interested reader is referred to [Kikuchi
and Oden, 1988].

We may rewrite (3.9) using the notation δu = v − u for the virtual displacement:∫
Ω

σ(u) :∇δu dΩ−
∫
Ω

fv · δu dΩ−
∫

Γσ
σ0 · δu dΓ−

∫
Γc

σnn · δu dΓ = 0, (3.17)

and obtain the weak form known as the balance of the virtual work. Next, we compute
the variation of the normal gap function, corresponding to the virtual displacement δu:

δgn(u) = ∂gn
∂u
· δu = ν · δu. (3.18)

Remembering that ν · δu = −n · δu, we may rewrite now the balance of virtual work as:∫
Ω

σ(u) :∇δu dΩ−
∫
Ω

fv · δu dΩ−
∫

Γσ
σ0 · δu dΓ +

∫
Γc

σn δgn dΓ = 0, ∀ δu ∈ V. (3.19)

It is important to note that in practical studies, e.g. in the finite-element framework,
direct resolution of the variational inequality (3.12) or, equivalently, the constrained
minimization problem (3.15)-(3.16) is usually avoided. The most popular approach is
to handle the contact constraints using methods of the optimization theory (such as
the method of Lagrange multipliers or the penalty method), which permits to find the
current active contact zone Γc and the corresponding contact tractions σn. Then we
may compute a priori unknown contact term in the balance of virtual works (3.19),
and, therefore, transform the problem with contact constraints into an unconstrained
minimization problem, for which classic resolution methods can be applied. The next
chapter of this dissertation is devoted to a discussion of this approach.

3.1.4 Variational formulation for the frictional case

Let us consider now the frictional case, i.e. the weak solution of the problem (2.68)-
(2.69), and examine separately the contact integral in the weak form (3.9):∫

Γc

σ(n) · (v − u) dΓ =
∫
Γc

σnn · (v − u) dΓ +
∫
Γc

σt · (v − u) dΓ, (3.20)
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where the first term on the right-hand side corresponds to the normal contact traction
and was already showed to be non-negative. On the contrary, the second term is due to
the frictional contact resistance and is non-positive, since the direction of the frictional
traction is opposite to the (virtual) sliding direction. Next, we note that the frictional
traction σt is non-zero at a certain point of the solid’s surface only while this point is in
contact with the rigid plane, i.e. belongs to Γc. Therefore we may rewrite the frictional
term in the following way:∫

Γc

σt · (v − u) dΓ =
∫
Γc

σt · (vt − ut) dΓ, (3.21)

where ut is the tangential slip, see Sec. 2.2 and discussions in [Demkowicz and Oden,
1982, Yastrebov, 2013], while vt is the tangential component of the vector v.

Next, we note that the frictional term cannot be represented by a differentiable
functional due to the non-smooth Coulomb’s law (2.69). Therefore, the contact problem
with friction cannot be written in the form of inequality (3.12), nor as the constrained
minimization of the functional (3.16). In order to proceed, we consider a more general
variational inequality:

Find u ∈ K such that: a(u,v − u)− f(v − u) + j(v)− j(u) ≥ 0, ∀v ∈ K, (3.22)

where the functional j(·), defined on V, is non-differentiable. We will show now that
solution of the frictional contact problem u ∈ K satisfies the variational inequality (3.22)
if the functional j(·) is defined as:

j(v) =
∫
Γc

µ |σn| ‖vt‖ dΓ, (3.23)

where µ is the coefficient of friction. Using Eq. (3.9) together with the notations (3.13)
and (3.14) for the forms a(·, ·) and f(·), respectively, we may write the following:

a(u,v − u)− f(v − u) + j(v)− j(u) =∫
Γc

σnn · (v − u) dΓ +
∫
Γc

σt · (vt − ut) dΓ +
∫
Γc

µ |σn| (‖vt‖ − ‖ut‖) dΓ. (3.24)

Consequently, it needs to be proved that the left-hand side of (3.24) is non-negative for
any v ∈ K, if u is the solution of the frictional contact problem. Note that the first
integral on the right-hand side of (3.24) is non-negative, and thus it remains to show
that:

σt · (vt − ut) + µ |σn| (‖vt‖ − ‖ut‖) ≥ 0, ∀v ∈ K. (3.25)

Following the logic of the Coulomb’s laws of friction, we will consider separately stick
and slip contact states. Note that hereinafter we shall relate the frictional traction to the
tangential displacement ut rather than to its rate, which is consistent with incremental
quasi-static analysis employed in Chapter 4, see, for example, [Alart and Curnier, 1991].
Therefore, in the stick state ‖σt‖ ≤ µ |σn| and ut = 0, consequently:

σt · (vt − ut) + µ |σn| (‖vt‖ − ‖ut‖) = σt · vt + µ |σn| ‖vt‖
≥ −‖σt‖ ‖vt‖+ µ |σn| ‖vt‖ > 0. (3.26)

In case of slip, σt = −µ |σn| s, where s is the sliding direction, see (2.69b). Then we
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may write:

σt · (vt − ut) + µ |σn| (‖vt‖ − ‖ut‖) = σt · vt + µ |σn| ‖ut‖+ µ |σn| ‖vt‖ − µ |σn| ‖ut‖
= σt · vt + µ |σn| ‖vt‖
≥ −‖σt‖ ‖vt‖+ µ |σn| ‖vt‖ = 0. (3.27)

Therefore, we have proved that (3.25) holds and, consequently, u ∈ K satisfies the
variational inequality (3.22). For the proof that a sufficiently smooth (regular) solution
u of the variational inequality is also the solution of the initial problem, the interested
reader is referred to [Kikuchi and Oden, 1988].

Similarly to the frictionless case, the variational inequality (3.22) is equivalent to a
constrained minimization problem, which takes now the following form:

Find u ∈ K such that: J(u) = inf
v∈K

J(v). (3.28)

The functional J(v) is defined as:

J(v) = J0(v) + j(v) = 1
2 a(v,v)− f(v) + j(v), (3.29)

where the non-differentiable functional j(·) was given in (3.23).
Therefore, despite the complexity due to additional constraints, the contact problem

with friction can still be represented by a variational inequality. The practical reso-
lution for this problem follows the approach discussed above for the frictionless case,
i.e. using the constrained optimization theory, handle the contact conditions and obtain
an unconstrained minimization problem, or, in other words, transform the variational
inequality to the standard (equality) formulation.

We will finish this section by presenting the weak form as the balance of virtual work
for the frictional case:∫

Ω

σ(u) :∇δu dΩ−
∫
Ω

fv · δu dΩ−
∫

Γσ
σ0 · δu dΓ

+
∫
Γc

σnδgn dΓ +
∫
Γc

σt · δgt dΓ = 0, ∀δu ∈ V, (3.30)

where δgt = vt − ut = δut is the tangential component of the virtual displacement,
sometimes termed as the variation of the tangential gap:

δgt = (I − ν ⊗ ν) · δu. (3.31)

3.2 Weak formulation of the coupled problem

In the previous section we discussed the weak formulation of the solid mechanics problem
with contact constraints, see Eq. (3.30). In order to describe the coupling between the
solid and the fluid sub-problems, this result needs to be elaborated by taking into account
other equations of the coupled framework. To simplify the explanation, fist, we will
complement the weak form of the contact problem by the virtual work of fluid-induced
tractions on the surface of the solid. Next, will take into account contribution of trapped
fluid pools, and finally, discuss the weak formulation of the fluid-flow sub-problem.
Upon that, the weak statement of the coupling between solid and fluid equations will
be complete.
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3.2.1 Weak form of the fluid-structure interface balance

First, we note that the equilibrium of fluid and solid tractions on the surface Γfsi (2.71)
is represented by an equation similar to a Neumann boundary condition, cf. (2.68d).
However, it is important to bear in mind that the traction vector representing the right-
hand side of (2.71) is not a priori prescribed: it depends on the fluid pressure p, its
gradient ∇p and the normal gap gn, which is defined, in its turn, by the displacement
field u. Nevertheless, we may compute the work of the fluid-induced tractions on the
surface Γfsi on a virtual displacement δu as:

δW fsi =
∫

Γfsi

(
−pn− gn

2 ∇p
)
· δu dΓ. (3.32)

Thereupon, we include it into the balance of virtual work (3.30) with the minus sign,
since the virtual work of surface tractions has a sign opposite to the one of the work of
internal forces, see, for example, (3.8). Note also, that the gradient operator in (3.32) is
defined on the lubrication surface Γf as ∇(·) := ∂(·)/∂x ex + ∂(·)/∂y ey, see discussion
in Sec. 2.5 for more details.

3.2.2 Virtual work of trapped fluid zones

Let us examine now the contribution of trapped fluid pools to the coupled problem. On
the one hand, the hydrostatic fluid pressure developed in each zone, similarly to the
discussed above fluid-flow traction, is applied to the surface of the solid as the normal
traction, see Eq. (2.72). On the other hand, we assume that there is not gradient of the
fluid pressure inside of a trapped pool. Therefore, the behaviour of the trapped fluid is
not described by a partial differential equation, unlike the solid mechanics (2.68) and
the thin fluid flow (2.70) problems, but rather by constitutive models, providing the
relation between the fluid pressure and its volume, see (2.73)-(2.75).

Thus, to capture the effect of the trapped fluid pressure on the solid, and also to
take into account the trapped fluid’s constitutive equation, we recall the classic ther-
modynamic definition of the elementary work done on a system, corresponding to an
infinitesimal change of its volume. Following that, we compute the virtual work of an
i-th trapped pool on the surface of the solid as:

δW tf
i = −ptfi δVi, (3.33)

where the minus sign is used since an increase of the volume of a trapped pool leads to
a decrease of its pressure, and consequently, to a release of the energy of the trapped
fluid. Since the volume of the fluid inside a trap Vi is a functional of the displacement
field u as defined by the integral (2.76), δVi can be treated as its first variation and
computed using the directional derivative:

δVi = DVi(u) · δu = dVi(u+ εδu)
dε

∣∣∣∣
ε=0

, (3.34)

see [Wriggers, 2006, Wriggers, 2008] for more details. Therefore, the virtual work of the
trapped fluid corresponding to a virtual displacement δu can be expressed as:

δW tf
i = −ptfi DVi(u) · δu, (3.35)

which can now be included into the weak form (3.30), taking into account that (3.35) is
valid for each trapped fluid zone.

Furthermore, if the fluid is considered compressible, the fluid pressure ptfi becomes
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a function of the trapped fluid volume, and, consequently, ptfi also depends on the
displacement u, see (2.74) and (2.75). If the fluid is assumed incompressible, it can
still be included into the framework as compressible with a bulk modulus K sufficiently
higher than that of the solid. Alternatively, the approach of Lagrange multipliers from
the optimization theory can be used to enforce the constraint on the fluid volume (2.73).
In Chapter 5 we will show that this approach also results in a formulation of the virtual
work, equivalent to (3.35).

3.2.3 Weak formulation of the fluid flow problem

The thin flow of an isoviscous incompressible Newtonian fluid is governed by the Reynolds
equation (2.70a) for the fluid pressure p, defined on the so-called lubrication surface Γf.
As was discussed in Sec. 2.3, it is natural to consider the projection on the rigid flat z = 0
of the fluid-structure interface Γfsi (attached to the surface of the solid) as the lubrica-
tion surface. Consequently, we will solve the Reynolds equation on a two-dimensional
domain Γf. Accordingly, the operator ∇(·) in (2.70a) is a two-dimensional operator
defined as ∇(·) := [∂(·)/∂x; ∂(·)/∂y]T .

We notice that the Dirichlet boundary conditions (2.70b) for the fluid flow problem
are inhomogeneous. As we showed for the solid mechanics problem in Sec. (3.1.1), to
simplify the derivation and study of the weak form, the initial problem can be trans-
formed to the one with the homogeneous (zero) Dirichlet boundary conditions, without
losing generality. Therefore, in this section we will also consider the problem (2.70) with
the following boundary condition:

p = 0 on γp (3.36)

instead of (2.70b), bearing in mind that the practical resolution of the problem using
the finite-element method easily permits to study inhomogeneous boundary conditions.

Next, we introduce the following set of admissible scalar functions, cf. (3.3):

P =
{
p ∈ H1(Γf)

∣∣∣ p = 0 on γp
}
. (3.37)

Let p be the strong solution of the problem (2.70) with the homogeneous boundary
condition (3.36). Then, following the standard approach to elliptic (e.g. steady-state
heat) equations, see, for example, [Zienkiewicz and Taylor, 1977], we obtain the weak
form of (2.70a) by multiplying it with the test function δp ∈ P and integrating:∫

Γf

∇ · (g3
n∇p) δp dΓ = 0, ∀ δp ∈ P. (3.38)

Integrating by parts and applying the divergence theorem we may write:∫
Γf

g3
n∇p · ∇δp dΓ−

∫
γq

g3
n∇p ·m δp dγ = 0, ∀ δp ∈ P. (3.39)

Using the definition of the fluid flux vector q, see Eq. (2.60), we arrive at the weak form
of the problem (2.70):∫

Γf

g3
n

12η ∇p · ∇δp dΓ +
∫
γq

q0 δp dγ = 0, ∀ δp ∈ P, (3.40)

where q0 = q ·m is the prescribed flux on γq, see (2.70c).
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3.2.4 Variational formulation of the coupled problem

We provide a variational statement of the coupled problem in the spirit of the monolithic
approach, following [Yang and Laursen, 2009, Stupkiewicz, 2018]. For clarity, we will
write separately equations for the solid phase (with the effect of trapped fluid zones
included) and for the fluid-flow phase. The former reads:

Gs(u, p, δu) = 0 ∀ δu ∈ V; (3.41a)

Gs(u, p, δu) =
∫
Ω

σ(u) :∇δu dΩ−
∫
Ω

fv · δu dΩ−
∫

Γσ
σ0 · δu dΓ (3.41b)

+
∫
Γc

σn δgn dΓ +
∫
Γc

σt · δgt dΓ (3.41c)

+
∫

Γfsi

(
pn+ gn(u)

2 ∇p
)
· δu dΓ (3.41d)

−
ntf∑
i=1

ptfi DVi(u) · δu, (3.41e)

where δgn = ν · δu is the variation of the normal gap, and δgt = (I − ν ⊗ ν) · δu is
the variation of the tangential gap, see (3.18) and (3.31), respectively. Note that terms
in (3.41b) correspond to the weak form of the solid mechanics problem without contact
constraints, (3.41c) is the virtual work of the normal and frictional contact tractions,
while (3.41d) is the virtual work of the tractions induced by the fluid flow on the surface
of the solid, and, finally, (3.41e) is the virtual work of ntf trapped fluid zones. Next, we
provide the weak form for the fluid-flow phase:

Gf(p,u, δp) = 0 ∀ δp ∈ P; (3.42a)

Gf(p,u, δp) =
∫
Γf

g3
n(u)
12η ∇p · ∇δp dΓ +

∫
γq

q0 δp dγ, (3.42b)

Therefore, combining the two sub-problems together, the variational formulation of the
coupled problem reads:

Find vector-valued function u(x, y, z) ∈ K and scalar function p(x, y) ∈ P such that:

Gs(u, p, δu) = 0, ∀ δu ∈ V, (3.43a)
and

Gf(p,u, δp) = 0, ∀ δp ∈ P. (3.43b)

Note that the discussion above is valid for the two-way coupling approach, when both
sub-problems have impact on each other. The one-way coupling for the problem under
study can also be considered in the presented framework, upon three modifications:

(i) omitting the fluid-induced tractions on the surface of the solid, i.e. the term (3.41d);

(ii) neglecting the effect of trapped fluid zones, i.e. the sum (3.41e);

(iii) assuming rigid solid walls while solving fluid-flow equation (3.43b).

Therefore, in case of one-way coupling, instead of (3.43), we have the following equations:
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Gs(u, δu) = 0, ∀ δu ∈ V, (3.44a)
Gf
u(p, δp) = 0, ∀ δp ∈ P. (3.44b)

Note that the weak form for the solid sub-problem does not depend on the fluid pressure
p. Similarly, the weak form for the fluid sub-problem does not include displacement u as
an unknown. However, u is still required as an input to compute the normal gap, which
is considered fixed according to modification (iii), hence the subscript “u” of Gf. In
other words, in the one-way coupling approach, the solution of the solid sub-problem is
not influenced by the fluid pressure, and for any given displacement field u the fluid sub-
problem is linear, which has an impact on the structure of the global matrix (considered
upon the finite-element discretization). This will be discussed in detail in following
chapters.



Chapter 4

Mechanical contact problem

Résumé de Chapitre 4 “Problème de contact mécanique”
Dans ce chapitre, plusieurs méthodes de résolution des contraintes de contact dans le
cadre des éléments finis sont détaillées. Premièrement, nous montrons comment les
méthodes issues de la théorie de l’optimisation (méthode des multiplicateurs de Lagrange,
méthode de la pénalité, méthode du Lagrangien augmenté) peuvent être utilisées pour
résoudre les problèmes de contact. Ensuite, nous considérons deux approches de la con-
struction des éléments de contact : la première basée sur chaque nœud de la surface
du corps déformable, la seconde basée sur chaque face de cette surface. Ensuite, nous
présentons une formulation dans le cadre des éléments finis pour ces deux approches en
utilisant les méthodes de la théorie d’optimisation. Nous décrivons la construction des
vecteurs résiduels et des matrices tangentes, nécessaires à la résolution du problème non
linéaire à l’aide de la méthode de Newton-Raphson.

In this chapter we present a numerical framework for resolution of contact con-
straints. We assume that the standard finite-element discretization of the deformable
solid provides a corresponding discretised version of the contact interface (potential con-
tact zone Γ). Note that for brevity and simplicity we preserve the same notations for
discretised entities as were introduced in the continuous problem statement.

The resolution of the contact problem requires construction of interface elements,
which are responsible for enforcement of contact constraints and are termed as contact
elements. Different approaches can be utilized for construction of these elements, this
process is recognized as the contact discretization. For the general case of contact
between two deformable solids the most popular approaches are node-to-node (NTN),
node-to-segment (NTS), and segment-to-segment (STS), for detailed information the
reader is referred to [Wriggers, 2006].

In this dissertation we are studying the interaction between a deformable solid and
a rigid flat, therefore we will discuss the node-to-rigid-surface and the face-to-rigid-
surface approaches, which can be seen as particular cases of NTS and STS approaches,
respectively. The considered cases represent a significant simplification of the general
approaches, since the contact discretization becomes relevant only for the surface of
the deformable body, while the analytical description of the second surface permits to
express the normal gap in the closed form. Note that all presented formulations can
be readily generalized for any analytic geometry of the rigid surface, such as a rigid
cylinder, a sphere or an ellipsoid, see [Konyukhov and Schweizerhof, 2012] for details.

The difference between the two studied here approaches is in the definition of a con-
tact element. In the node-to-rigid-surface approach each contact element is associated
to one node of the surface Γ, whilst in the face-to-rigid-surface approach each element

53
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is based on an edge (2D case) or a face (3D case) of the potential contact zone Γ, i.e. it
includes all nodes adjacent to this edge or face.

4.1 Contact resolution methods
First, we will briefly discuss how methods of the optimization theory are used in resolu-
tion of contact problems. As was mentioned in Section 3.1, due to contact constraints
the weak formulation of the problem takes the form of the variational inequality, instead
of the equality variational principle, standard for solid mechanics. Methods of the op-
timization theory permit us to compute the virtual work of the contact tractions and,
therefore, transform the variational inequality into a standard variational formulation.
We will discuss here three different methods:

• the method of Lagrange multipliers,

• the penalty method,

• the augmented Lagrangian method,

however, other approaches for resolving contact constraints exist, and the interested
reader is referred to [Wriggers, 2006].

4.1.1 Method of Lagrange multipliers

Let us denote by functional Πs(u) the potential energy of the system, in notations of
Sec. 3.1 it reads:

Πs(u) = 1
2 a(u,u)− f(u), (4.1)

where bilinear form a(·, ·) and linear functional f(·) were defined in (3.13) and (3.14),
respectively. As was discussed in Section 3.1, even in the frictionless case, the contact
conditions lead to a constrained minimization problem:

Find u ∈ K such that: Πs(u) = inf
v∈K

Πs(v), (4.2)

where the function space was defined in (3.3) and (3.6). This problem is often easier to
resolve, if it is transformed into a so-called saddle point problem. First, we introduce
the Lagrangian L of this problem:

L(v, λn) = Πs(v) +
∫
Γc

λn gn(v) dΓ, (4.3)

where function λn ∈ M, which is the space for so-called Lagrange multipliers, defined
only on Γc ⊂ ∂Ω, part of the boundary of Ω.

The question which naturally arises is “what is the nature of the spaceM in theory
and how is it used in practical computations?” Once the solution is obtained, the field of
Lagrange multipliers λn represents normal traction σn on the contact zone. Therefore,
according to the classification used in the functional analysis, the spaceM is the dual
of the space W, which is, in its turn, the image under the trace operator of the space V.
In the context of the problem under study, recalling definition of the space V, see (3.3),
W = H1/2 (Γ), and therefore

M =
(
H1/2 (Γ)

)∗
, (4.4)

i.e. M is the space of continuous linear functionals defined on H1/2 (Γ), which is often
denoted as H−1/2 (Γ). Strictly speaking, in general case, the integral in (4.3) does not
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have a meaning other than in the sense of the so-called duality pairing defined onM×V,
the interested reader is referred to [Kikuchi and Oden, 1988] for more details. However,
in the practical resolution using the finite-element method, upon discretization, the
Lagrange multipliers are searched in at least the Lebesgue space L2(Γ), i.e. in the form
of square-integrable functions. Therefore, for practical purposes, the duality pairing can
be represented by the corresponding integral in (4.3), see [Wohlmuth, 2000, Hüeber,
2008, Popp, 2012, Gitterle, 2012] for more information.

Furthermore, to be able to reformulate the initial problem in terms of the La-
grangian (4.3), we need to consider the restriction of the space of Lagrange multipliers
to the following admissible set:

N = {λn ∈M | λn ≤ 0} , (4.5)

where the ordering relation “≤” on the spaceM in general case is defined in the sense
presented in [Kikuchi and Oden, 1988]. In practice, as was stated above, Lagrange
multipliers are searched in the space L2(Γ), and then definition of the admissible set N
becomes straightforward.

Then, under the discussed above conditions, the constrained minimization prob-
lem (4.2) is equivalent to the saddle point problem, formulated in the following way:
Find u ∈ V and λn ∈ N such that:

L(u, p) ≤ L(u, λn) ≤ L(v, λn), ∀ v ∈ V, ∀ p ∈ N , (4.6)

or, equivalently,

L(u, λn) = max
p∈N

min
v∈V
L(v, p) = min

v∈V
max
p∈N
L(v, p). (4.7)

Note that the search for a function u minimizing the Lagrangian (4.3) is performed in
the whole space V, i.e. the constraint on the displacement field was waived, cf. (4.2).
However, in a certain sense, it was transformed into restrictions of the space of the
Lagrange multipliers to the admissible set (4.5), i.e. the condition λn ≤ 0. Nevertheless,
the discretised version of the problem, stated in the saddle point form, admits resolution
even with the condition λn ≤ 0, if a so-called active set strategy is used to determine
the active contact zone Γc, details will be discussed in the next Section.

Let us assume that we found the saddle point (u, λn), i.e. the solution of the min-
max problem (4.7) for the Lagrangian L(v, p), defined in (4.3). Let us first assume
that gn(u) > 0. Since λn is the maximizer of L(u, p) with respect to p ≤ 0, the only
possible solution is λn = 0. Now let us investigate the case λn < 0. Since u is the
minimizer of L(v, λn) among all v ∈ V, then gn(u) ≥ 0, however, we have just shown
that gn(u) > 0 leads to λn = 0. Therefore, we conclude that if λn < 0, then gn(u) = 0.
Let us summarize the two cases discussed above:{

gn(u) = 0, λn < 0 on Γc

gn(u) > 0, λn = 0 on Γ \ Γc,
(4.8)

or, in a different way:
gn ≥ 0, λn ≤ 0, λn gn = 0 on Γ, (4.9)

which has exactly the same form as the Hertz-Signorini-Moreau conditions (2.20).

Therefore, the resolution of the frictionless contact problem is equivalent to finding
the stationary (saddle) point of the Lagrangian (4.3), at which its variation vanishes,
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under the condition λn ≤ 0:

δL(u, λn) = δΠs(u) +
∫
Γc

(λn δgn(u) + gn(u) δλn) dΓ

= DΠs(u) · δu+
∫
Γc

(
λn
∂gn(u)
∂u

· δu+ gn(u) δλn
)
dΓ = 0,

∀ δu ∈ V, ∀ δλn ∈M, (4.10)

where we expressed the first variation of the functional Πs(u) using the directional
derivative:

δΠs(u) = DΠs(u) · δu = dΠs(u+ εδu)
dε

∣∣∣∣
ε=0

, (4.11)

see [Wriggers, 2006, Wriggers, 2008] for more details.
Note that applying the Lagrange multipliers method we introduced an extra equation

to the weak problem statement. Now, in addition to function u ∈ V we search for a
function of Lagrange multipliers λn ≤ 0 such that:

DΠs(u) · δu+
∫
Γc

λn
∂gn(u)
∂u

· δu dΓ = 0, ∀ δu ∈ V, (4.12a)

∫
Γc

gn(u) δλn dΓ = 0, ∀ δλn ∈M. (4.12b)

Note also that Eq. (4.10) is equivalent to the system of two equations (4.12a) and (4.12b),
since δu and δλn are independent variations. Moreover, we obtained an additional term
in the balance of virtual work for the solid mechanics problem, see Eq. (4.12a), which
has exactly the same form as the virtual work of the contact tractions (in the frictionless
case): ∫

Γc

λn δgn dΓ ∼
∫
Γc

σn δgn dΓ, (4.13)

cf (3.19). This similarity explains now why Lagrange multipliers λn represent the normal
traction in the contact zone. Often Lagrange multipliers are termed as dual variables
(degrees of freedom, upon discretization), as opposed to the primal ones, corresponding
to the displacement vector components. At the same time, since δλn ∈ M is arbitrary,
the equation (4.12b) ensures that gn = 0 on the active contact zone Γc.

Note that the frictional constraints can also be treated using the Lagrange multi-
pliers method, see for example, [Tur et al., 2009]. However, in this case the active set
strategy becomes sophisticated to be able to correctly determine the stick and slip zones.
Therefore, we will use the Lagrange multiplier method only in the frictionless case, while
the treatment of the frictional constraints will be presented below under both penalty
and augmented Lagrangian methods.

4.1.2 Penalty method

The penalty method is based on the approximate fulfilment of the contact constraints.
We may consider instead of the functional Πs(v) a new functional Πs

ε(v), defined as:

Πs
ε(v) = Πs(v) + εP (v), (4.14)
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where the penalty parameter ε is a strictly positive real number, and P (v) is the penalty
functional, which satisfies:

P (v) ≥ 0 ∀v ∈ V, P (v) = 0 if and only if v ∈ K. (4.15)

Therefore, we may substitute the initial constrained minimization problem:

Find u ∈ K such that: Πs(u) = inf
v∈K

Πs(v) (4.16)

by the following approximate, however, unconstrained one:

Find u ∈ V such that: Πs
ε(u) = inf

v∈V
Πs
ε(v). (4.17)

Note that the parameter ε controls the accuracy of this approximation, and the exact
solution is obtained if ε→∞.

For simplicity, will consider first the frictionless case, and then take the Coulomb’s
friction law into account.

Frictionless case

Using the penalty method, we assume that contact pressure σn is non-zero only if the
penetration (gn < 0) takes place, i.e. consider the contact pressure as a function of the
normal gap:

σn(gn) = −εn 〈−gn〉 =
{

0, gn > 0
εngn, gn ≤ 0,

(4.18)

where εn is the penalty parameter for the normal contact constraints, which controls
the magnitude of the penetration. Note that the above formulation represents the linear
penalty method, for discussions and examples, corresponding to a possible non-linear
formulation, the reader is referred to [Yastrebov, 2013]. Note also that to simplify the
notations we used the Macaulay brackets operator:

〈x〉 =
{

0, x < 0
x, x ≥ 0.

(4.19)

Therefore, instead of (2.21) we have:{
gn ≤ 0, σn ≤ 0 on Γc

gn > 0, σn = 0 on Γ \ Γc.
(4.20)

Consequently, the virtual work of the frictionless contact may be written as:

δW c =
∫
Γc

σnδgn dΓ =
∫
Γ

−εn 〈−gn〉 δgn dΓ =
∫
Γc

εngnδgn dΓ. (4.21)

Therefore, the “potential energy” of the contact interaction, defined as

W c(u) = εn
2

∫
Γc

gn(u)2 dΓ, (4.22)

plays the role of the functional εP (u), see (4.14).
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Frictional case

The approach to handling the frictional constraints is similar: we assume that the
tangential traction σt is non-zero only if sliding occurs at the interface. It is important
to note, that in numerical computations frictional contact problems are usually studied
using the incremental quasi-static analysis. According to that, the tangential sliding
velocity, corresponding to the k-th increment, is expressed as:

ġkt ∼ ∆gkt /
(
tk − tk−1

)
, (4.23)

where ∆gkt = gkt − gk−1
t is the increment of the tangential slip, and

(
tk − tk−1

)
is the

increment in time. The latter can be omitted without loss of generality, and, for brevity
and simplicity, we will write gkt instead of ∆gkt . Moreover, the index k will be omitted,
where possible, meaning that the corresponding discussions are valid for all increments.

Before writing down the expression for σt, we will examine separately stick and slip
cases. In the stick case, we do not require that a contact point does strictly adhere to
the stick point xs, but rather allow it to slide by a small distance g̃t. This so-called
“slip-in-stick”, see [Yastrebov, 2013], can be defined with respect to the previous stick
position xs as:

g̃t = (I − ν ⊗ ν) · (x− xs) , (4.24)

where the multiplication with the tensor (first term in brackets) provides projection
of the corresponding vector on the rigid plane. Therefore, the violation of frictional
constraints results in a tangential traction, magnitude of which is proportional to this
slip, while its direction is the opposite:

σt = −εtg̃t, (4.25)

where the coefficient of proportionality is the penalty parameter εt for the frictional
constraint (again, the linear penalty method is considered). According to Coulomb’s
law of friction, the point will stay in the stick state, while ‖σt‖ < µ |σn|, or, using (4.25),
while:

‖g̃t‖ <
µ |σn|
εt

, (4.26)

which shows how the penalty parameter εt controls the possible violation of the stick
constraint.

If the magnitude of “slip-in-stick” g̃t exceeds the limit (4.26), the point starts the
“real” sliding. Therefore, this point switches to the slip state, during which the frictional
traction equals to:

σt = −µ |σn| s = µ εn gn s, (4.27)

where s is the direction of the “real” slip:

s = gt
‖gt‖

, (4.28)

and we used the expression for the normal contact traction (4.18) (note that in the
active contact zone gn ≤ 0). Finally, we may write the expressions for the frictional
traction for both states:

σt(gt) =
{
−εt g̃t, εt ‖g̃t‖ < µ |σn| (stick)
µεngn s, εt ‖g̃t‖ ≥ µ |σn| (slip),

(4.29)

Splitting the integrals over the active contact zone Γc into integrals over the stick and
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slip zones and combining together terms for normal and tangential contact tractions, we
may summarize the contribution of the frictional contact to the balance of virtual work:

δW c =
∫
Γc

σnδgn dΓ +
∫
Γc

σt · δgt dΓ = (4.30)

∫
Γstick

(εngnδgn − εtg̃t · δg̃t) dΓ +
∫

Γslip

(εngnδgn + µ εn gn s · δgt) dΓ.

For a discussion about the analogy between the frictional behaviour and the elasto-
plactic deformation of the solid, the reader is referred to [Yastrebov, 2013, Wriggers,
2006]. Note also that for practical application of the penalty method (e.g. in finite-
element framework) an additional procedure is required to distinguish between stick
and slip zones, such as the return mapping algorithm. We will outline this algorithm
briefly below, while for more details and the graphic representation the reader is referred
to [Yastrebov, 2013, Wriggers, 2006].

Return mapping algorithm

In order to find whether the considered node is in stick or slip state and formulate the
corresponding contribution to the virtual work, we note first that numerical resolution
of contact problem, due to its strong nonlinearity, is incremental, i.e. the external load,
bringing the bodies in contact is applied in a number of load steps, or increments.
Therefore we may suppose that we have a solution obtained at k-th increment, i.e.
the displacement vector uk. Additionally, we assume that we know xks , which denotes
the stick point (sometimes termed as center of stick), computed at the k-th increment.
Moreover, since a Newton-Raphson method is required to resolve the nonlinear contact
problem, we assume that an approximation of the displacement vector corresponding to
the new increment uk+1 is available.

Then, according to the return mapping algorithm, we initially suppose that the
whole active contact zone is in the stick state. The normal traction, according to (4.18),
reads:

σk+1
n = −εn

〈
−gn(uk+1)

〉
(4.31)

while the “trial” tangential traction can be written, using (4.25), as:

σt
k+1
trial = −εtg̃tk+1

trial . (4.32)

where g̃tk+1
trial is the trial “slip-in-stick” with respect to the previous stick point xks :

g̃t
k+1
trial = (I − ν ⊗ ν) ·

(
xk+1 − xks

)
, (4.33)

where xk+1 = X + uk+1. The term “trial” is used, because the condition (4.26), asso-
ciated with the Coulomb’s law of friction, must be validated. If the following inequality
holds: ∥∥∥σtk+1

trial

∥∥∥ ≤ µ ∣∣∣σk+1
n

∣∣∣ , (4.34)

then the trial tangential traction is valid, the considered point is indeed in the stick
state, and we store σk+1

t = σt
k+1
trial and xk+1

s = xks .
On the contrary, if the condition (4.34) does not hold, the considered point switches

to the slip state, and according to (4.27) the tangential traction is computed as:

σk+1
t = −µ

∣∣∣σk+1
n

∣∣∣ s, (4.35)
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where s is the direction of sliding, which we assume to coincide with the direction of
g̃t
k+1
trial :

s = g̃t
k+1
trial∥∥∥g̃tk+1
trial

∥∥∥ . (4.36)

Furthermore, we obtain the actual “slip-in-stick” as the maximal value permitted by the
Coulomb’s law, see (4.26):

g̃k+1
t = 1

εt
µ
∣∣∣σk+1
n

∣∣∣ s. (4.37)

Then the real slip gk+1
t is computed as the difference between those two collinear vectors:

gk+1
t = g̃t

k+1
trial − g̃

k+1
t = 1

εt

(∥∥∥σtk+1
trial

∥∥∥− µ ∣∣∣σk+1
n

∣∣∣) s, (4.38)

where Eqs. (4.32) and (4.37) were used. Finally, the position of the stick point needs to
be adjusted to take into account the real slip gk+1

t :

xk+1
s = xks + gk+1

t = xks + 1
εt

(∥∥∥σtk+1
trial

∥∥∥− µ ∣∣∣σk+1
n

∣∣∣) s. (4.39)

The discussed procedure is outlined in Algorithm 1.

4.1.3 Augmented Lagrangian method

Another approach to the constrained minimization problem consists in a special com-
bination of the Lagrange multipliers and penalty methods, which results in an uncon-
strained minimization problem, and, furthermore, provides an exact solution of the ini-
tial problem for a finite penalty parameter. It is known as the “augmented Lagrangian
method” proposed in 1969 in [Hestenes, 1969] and in [Powell, 1969] and generalized
for the case of inequality constraints in [Rockafellar, 1973]. Note that two variants of
this method exist; the first one is iterative, based on independent update of primal
(displacement) and dual (Lagrange multipliers) unknowns, also known as the Uzawa’s
algorithm, see e.g. [Simo and Laursen, 1992] for its application for frictional contact
problems. The second approach provides resolution of the problem for both types of
unknowns simultaneously, therefore it is also referred to as the monolithic approach.
Since in this dissertation we are developing a monolithic framework for coupling solid
and fluid sub-problems, we will use this latter variant of the augmented Lagrangian
method, employing the results obtained by [Alart and Curnier, 1991, Heegaard and
Curnier, 1993, Pietrzak and Curnier, 1999].

The so-called augmented Lagrangian for the frictional contact problem is constructed
in the following way, compare with the frictionless case (4.3):

La(u, λn,λt; σ̂n) = Πs(u) +
∫
Γ

ln(gn, λn) dΓ +
∫
Γ

lt(gt,λt; σ̂n) dΓ, (4.40)

where in addition to Lagrange multipliers λn, representing contact pressure, we con-
sidered also vector-valued multipliers λt, which can be interpreted as the tangential
frictional traction σt. Similarly to the classical method, see discussions in Sec. 4.1.1,
Lagrange multipliers λn and λt can be viewed here as functions defined on Γ. It is
important to note, that the augmented Lagrangian depends also on σ̂n = σn + εngn, by
which we denote the augmented (regularized) contact pressure at the solution, εn is the
augmentation (regularization) parameter. This dependency reflects the non-associated
character of the Coulomb’s frictional law (see Section 2.2.2); accordingly, the term lt
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Algorithm 1 Return mapping algorithm
Require: xks , uk+1 //uk+1 is known as an approximation in a Newton-Raphson loop

1: gn ← (X − c) · ν + uk+1 · ν

2: if gn > 0 then

3: state ← not active

4: else

5: σk+1
n ← −εn 〈−gn〉

6: g̃t
k+1
trial ← (I − ν ⊗ ν) ·

(
xk+1 − xks

)
7: σt

k+1
trial ← −εt g̃tk+1

trial

8: if
∥∥∥σtk+1

trial

∥∥∥ ≤ µ ∣∣∣σk+1
n

∣∣∣ then
9: state ← stick

10: σk+1
t ← σt

k+1
trial

11: xk+1
s ← xks

12: else

13: state ← slip

14: s← g̃t
k+1
trial∥∥∥g̃tk+1
trial

∥∥∥
15: σk+1

t ← −µ
∣∣∣σk+1
n

∣∣∣ s
16: g̃k+1

t ← 1
εt
µ
∣∣∣σk+1
n

∣∣∣ s
17: gk+1

t ← g̃t
k+1
trial − g̃

k+1
t

18: xk+1
s ← xks + gk+1

t

19: end if

20: end if
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is, strictly speaking, a regularization of a non-differentiable “quasi”-potential, see [Alart
and Curnier, 1991, Pietrzak and Curnier, 1999] for more details.

We introduced integrands ln and lt as functions of gn and gt, respectively, to simplify
the subsequent formulations, however, both normal and tangential gaps are used in the
same sense as before, i.e. expressed in terms of the displacement vector field u. Below
we will provide closed forms of integrands ln and lt, which depend on the contact status
of the considered point on Γ: active or non-active, and, in case of lt, on the frictional
state: stick or slip. The term ln in the first integral in (4.40) has the following form:

ln(gn, λn) =


λngn + εn

2 g
2
n, λ̂n ≤ 0 (contact)

− 1
2εn

λ2
n, λ̂n > 0 (non-contact)

(4.41)

where λ̂n denotes the augmented Lagrange multiplier:

λ̂n = λn + εngn, (4.42)

the sign of which defines whether the considered point is in contact or not. The integrand
lt is defined as:

lt(gt,λt; σ̂n) =


λt · gt + εt

2 gt · gt,
∥∥∥λ̂t∥∥∥ ≤ −σ̂n, λ̂n ≤ 0 (stick)

− 1
2εt

(
λt · λt + 2µσ̂n

∥∥∥λ̂t∥∥∥+ µ2σ̂2
n

)
,
∥∥∥λ̂t∥∥∥ > −σ̂n, λ̂n ≤ 0 (slip)

− 1
2εt
λt · λt, λ̂n > 0 (non-contact)

(4.43)
Similarly to the augmented Lagrange multiplier λ̂n, we introduced the vector-valued
multiplier λ̂t as:

λ̂t = λt + εtgt, (4.44)

where εt is the augmentation parameter for the frictional constraints. Similarly to the
classic Lagrange multiplier method, we search for the saddle point (u, λn,λt) of the
augmented Lagrangian (4.40):

La(u, λn,λt; σ̂n) = max
p∈M
t∈M

min
v∈V
La(v, p, t; σ̂n) = min

v∈V
max
p∈M
t∈M

La(v, p, t; σ̂n), (4.45)

where by writing t ∈ M we denote that every component of the vector t belongs to
the space M, see (4.4) and discussions in Sec. 4.1.1. It is important to note, that
unlike the classic Lagrange multiplier method, cf. (4.7), we do not enforce here any
constraints on Lagrange multipliers λn and λt, i.e. we obtained an unconstrained saddle
point problem, owing to the special structure of the augmented Lagrangian (4.40). We
compute therefore the variation of the augmented Lagrangian, which must vanish at the
solution:

δLa(u, λn,λt; σ̂n) = δΠs(u) +
∫
Γ

(δln(gn, λn) + δlt(gt,λt; σ̂n)) dΓ =

δΠs(u) +
∫
Γ

(
∂ln
∂gn

δgn + ∂ln
∂λn

δλn + ∂lt
∂gt
· δgt + ∂lt

∂λt
· δλt

)
dΓ = 0,

∀ δu ∈ V, ∀ δλn ∈M, ∀ δλt ∈M, (4.46)
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where, as before,
δgn = ∂gn

∂u
· δu, δgt = ∂gt

∂u
· δu. (4.47)

Note that the variation of the Lagrangian with respect to the augmented contact pressure
σ̂n is not considered, see [Pietrzak and Curnier, 1999] for details. Finally, it remains to
provide closed forms for the respective derivatives of the terms ln and lt:

∂ln(gn, λn)
∂gn

=
{
λ̂n, λ̂n ≤ 0 (contact)
0, λ̂n > 0 (non-contact)

(4.48a)

∂ln(gn, λn)
∂λn

=

gn, λ̂n ≤ 0 (contact)

− 1
εn
λn, λ̂n > 0 (non-contact)

(4.48b)

∂lt(gt,λt; σ̂n)
∂gt

=



λ̂t,
∥∥∥λ̂t∥∥∥ ≤ −σ̂n, λ̂n ≤ 0 (stick)

−µσ̂n
λ̂t∥∥∥λ̂t∥∥∥ ,

∥∥∥λ̂t∥∥∥ > −σ̂n, λ̂n ≤ 0 (slip)

0, λ̂n > 0 (non-contact)

(4.48c)

∂lt(gt,λt; σ̂n)
∂λt

=



gt,
∥∥∥λ̂t∥∥∥ ≤ −σ̂n, λ̂n ≤ 0 (stick)

− 1
εt

λt + µσ̂n
λ̂t∥∥∥λ̂t∥∥∥

 , ∥∥∥λ̂t∥∥∥ > −σ̂n, λ̂n ≤ 0 (slip)

− 1
εt
λt, λ̂n > 0 (non-contact)

(4.48d)

Therefore, inserting the outlined above terms into Eq. (4.46), we obtain the contri-
bution of the normal and tangential tractions to the balance of virtual work, compare
with the frictionless case (4.10).

4.2 Node-to-rigid-surface discretization approach

In the node-to-rigid-surface approach each contact element is associated to one node
of the surface of the solid, and vice versa: each node belongs to only one element, see
Fig. 4.1. Therefore, the discretised version of the potential contact zone takes the form
Γ = {xi}, 1 ≤ i ≤ m, where xi are the coordinates of the i-th surface node and m is
the number of nodes in the potential contact zone (note that for brevity we preserve
the same notations for discretised entities as were introduced in the continuous problem
statement). Accordingly, the active contact zone also becomes:

Γc = {xi}, i ∈ J , mesJ = m̄, (4.49)

where m̄ is the number of nodes in the active contact state, J is the set of their indices
(i.e. the “active set”), and mesJ is the measure of this set. Consequently, the contact
constraints (2.20) are considered node-wise:

gni ≥ 0, σni ≤ 0, σni gni = 0 at Γ ⇔
{
gni = 0, σni < 0 on Γc

gni > 0, σni = 0 on Γ \ Γc,
(4.50)

where
gni = (xi − c) · ν (4.51)
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Figure 4.1: Node-to-rigid-surface contact discretization: Γ is the potential contact zone,
Γc is the active contact zone.

is the normal gap of the i-th node, cf. (2.18), and σni is the nodal value of the contact
pressure3. Note that the treatment of this value is method-dependent and will be elab-
orated in subsequent sections. Therefore, if the node belongs to Γc, we will say that the
corresponding contact element is active. Furthermore, the frictional constraints, i.e. the
Coulomb’s law of friction (2.69), are also considered node-wise, the detailed formulations
will be given in the sections corresponding to the penalty and augmented Lagrangian
methods.

4.2.1 Method of Lagrange multipliers

We recall the expression for the virtual work of the normal contact traction obtained
using the Lagrange multipliers method, see (4.10):

δW c(u, λn, δu, δλn) =
∫
Γc

(
λn

∂gn(u)
∂u

· δu+ gn(u) δλn
)
dΓ. (4.52)

Using the node-to-surface approach (upon the standard finite-element discretization) we
compute the virtual work δW c as the sum of contributions from each active element:

δW c(U,Ln, δU, δLn) =
∑
i∈J

δW c
i (ui, λni, δui, δλni), (4.53)

We denote by
U = [ui1 , . . .uik , . . .uim̄ ]ᵀ, ik ∈ J (4.54)

a vector of displacements of all nodes in the active contact zone Γc, see (4.49). Fur-
thermore, we append a Lagrange multiplier to each node of the active contact surface,
therefore

Ln = [λni1 , . . . λnik , . . . λnim̄ ]ᵀ, ik ∈ J . (4.55)

Accordingly, we use the same notations for nodal virtual displacements and dual test
functions:

δU = [δui1 , . . . δuik , . . . δuim̄ ]ᵀ, δLn = [δλni1 , . . . δλnik , . . . δλnim̄ ]ᵀ, ik ∈ J . (4.56)

3Alternatively, σni in (4.50) can be seen as the nodal value of the contact reaction force, if linear
elements are used, since nodal pressure and reaction have the same sign in this case. However, it does
not generally hold for 3D quadratic elements
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Ai-1 Ai Ai+1

xi-1 xi xi+1

Figure 4.2: Definition of the area Ai corresponding to i-th contact element in the node-
to-rigid-surface discretization approach.

Next, we write the contribution of the i-th contact element to the balance of virtual
works:

δW c
i =

(
λni

∂gni
∂ui

· δui + gni δλni

)
Ai, (4.57)

where the computation of an integral, cf. (4.52), was replaced by a multiplier Ai rep-
resenting the area associated with the i-th contact element. On the one hand, the
node-to-rigid-surface approach permits to avoid the computation of the area Ai, since
it can be implicitly included into the value of the Lagrange multipliers, e.g.:

λ̄ni = Ai λni, δλ̄ni = Ai δλni. (4.58)

However, in this case Lagrange multipliers λ̄ni represent contact reaction, rather than
traction. On the other hand, the computation of the contact area is important, being a
key quantity determining the interfacial behaviour in many physical problems, see, for
example [Vakis et al., 2018]. Furthermore, the calculation of contact tractions is neces-
sary for verification of the numerical results against known analytical solution, and is
also required for studies such as comparison of local and global coefficients of friction, see
Part III of this dissertation for examples. The contact area corresponding to a node can
be easily computed in 2D (plane strain) problem set-up, see Fig. 4.2 and also [Wriggers,
2006]. However, in the 3D case the computation of the area corresponding to a node is
not straightforward, which is one of the reason for utilization of the face-to-rigid-surface
approach for 3D problems in this dissertation, see next section for more details. For the
sake of generality, we will include Ai in our formulations here explicitly, using the value
corresponding to the current configuration, and by virtue of that Lagrange multipliers
λni will correctly represent the contact pressure.

The contact problem, due to unknown active zone and contact tractions is inevitably
nonlinear, and the numerical approach based on the Newton-Raphson method requires
linearisation of the equation (4.10), i.e. of the balance of virtual work, see [Yastrebov,
2013] for more details on this classic approach. To compute the contribution of each
contact element to the global tangent matrix, we perform (second) variation of the
virtual work (4.57):

∆δW c
i =

(
λni ∆ui ·

∂2gni
∂u2

i

· δui + ∆λni
∂gni
∂ui

· δui + ∆ui ·
∂gni
∂ui

δλni

)
Ai, (4.59)

where the variation of Ai is omitted, which does not have any significant effect on
the convergence of the Newton-Raphson method. Moreover, if the small deformations
assumption is used, the variation of the element’s area is omitted systematically.

The virtual work and its variation can be expressed in a compact form, introducing
the residual vector Rc and the tangent matrix Kc of the (frictionless) contact element
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under the Lagrange multipliers method:

δW c
i =

[
Rc
u

Rc
λ

]
︸ ︷︷ ︸

Rc

ᵀ

·
[
δui

δλni

]
, ∆δW c

i =
[∆ui
∆λni

]ᵀ
·
[

0 Kc
uλ

Kc
λu 0

]
︸ ︷︷ ︸

Kc

·
[
δui

δλni

]
(4.60)

Non-zero components of Rc and Kc can be expressed as:

Rc
u = λniAi ν, Rc

λ = gniAi, Kc
uλ = Kc

λu
ᵀ = Ai ν, (4.61)

where we used (4.51), according to which ∂gni/∂ui = ν, while ∂2gni/∂u
2
i = 0.

As was mentioned in the previous section, the Lagrange multipliers method con-
verts the initial constrained minimization problem into the saddle point problem with
a constraint on Lagrange multipliers: λn ≤ 0, see (4.7). Therefore, a so-called active
set strategy [Wriggers, 2006, Yastrebov, 2013] is required here for two purposes: first,
enforce the constraint on the Lagrange multipliers, and, second, find the active contact
zone. This strategy is essentially a test performed on every iteration of the Newton-
Raphson method to determine whether each contact element is currently active or not.
The test is based on the currently computed values of the normal gap gni and the
Lagrange multiplier λni and can be summarized as follows:{

if gni > 0 or λni > 0 ⇒ i-th element is inactive,
if gni ≤ 0 and λni ≤ 0 ⇒ i-th element is active.

(4.62)

Therefore, it the contact element is active, then its residual vector Rc and tangent
matrix Kc are added to the corresponding entries of the global residual vector and
tangent matrix. If, on the contrary, the element is inactive, then all terms corresponding
to it should be excluded from global structures. Furthermore, the Lagrange multiplier
associated to this element should be eliminated from the global vector of degrees of
freedom. However, the consequent change of the global number of unknowns (possibly
at every iteration) is often undesirable, especially in case of an implicit finite-element
code. Alternatively, the residual vector and tangent matrix can be altered to avoid this
change, e.g. by putting:

Rc = 0, Kc
uu = 0, Kc

uλ = Kc
λu

ᵀ = 0, Kc
λλ = 1, (4.63)

in case of inactive element, as suggested in [Yastrebov, 2013].
Finally, as was mentioned in Section 4.1.1, the method of Lagrange multipliers can

be also used to handle frictional constraints [Tur et al., 2009]. However, the active
set strategy becomes sophisticated to be able to correctly determine the stick and slip
zones. Thus, we do not discuss this approach here and use the penalty or augmented
Lagrangian methods in the frictional case.

4.2.2 Penalty method

Frictionless case

Let us recall the virtual work of the normal contact tractions obtained using the penalty
method, see (4.21):

δW c(u, δu) =
∫
Γ

−εn 〈−gn〉 δgn dΓ =
∫
Γ

−εn 〈−gn〉
∂gn
∂u
· δu dΓ. (4.64)
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Using the node-to-rigid-surface approach, we associate a contact element with each node
of the surface Γ, and therefore, we may compute the virtual work of the contact as a
sum of contributions from each element:

δW c(U, δU) =
m∑
i=1

δW c
i (ui, δui) =

m∑
i=1
−εn 〈−gni〉Ai

∂gni
∂ui

· δui, (4.65)

where Ai is the contact area associated to the i-th contact element, see Fig. 4.2 and
discussions in Sec. 4.2.1. Note that here U = [u1, . . .ui, . . .um]ᵀ, 1 ≤ i ≤ m, is the vector
of nodal displacements of all m nodes on Γ; accordingly, δU = [δu1, . . . δui, . . . , δum]ᵀ,
1 ≤ i ≤ m.

The status of the i-th contact element is readily determined by computing gni. Thus,
depending on the status, the virtual work can be expressed as:

δW c
i =

εnAi gni
∂gni
∂ui

· δui, gni ≤ 0, (contact)

0, gni > 0, (non-contact).
(4.66)

Accordingly, the second variation reads:

∆δW c
i =

εnAi ∆ui ·
[
∂gni
∂ui

⊗ ∂gni
∂ui

]
· δui, gni ≤ 0, (contact)

0, gni > 0, (non-contact),
(4.67)

where ⊗ is the tensor product, and, similarly to the Lagrange multipliers method dis-
cussed in Sec. 4.2.1, the area Ai is not subject to variation.

Next, we introduce the residual vector Rc and the tangent matrix Kc of the (fric-
tionless) contact element in the penalty formulation:

δW c
i = Rc

u · δui, ∆δW c
i = ∆ui ·Kc

uu · δui. (4.68)

Using the definition of the normal gap (2.18), we may write expressions for the residual
vector and tangent matrix as:

Rc
u =

{
εn gniAi ν, gni ≤ 0
0, gni > 0,

Kc
uu =

{
εnAi ν ⊗ ν, gni ≤ 0
0, gni > 0.

(4.69)

Frictional case

In the frictional case, the virtual work of the contact traction reads:

δW c =
∫

Γstick

(εngnδgn − εtg̃t · δgt) dΓ +
∫

Γslip

(εngnδgn + µ εn gn s · δg̃t) dΓ. (4.70)

According to the node-to-rigid-surface approach, we replace it by a sum of contributions
from each contact element, associated with a node of the surface Γ:

δW c(U, δU) =
m∑
i=1

δW c
i (ui, δui), (4.71)

where ui is the displacement vector of the i-th node, U is a vector of displacements of all
nodes on Γ, and δU is a vector of corresponding virtual displacements. We recall that
the status of the contact element (active or not active) can be determined by the value
of the normal gap of its node, similarly to the frictionless case (4.66). Furthermore, the
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frictional state (stick or slip) of the active contact element is defined using the return
mapping algorithm, outlined in Algorithm 1. Then the contribution of one contact
element, depending on its status and frictional state reads:

δW c
i = Ai



εn gni
∂gni
∂ui

· δui − εt g̃ti ·
∂g̃ti
∂ui
· δui, (stick)

εn gni
∂gni
∂ui

· δui + εn µ gni si ·
∂gti
∂ui
· δui, (slip)

0, (non-contact).

(4.72)

We recall also that in the quasi-static analysis the slip vector gti represents the incre-
mental value of slip with respect to the previous loading step, see (4.23).

Let us examine separately the stick and slip states. In the former case, the “slip-in-
stick” vector g̃ti and its derivative with respect to the displacement degrees of freedom
read, see also (4.33):

g̃ti = (I − ν ⊗ ν) · (xi − xsi),
∂g̃ti
∂ui

= I − ν ⊗ ν, (4.73)

where xsi is the correspond stick position. Then the second variation of the virtual work
in the stick state is computed as follows:

∆δW c
i stick = Ai

(
εn ∆ui ·

[
∂gni
∂ui

⊗ ∂gni
∂ui

]
· δui − εt ∆ui ·

[
∂g̃ti
∂ui
· ∂g̃ti
∂ui

]
· δui

)
. (4.74)

In case of slip, the direction of the slip vector and its derivative read:

si = (I − ν ⊗ ν) · (xi − xsi)
‖(I − ν ⊗ ν) · (xi − xsi)‖

,
∂si
∂ui

= I − ν ⊗ ν − si ⊗ si
‖(I − ν ⊗ ν) · (xi − xsi)‖

, (4.75)

providing the following expression for the second variation of the virtual work:

∆δW c
i slip =Ai

(
εn ∆ui ·

[
∂gni
∂ui

⊗ ∂gni
∂ui

]
· δui + εn µ∆ui ·

[
∂gni
∂ui

⊗
(
si ·

∂gti
∂ui

)]
· δui

+ εn µ gni ∆ui ·
[
∂si
∂ui
· ∂gti
∂ui

]
· δui

)
. (4.76)

In the non-contact state, obviously, the second variation simply vanishes:

∆δW c
i non-contact = 0. (4.77)

Finally, we introduce the residual vector Rc and the tangent matrix Kc of the fric-
tional contact element in the penalty formulation:

δW c
i = Rc

u · δui, ∆δW c
i = ∆ui ·Kc

uu · δui, (4.78)

which are expressed as follows:

Rc
u = Ai



εn gni ν − εt (I − ν ⊗ ν) (xi − xsi), (stick)

εn gni ν + εn µ gni
(I − ν ⊗ ν) · (xi − xsi)
‖(I − ν ⊗ ν) · (xi − xsi)‖

, (slip)

0, (non-contact),

(4.79)
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Kc
uu = Ai



εn (ν ⊗ ν)− εt (I − ν ⊗ ν) · (xi − xsi), (stick)

εn (ν ⊗ ν) + εn µ (ν ⊗ si) + εn µ gni
I − ν ⊗ ν − si ⊗ si

‖(I − ν ⊗ ν) · (xi − xsi)‖
, (slip)

0, (non-contact),
(4.80)

where we used that the derivative of the slip vector reads:

∂gti
∂ui

= I − ν ⊗ ν, (4.81)

and, therefore, the following identities hold:

si ·
∂gti
∂ui

= si,
∂si
∂ui
· ∂gti
∂ui

= ∂si
∂ui

. (4.82)

4.2.3 Augmented Lagrangian method

The virtual work of contact tractions, obtained using the augmented Lagrangian method,
reads:

δW c(u, λn,λt, δu, δλn,δλt; σ̂n) =∫
Γ

(
∂ln
∂gn

δgn + ∂ln
∂λn

δλn + ∂lt
∂gt
· δgt + ∂lt

∂λt
· δλt

)
dΓ, (4.83)

where, as before,

δgn = ∂gn
∂u
· δu = ν · δu, δgt = ∂gt

∂u
· δu = (I − ν ⊗ ν) · δu. (4.84)

We recall also, that the term lt depends on the so-called augmented contact pressure
σ̂n = σn + εn gn, however, the corresponding derivative is not included in the contact
virtual work, see Sec. 4.1.3 and also [Alart and Curnier, 1991, Pietrzak and Curnier,
1999].

Following the node-to-rigid-surface discretization approach, we approximate the con-
tact virtual work integral by a sum of contributions from each contact element:

δW c(U,Ln,Lt, δU, δLn, δLt; Ŝn) =
m∑
i=1

δW c
i (ui, λni,λti, δui, δλni, δλti; σ̂ni), (4.85)

where we introduced the nodal values of the displacement vector ui, normal and tan-
gential gaps gni and gti, nodal Lagrange multipliers λni and λti. Additionally, the
augmented versions of Lagrange multipliers are considered:

λ̂ni = λni + εngni, λ̂ti = λti + εngti, (4.86)

as well as the nodal value of the augmented contact pressure σ̂ni. Furthermore, we
denote by U, Ln and Lt vectors of displacements and Lagrange multipliers of all nodes
on the surface Γ, while δU, δLn and δLt are vectors of corresponding test functions,
and, finally, Ŝn is a vector of nodal values of augmented contact pressure.

Note that for brevity and simplicity in this section we will omit the index i for
all aforementioned entities, assuming that the presented formulation is valid for each
contact element.

First, we recall that the status (active or non-active) and frictional state (stick or
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slip) are determined using the values of the augmented Lagrange multipliers λ̂n and λ̂t
as follows: 

λ̂n ≤ 0,
∥∥∥λ̂t∥∥∥ ≤ −µλ̂n, (stick)

λ̂n ≤ 0,
∥∥∥λ̂t∥∥∥ > −µλ̂n, (slip)

λ̂n > 0, (non-contact)

(4.87)

Then, depending on the contact status and the frictional state, the virtual work of a
contact element reads:

δW c
i = Ai



λ̂n δgn + gn δλn + λ̂t · δgt + gt · δλt, (stick)

λ̂n δgn + gn δλn − µσ̂n
λ̂t∥∥∥λ̂t∥∥∥ · δgt −

1
εt

λt + µσ̂n
λ̂t∥∥∥λ̂t∥∥∥

 · δλt, (slip)

− 1
εn
λn δλn −

1
εt
λt · δλt, (non-contact)

(4.88)
where Ai is the contact area corresponding to the considered element. For the subse-
quent resolution in the finite-element framework, we formulate the residual vector of the
contact element:

δW c
i =


Rc
u

Rc
λn

Rc
λt


ᵀ

·


δu

δλn

δλt˜

 (4.89)

with the following components:

Rc
u = Ai


λ̂n ν + λ̂t · (I − ν ⊗ ν) , (stick)

λ̂n ν + µ σ̂n s · (I − ν ⊗ ν) , (slip)

0, (non-contact)

(4.90a)

Rc
λn = Ai


gn, (stick)

gn, (slip)

− 1
εn
λn, (non-contact)

(4.90b)

Rc
λt = Ai



gt˜ , (stick)

− 1
εt

(
λt˜ − µσ̂ns˜

)
, (slip)

− 1
εt
λt˜, (non-contact)

(4.90c)

where the vector s denotes the direction opposite to the one of the frictional traction:

s = − λ̂t∥∥∥λ̂t∥∥∥ . (4.91)

Moreover, in the above formulas a new notation is used, such as λt˜, s˜, gt˜ and λt˜. We
note first that the term λt is equivalent to the frictional traction in the contact interface,
and therefore is represented by a vector which belongs to the plane corresponding to
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the rigid flat. We recall also that the plane is defined by a normal ν and a point c,
which belongs to the plane. Furthermore, we may introduce a local coordinate system
associated with this plane and represented by two orthonormal vectors τ 1 and τ 2, see
Fig. 4.3. Consequently, rather then searching for 3 unknown components of the vector

Figure 4.3

λt in the basis {ex, ey, ez}, we may consider the representation of this vector in the
basis {τ 1, τ 2}:

λt = λ
(1)
t τ 1 + λ

(2)
t τ 2 (4.92)

In order to simplify the formulation of the residual vector and the tangent matrix, we
introduce the following notation:

λt = λt˜ · T˜ , (4.93)

where λt˜ is a (2D) set of coordinates of the vector λt in the basis {τ 1, τ 2}:

λt˜ =
[
λ

(1)
t

λ
(2)
t

]
, (4.94)

termed as a “v-scalar” in the “s-structures” formalism introduced in [Yastrebov, 2013].
The second entity, T˜ , is a (2D) set of two 3D vectors τ 1 and τ 2:

T˜ =
[
τ 1
τ 2

]
, (4.95)

i.e. a “v-vector” in the terminology of [Yastrebov, 2013]. Note that the set of coordinates
λt˜ is obtained by the following operation:

λt˜ = T˜ λt =
[
τ 1 · λt
τ 2 · λt

]
=
[
λ

(1)
t

λ
(2)
t

]
. (4.96)

Furthermore, we may write in the same form the variation of the vector λt:

δλt = δλ
(1)
t τ 1 + δλ

(2)
t τ 2 =

[
δλ

(1)
t

δλ
(2)
t

]ᵀ
· T˜ = δλt˜ · T˜ , δλt˜ = T˜ λt. (4.97)

Moreover, we note that the representation (4.91) is possible for any vector, which belongs
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to the plane corresponding to the rigid flat, such as vector s:

s = s(1) τ 1 + s(2) τ 2 =
[
s(1)

s(2)

]ᵀ
· T˜ = s˜ · T˜ , s˜ = T˜ s, (4.98)

and vector gt:

gt = g
(1)
t τ 1 + g

(2)
t τ 2 =

[
g

(1)
t

g
(2)
t

]ᵀ
· T˜ = gt˜ · T˜ , gt˜ = T˜ gt. (4.99)

The next step is the computation of the second variation of the contact virtual work
to the balance of virtual work. It is important to note that at this stage the augmented
contact pressure σ̂n becomes an unknown and is replaced by the augmented Lagrangian
multiplier λ̂n, see [Pietrzak and Curnier, 1999]. Consequently, the variation is also
performed with respect to this term. Therefore, separately considering the stick, slip
and non-contact states, we obtain:

∆δW c
i stick =Ai

(
εn∆gn δgn + ∆λn δgn + ∆gn δλn

+ εt∆gt · δgt + ∆λt · δgt + ∆gt · δλt
)

(4.100a)

∆δW c
i slip =Ai

(
εn∆gn δgn + ∆λn δgn + ∆gn δλn −

1
εt

∆λt · δλt

− µεn ∆gn
λ̂t∥∥∥λ̂t∥∥∥ · δgt − µ∆λn

λ̂t∥∥∥λ̂t∥∥∥ · δgt
− µ εt λ̂n∥∥∥λ̂t∥∥∥ ∆gt · δgt −

µ λ̂n∥∥∥λ̂t∥∥∥∆λt · δgt

− µ εn
εt

∆gn
λ̂t∥∥∥λ̂t∥∥∥ · δλt −

µ

εt
∆λn

λ̂t∥∥∥λ̂t∥∥∥ · δλt
− µλ̂n∥∥∥λ̂t∥∥∥ ∆gt · δλt −

µλ̂n

εt
∥∥∥λ̂t∥∥∥ ∆λt · δλt

+ µ εt λ̂n∥∥∥λ̂t∥∥∥3 ∆gt ·
(
λ̂t ⊗ λ̂t

)
· δgt + µ λ̂n∥∥∥λ̂t∥∥∥3 ∆λt ·

(
λ̂t ⊗ λ̂t

)
· δgt

+ µ λ̂n∥∥∥λ̂t∥∥∥3 ∆gt ·
(
λ̂t ⊗ λ̂t

)
· δλt + µ λ̂n

εt
∥∥∥λ̂t∥∥∥3 ∆λt ·

(
λ̂t ⊗ λ̂t

)
· δλt

)
(4.100b)

∆δW c
i non-contact = −Ai

( 1
εn

∆λn δλn + 1
εt

∆λt · δλt
)

(4.100c)

Equivalently, the second variation of the virtual work may be represented using the
tangent matrix of the element:

∆δW c
i =


∆u

∆λn
∆λt˜


ᵀ

·


Kc
uu Kc

uλn
Kc
uλt

Kc
λnu

Kc
λnλn

Kc
λnλt

Kc
λtu

Kc
λtλn

Kc
λtλt

 ·

δu

δλn

δλt˜

 (4.101)
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The expressions for the corresponding terms of the matrix are the following:

Kc
uu =Ai


εn ν ⊗ ν + εt (I − ν ⊗ ν) , (stick)

εn ν ⊗ ν + εn µν ⊗ s−
µεtλ̂n∥∥∥λ̂t∥∥∥ (I − ν ⊗ ν − s⊗ s) , (slip)

0, (non-contact)

(4.102a)

Kc
uλn =Ai


ν, (stick)
ν, (slip)
0, (non-contact)

(4.102b)

Kc
λnu =Ai


νᵀ, (stick)
(ν + µs)ᵀ, (slip)
0, (non-contact)

(4.102c)

Kc
λnλn =Ai


0, (stick)
0, (slip)

− 1
εn
, (non-contact)

(4.102d)

Kc
uλt =Ai


T˜ ᵀ, (stick)

− µλ̂n∥∥∥λ̂t∥∥∥ (I − s⊗ s) · T˜ ᵀ + µεn
εt

(ν ⊗ s) · T˜ ᵀ, (slip)

0, (non-contact)

(4.102e)

Kc
λtu =Ai


T˜ , (stick)

− µλ̂n∥∥∥λ̂t∥∥∥ T˜ · (I − s⊗ s) , (slip)

0, (non-contact)

(4.102f)

Kc
λnλt =Ai


0, (stick)
−µ
εt
s˜ᵀ, (slip)

0, (non-contact)

(4.102g)

Kc
λtλn =0 (4.102h)

Kc
λtλt =Ai



0, (stick)

− 1
εt
I˜ − µλ̂n

εt
∥∥∥λ̂t∥∥∥

(
I˜ − T˜ · (s⊗ s) · T˜ ᵀ

)
, (slip)

− 1
εt
I˜, (non-contact)

(4.102i)

where I˜ = T˜ · T˜ ᵀ, i.e.

I˜ =
[
1 0
0 1

]
. (4.103)
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Note that the following equalities were also used:

T˜ · (I − ν ⊗ ν) = T˜ , (I − ν ⊗ ν) · T˜ ᵀ = T˜ ᵀ. (4.104)

4.3 Face-to-rigid-surface discretization approach

Here we introduce contact resolution methods formulated in Sec. 4.1 into the finite-
element framework, using the “face-to-rigid-surface” approach, which is an alternative
to the discussed above “node-to-rigid-surface” technique, see Sec. 4.2. The “face-to-rigid-
surface” approach associates each contact element with an edge (in 2D) or a face (in
3D) of the potential contact zone Γ, rather then with a single node, and, consequently,
has considerable benefits for the problem under study involving fluid flow in contact
interfaces.

Indeed, as was discussed in Sec. 2.5, the solution of this coupled problem requires
partition of the interface into contact, fluid-flow and, possibly multiple, trapped fluid
zones. The fluid pressure in the fluid-flow domain is handled by the Reynolds equation,
defined on the lubrication surface associated with the rigid flat, see Sec. 2.5.2. In Sec. 6.1,
applying a standard finite-element approach to elliptic equations, each fluid-flow element
will be based on the projection of a face of the solid’s surface Γ on the rigid flat.
Furthermore, the trapped fluid element, which will be introduced in the Chapter 5, is
based on an agglomeration of faces of Γ. Therefore, in order to make the identification of
the interface status self-consistent, it appears natural to associate contact elements also
with faces of the surface Γ, which will be exploited in the resolution procedure in Sec. 6.4.
Moreover, as was already mentioned, the computation of the contact area is by itself of
great importance for problems of contact between rough surfaces, see for example, [Vakis
et al., 2018]. However, the computation of the area corresponding to a contact element in
the “node-to-rigid-surface” approach in 3D set-up is not straightforward, see discussion
in Sec. 4.2, while using the “face-to-rigid-surface” technique the area of each element is
obtained naturally.

In order to use the “face-to-rigid-surface” approach, for every point on the surface Γ
we consider the interpolation of the gap and of the normal traction as, respectively:

gn =
m∑
i=1

Ni gni, σn =
m∑
i=1

Ni σni, (4.105)

where gi is the nodal gap value, σni is the nodal value of the contact pressure (treatment
of which is method-dependent and will be discussed in detail below), Ni is the shape
function associated with the node i, and m is the total number of nodes on surface Γ.
Note that the same shape functions are used here for interpolation of geometric gap
and surface tractions, however, it is not a necessary condition. Furthermore, we used
bilinear shape functions associated with quadrilateral faces of the discretized surface,
nonetheless, polynomials of different order could be utilized, see a discussion in [Puso
et al., 2008].

It is important to note, that in case of the considered interpolation (4.105) contact
constraints (2.68b) cannot be satisfied point-wise on the surface Γ. To overcome this
inconsistency, we use the mortar approach [Puso, 2004, Puso and Laursen, 2004a, Puso
and Laursen, 2004b] and consider the third condition in (2.68b) in the integral form
over the surface Γ: ∫

Γ

σn gn dΓ = 0. (4.106)

Substituting (4.105) into (4.106) and considering two first conditions of (2.68b) in
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every node of the surface Γ, we obtain the following discrete (nodal) form of the contact
conditions:

g̃i ≥ 0, σni ≤ 0, σni g̃i = 0, 1 ≤ i ≤ m, (4.107)

where g̃i is termed as the integral (weighted) gap associated with node i and is given
by:

g̃i =
m∑
j=1

gj

∫
Γ

NiNj dΓ. (4.108)

The resolution of nodal contact constraints (4.107) also requires the use of the op-
timization methods. The classic Lagrange multiplier method (Sec. 4.1.1) becomes inel-
igible for the “face-to-rigid-surface” approach, since the additional degrees of freedom,
appended to each node of the surface, will be shared between several contact elements,
some of which can be in active contact, while others are not (e.g. in the vicinity of
the contact zone’s boundary). Consequently, the active set strategy, see (4.62), and the
necessary elimination of the Lagrange multipliers which do not belong to active contact
elements become tedious. The penalty method (Sec. 4.1.2) does not introduce additional
DOFs, however, using this approach the contact constraints are never satisfied exactly.
Thus, the penetration occurs in the contact zone, which could lead to inconsistencies
in handling the fluid flow near the boundaries of the contact patches. Therefore, we
used the augmented Lagrangian method (Sec. 4.1.3), which possesses the benefits of the
classic Lagrange multipliers (exact satisfaction of the constraints) and penalty methods
(active set strategy is not needed, nor the elimination of additional DOFs in non-contact
zones).

Note that the frictional contact will not be considered in the “face-to-rigid-surface”
approach, due to a significant complexity of its implementation in the mortar frame-
work, see [Puso and Laursen, 2004b]. Furthermore, for the problem involving fluid flow
in contact interfaces, to simplify our discussion and concentrate it on the two-way cou-
pling aspects, we use the small deformations and small rotations assumptions, which is
justified (at least partially) by the requirement of small slopes of the roughness profile for
the validity of the Reynolds equation in certain applications, see Section 2.3.3 and dis-
cussions in [Brown et al., 1995]. Nevertheless, the necessary modifications to take into
account large deformations and/or large rotations could be added into the presented
framework. Note also that a separate problem of trapped fluid in contact interface in
a plane strain formulation is solved in Chapter 7 considering frictional constraints and
large deformations/rotations formulation.

4.3.1 Augmented Lagrangian method

Contact conditions (4.107) lead to a constrained minimization problem for the potential
energy of deformed solid Πs, in order to resolve it we append Lagrange multipliers
λi, i = 1 . . .m to each node of the surface Γ and introduce the following augmented
Lagrangian functional, see also [Alart and Curnier, 1991, Cavalieri and Cardona, 2013]:

La(U,L) = Πs(U) +W c(U,L), (4.109)

where W c represents the “potential” energy of the contact and is given by:

W c(U,L) =
m∑
i=1


λig̃i + ε

2 g̃
2
i , if λ̂i ≤ 0,

− 1
2ελ

2
i , if λ̂i > 0,

(4.110)
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Γ

Γc

λ1

λ4

λ2

λ3

rigid flat

solid

g2

ex

ez ey

g1

g4

g3

Γel
c

Γel
c

Figure 4.4: Sketch of the interface highlighting contact elements: Γ is the potential
contact zone, Γc is the active contact zone (active set), Γc

el is a face associated to one
contact element, λ is the Lagrange multiplier, which represents contact pressure and is
attributed to each node of the surface Γ, gn is the gap function: gn = 0 on Γc and gn > 0
on Γ \ Γc.

where ε is the so-called augmentation parameter and the following notation of the aug-
mented Lagrange multiplier is introduced: λ̂i = λi + εg̃i, the sign of which defines
the contact state of the node: if λ̂i ≤ 0 the node belongs to the active set, while if
λ̂i > 0 the node is not in contact. Note that in formulas (4.109)-(4.110) we denote by
U = [u1,u2, . . .um]ᵀ and L = [λ1, λ2, . . . λm]ᵀ vectors of nodal displacements and values
of Lagrange multipliers, respectively. Note that once the solution is obtained, values of
Lagrange multipliers λi are equal to respective nodal values of the contact pressure σni.

The solution of the contact problem is equivalent to the stationary saddle point of
the Lagrangian (4.109), at which its variation vanishes:

δLa(U,L) = ∂Πs(U)
∂U · δU + ∂W c(U,L)

∂U · δU + ∂W c(U,L)
∂L δL = 0. (4.111)

In order to derive the contribution of each contact element to the last two terms in (4.111)
and determine the element’s status (independently from the neighbouring elements) we
define the restrictions of the integral gap (4.108) to the face Γel associated with the
contact element:

g̃i =
n∑
j=1

gj

∫
Γel

NiNj dΓel =
n∑
j=1

gj Iij , (4.112)

where n is the total number of nodes of the face Γel, g̃i is the integral gap of the i-th
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node computed over the current face only, and the weights Iij are calculated as:

Iij =
1∫
−1

1∫
−1

NiNj J dξ dη, (4.113)

where J is the Jacobian of the transformation of the physical coordinates x = (x, y, z)
on the surface Γel to the face’s coordinates in the parent space ξ = (ξ, η):

J =
∣∣∣∣∂x∂ξ × ∂x

∂η

∣∣∣∣ , x =
n∑
i=1
xiNi (4.114)

where xi is the position of the i-th node of the face. Using the Gauss quadrature rules,
the integral in (4.113) is computed as:

Iij =
ngp∑
k=1

wkNi(ξk)Nj(ξk)J(ξk) (4.115)

where ngp is the number of Gauss points associated with the face Γel, wk is the weight
coefficient of the k-th Gauss point, and ξk are its coordinates in the parent space.

In order to find the contribution of each contact element to the balance of virtual
works, we calculate the variation of (4.110):

δW c
el =

n∑
i=1


λ̂i

n∑
j=1

Iij
∂gj
∂uj

δuj + g̃iδλi, λ̂i ≤ 0

−1
ε
λiδλi, λ̂i > 0

(4.116)

where uj is the displacement vector of the node j. Note that in accordance with the
infinitesimal strain formulation the Jacobian is not variated. We shall term hereinafter
an element as active if at least at one of its nodes λ̂i ≤ 0, i = 1 . . . n, and inactive
otherwise.

In order to perform linearisation of the problem, we calculate the second variation
of the virtual work δW c

el:

∆δW c
el =

n∑
i=1



ε
n∑
j=1

Iij
∂gj
∂uj

δuj

n∑
k=1

Iik
∂gk
∂uk

∆uk

+
n∑
j=1

Iij
∂gj
∂uj

(δuj∆λi + ∆ujδλi) , λ̂i ≤ 0

−1
ε
δλi∆λi, λ̂i > 0.

(4.117)

Finally, the virtual work (4.116) and its variation (4.117) could be expressed in a
compact form, introducing the residual vector Rc and the tangent matrix Kc of a contact
element:

δW c
el =

[
Rc
u

Rc
λ

]
︸ ︷︷ ︸

Rc

ᵀ [
δu

δλ

]
, ∆δW c

el =
[∆u

∆λ

]ᵀ [Kc
uu Kc

uλ

Kc
λu Kc

λλ

]
︸ ︷︷ ︸

Kc

[
δu

δλ

]
, (4.118)

where for brevity we slightly abuse the notation implying δu = [δu1, . . . , δun]ᵀ, ∆u =
[∆u1, . . . ,∆un]ᵀ and, accordingly, δλ = [δλ1, . . . , δλn]ᵀ, ∆λ = [∆λ1, . . . ,∆λn]ᵀ. We
provide also detailed expressions for residual vector and tangent matrix of the contact
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Figure 4.5: Sketch on the computation of the real contact area. Red circles represent
nodes with λ̂i ≤ 0, black ones correspond to λ̂i > 0. The dashed area represents the
contact area computed by summing up areas of all active elements, see (4.120). The
shaded area is obtained by a refined approach of summing up areas corresponding to
nodes with λ̂i ≤ 0, computed using the nearest Gauss point to node i, see (4.121).

element:

Rc
u =

[
Rc

u1 , . . . ,R
c
un
]ᵀ
, Rc

uj =
n∑
i=1

λ̂i Iij
∂gj
∂uj

, λ̂i ≤ 0

0, λ̂i > 0;
(4.119a)

Rc
λ =

[
Rc
λ1 , . . . ,R

c
λn

]ᵀ
, Rc

λi =

g̃i, λ̂i ≤ 0

−1
ε
λi, λ̂i > 0;

(4.119b)

Kc
ukuj =

n∑
i=1

ε Iij
∂gj
∂uj

Iik
∂gk
∂uk

, λ̂i ≤ 0

0, λ̂i > 0;
(4.119c)

Kc
λiuj = Kc

ujλi =

Iij
∂gj
∂uj

, λ̂i ≤ 0

0, λ̂i > 0;
(4.119d)

Kc
λiλi =

0, λ̂i ≤ 0

−1
ε
, λ̂i > 0,

Kc
λiλj = 0 if i 6= j. (4.119e)

The residual vector Rc and tangent matrix Kc are updated on each iteration of the
Newton-Raphson method and added to the corresponding entries of the global residual
vector and tangent matrix. Note that in the frictionless case considered here the tangent
matrix of the contact element is symmetric, i.e. Kc

uλ = Kc
λu.

4.3.2 Post-processing computation of the real contact area

The presented above contact element formulation is sufficient for resolution of the contact
constraints (4.107). However, during the post-processing stage, different methods may
be applied to compute the real contact area. A possible straightforward approach is to
sum up areas Ael of faces Γel associated with active elements, i.e. the ones that have at
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least one node with λ̂i ≤ 0 (dashed areas in Fig. 4.5):

Ael =


ngp∑
k=1

wk J(ξk), ∃ i ∈ [1, . . . , n] : λ̂i ≤ 0

0, ∀ i ∈ [1, . . . , n] : λ̂i > 0,
(4.120)

where n is the number of nodes of the contact element, ngp is the number of Gauss
points associated with the face Γel, wk is the weight coefficient of the k-th Gauss point,
and ξk are its coordinates in the parent space.

However, our study showed that this method of computation of the contact area leads
to a significant overestimation of the latter. We propose here a more precise approach
to computing of the contact area: considering separately each contact element, only if
λ̂i ≤ 0 at a node i, we add up to the contact area contribution from the Gauss point
closest to this node (shaded area in Fig. 4.5):

Ael =
n∑
i=1

{
wi J(ξi), λ̂i ≤ 0
0, λ̂i > 0,

(4.121)

where wi and ξi are the weight coefficient and the position of a Gauss point closest to
the node i. Note that we assumed here that n (the number of element’s nodes where
Lagrange multipliers λi are considered) equals to ngp (the number of Gauss points of the
corresponding face). However, it might not be the case if, for example, shape functions
of different order are used for interpolation of the geometry and of the contact pressure,
cf. (4.105), see also [Puso et al., 2008], and a different refined approach of the real contact
area computation will be required. The comparison of two discussed approaches to real
contact area computation will be presented below.
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Chapter 5

Resolution of the trapped fluid
problem

Résumé de Chapitre 5 “Résolution du problème de fluide
piégé”

Dans ce chapitre, nous présentons un cadre numérique pour la résolution du problème de
fluide piégé dans une interface de contact définie entre un solide déformable et un plan
rigide. Nous considérons le cas général et autorisons un remplissage partiel de la cavité.
Cette formulation s’ajoute au problème de contact présenté au chapitre 4 par le biais
de contraintes supplémentaires associées au fluide piégé. Ensuite, nous proposons deux
méthodes pour résoudre ces contraintes, offrant la possibilité de simuler un fluide piégé
incompressible ou compressible. Enfin, les deux approches mises en œuvre par éléments
finis sont comparées: le nouveau “super-élément” et la formulation standard.

In this chapter we present a numerical framework for the problem of the trapped
fluid in a contact interface between a deformable solid and a rigid flat. In Section 2.5
we formulated the statement of the coupled problem involving contact, fluid flow and
trapped fluid zones, assuming that the fluid occupies the whole free volume between the
contacting surfaces. However, in Chapter 7 we will study separately the effect of the
trapped fluid on the contact problem without fluid flow in the interface. In that problem
set-up we will consider a more general case and allow a partial filling of the trapped pool
by a liquid (while the effect of a gas, which could be present in the remaining part of
this volume, is neglected). Therefore, the possibility for partial filling is to be also taken
into account in the formulation presented here, while the same framework (without that
possibility) will be used for coupled problem involving the fluid flow in Chapters 8 and 9.

Since the trapped fluid problem in the form considered in this dissertation is in-
separable from the contact problem, the subsequent developments will be based on the
contact resolution framework discussed in Chapter 4. Thus, we will enhance the con-
tact problem by considering additional constraints associated with the trapped fluid,
see Sec. 2.5.4. We will discuss two different methods of resolution of these constraints,
providing possibility to simulate both incompressible and compressible trapped fluid.
Furthermore, two different approaches to the subsequent implementation in a finite-
element framework will be given. This model will be formulated for a single trapped
fluid pool, implying that the proposed approaches can be used thereupon for an arbitrary
number of trapped fluid zones in the interface.

81
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Figure 5.1: (a) Trapped fluid is in inactive state. (b) Trapped fluid is in active state.
Note that the presented sketch corresponds to the plane strain problem statement (no
dependency on the y-coordinate): fluid is trapped inside of a “valley” contained between
two contact zones. In a 3D problem set-up fluid entrapment is possible only inside of a
“pool” bounded by a non-simply connected contact patch.

5.1 Trapped fluid constraints
First, we recall that the volume of the gap between the surface of the solid and the rigid
flat is given by, see (2.76):

V (u) =
∫

Γ\Γc

gn(u)(−n · ν) dΓ, (5.1)

where Γ is the potential contact zone (which defines the extent of the contact interface),
Γc is the active contact zone, gn is the normal gap function defined in (2.18), n is the
outward normal to the surface of the solid and ν is the normal to the rigid flat.

Let us consider a volume of fluid trapped inside of a “pool” bounded by a non-
simply connected contact patch (in a 3D problem statement), or inside of a “valley”
contained between two contact zones (in the plane strain problem set-up, see Fig. 5.1).
For simplicity, we assume that the non-contact part of the surface Γ corresponds only
to the considered “pool”.

The fluid may fill completely or partially the gap between the contacting surfaces,
therefore it can be present in two different states: “inactive”, when V > V tf and the
fluid is not pressurized (ptf = 0), and “active”, when V = V tf, and pressure in the fluid
ptf > 0, see Fig. 5.1(a) and 5.1(b), respectively. We may formulate this two states in a
way similar to Hertz-Signorini-Moreau constraints for the unilateral contact (2.21):

V ≥ V tf, ptf ≥ 0, ptf (V − V tf) = 0 ⇔
{
V = V tf, ptf > 0, (active)
V > V tf, ptf = 0, (inactive).

(5.2)

Below we will discuss how methods of the optimization theory can be used to han-
dle the constraints (5.2) and also to include the models of incompressible (2.73) and
compressible (2.74)-(2.75) trapped fluid into the computational framework.

5.1.1 Incompressible fluid model

Let us consider first the model of the incompressible fluid: while it remains trapped,
the fluid volume V tf must be constant and equal to the initial volume V tf

0 . If the fluid
is in the inactive state, it does not introduce additional constraints, and we obtain a
mechanical contact problem between the deformable solid and the rigid flat, which was
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already discussed in Chapter 4. If, on the contrary, the fluid is in the active state, we
must consider additionally the gap volume constraint: V = V tf, or, since the fluid is
incompressible, V = V tf

0 . The Lagrange multiplier method (see its application to the
contact problem in Sec. 4.1.1) can be used to fulfill this constraint. Thus, the combined
Lagrangian for the coupled trapped fluid problem can be defined as:

L(u, λn, λtf) = Πs(u) +
∫
Γc

λn g(u) dΓc − λtf
(
V (u)− V tf

0

)
, (5.3)

where Πs(u) the potential energy of the system, λn ≤ 0 is the Lagrange multipliers
function representing normal contact tractions, and λtf ≥ 0 is the Lagrange multiplier
for the trapped fluid, which is equivalent to the fluid pressure ptf. The solution of
the coupled problem is a stationary point (u, λn, λtf),u ∈ V, λn ≤ 0, λtf ≥ 0 of the
Lagrangian (5.3) at which its variation vanishes:

δL(u, λn, λtf) = DΠs(u) · δu+
∫
Γc

[
λn
∂g(u)
∂u

· δu+ g(u) δλn
]
dΓc (5.4a)

−
[
λtfDV (u) · δu+

(
V (u)− V tf

0

)
δλtf

]
= 0, (5.4b)

∀ δu ∈ V, ∀ δλn ∈M, ∀ δλtf ∈ R, (5.4c)

where the function spaces V andM were introduced in (3.3) and (4.4), while the single
Lagrange multiplier for the trapped fluid is simply a scalar, and the notation of the
directional derivative was used, see (3.34) and (4.11). Note that terms corresponding
to the virtual work of contact tractions and to contact constraints, see (5.4a), have
the same form as in Sec. 4.1.1, whilst two additional terms appear in the variation of
the coupled Lagrangian, see (5.4b). The first term in (5.4b) is the virtual work of the
trapped fluid, cf. (3.35), and the second term enforces the gap constraint V (u) = V tf

0
in the active state, compare with the analogous equation for the contact constraint
gn(u) = 0, see (4.12b).

Note that only the case of frictionless contact is handled by the Lagrangian (5.3),
however, the interface friction can be readily taken into account using the penalty
method or the augmented Lagrangian method, as discussed in Sec. 4.1.2 and 4.1.3,
respectively. Moreover, the study of the problem of the trapped fluid in a frictional
contact interface is presented in Chapter 7 of this dissertation. In particular, Sec. 7.8
provides a detailed analysis of frictional tractions in the contact interface during the
process of fluid entrapment and the consequent trap opening.

5.1.2 Compressible fluid models

In order to handle the trapped fluid constraints and model the behaviour of the com-
pressible fluid, instead of the Lagrange multiplier method a generalization of the penalty
method can be used (see also the application of the linear penalty method to the contact
problem in Sec. 4.1.2).

First, we recall the expression for the virtual work of the trapped fluid pool, intro-
duced in (3.35) as:

δW tf(u) = −ptfDV (u) · δu, (5.5)

which is added to the balance of virtual work of the coupled problem if the fluid is
active, and disregarded otherwise. Furthermore, the trapped fluid pressure ptf can be
expressed as a function of the gap volume V (u), and, consequently, as a function of the
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displacement u:

ptf(u) = ptf0 +K

(
1− V (u)

V tf
0

)
, (5.6)

if the model of compressible fluid with constant bulk modulus is used, see (2.74). Fur-
thermore, if a fluid with pressure-dependent bulk modulusK = K0+K1p

tf is considered,
see (2.75), the fluid pressure reads:

ptf(u) =
(
ptf0 + K0

K1

)(
V

V tf
0

)−K1

− K0
K1

. (5.7)

Therefore, substituting Eq. (5.6) or (5.7) into (5.5) and using the expression for the
gap volume (5.1), we compute the contribution of the trapped fluid to the balance of
virtual work, necessary for the subsequent formulation of the trapped fluid model in the
finite-element framework.

Finally, integrating both sides of Eq. (5.5), we may obtain the expression for the
penalty functional representing the “potential energy” of the trapped fluid in the active
state. For the fluid with constant bulk modulus it takes the following form (omitting
the integration constant):

W tf(u) = K

2V tf
0

[(
ptf0
K

+ 1
)
V tf

0 − V (u)
]2

, (5.8)

while in case of the fluid with pressure-dependent bulk modulus K = K0 + K1p
tf it

reads:

W tf(u) = −
(
ptf0 + K0

K1

)
V tf

0
(1−K1)

(
V (u)
V tf

0

)1−K1

+ K0
K1

V (u), (5.9)

which corresponds to a non-linear penalty method.

5.2 “Super-element” formulation

In this section we will show how the discussed above approaches for modelling the
trapped fluid can be implemented in a finite-element framework alongside with structural
and contact elements. First, we will propose a “super-element” formulation for a single
trapped-fluid element containing all faces (in 3D) or segments (in 2D) of the trapped
fluid zone Γtf, which will be used throughout this dissertation. However, for the sake of
completeness, in the next section we discuss also the standard finite-element formulation
for the trapped fluid, using contributions from each face of the trapped fluid zone.

In the finite-element framework the volume of the gap (5.1) can be calculated by the
following formula:

V (U) =
m∑
k=1

1∫
−1

1∫
−1

nk∑
i=1

gn(uki)Ni(ξ, η) (−nk · ν) J dξdη, (5.10)

where the summation with respect to index k = 1,m is performed over all faces (segments
in 2D) of the surface Γtf, and the summation with respect to i = 1, nk is over all
nodes of the k-th face. Thus, we denote by U = [u1, . . .ui, . . .uM ]ᵀ, i = 1,M vector
of displacements of all M nodes on the surface Γtf. Next, gn(uki) is the normal gap
computed for the i-th node of the k-th face, and Ni(ξ, η) is the shape function associated
with this node; ξ = (ξ, η) are convective coordinates in the parent space, and J is the
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Jacobian defined in (4.114). Finally, nk is the normal to the k-th face, which can be
computed as:

nk =
∂x
∂ξ ×

∂x
∂η∣∣∣∂x∂ξ × ∂x
∂η

∣∣∣ , x =
nk∑
i=1
xiNi(ξ, η), (5.11)

where xi are the coordinates of the i-th node. The integral in (5.10) can be computed
using the standard Gauss quadrature rule, i.e.:

V (U) =
m∑
k=1

ngp
k∑
l=1

nk∑
i=1

gn(uki)Ni(ξl) (−nk(ξl) · ν) J(ξl)wl, (5.12)

where ngpk is the number of integration (Gauss) points associated with the k-th face of
the surface Γtf, wl is the weight coefficient of the l-th Gauss point, ξl are its coordinates
in the parent space, and J(ξl) is the associated Jacobian.

5.2.1 Incompressible fluid

The problem of finding a stationary point of the Lagrangian (5.3) is non-linear, and
to solve it numerically we use the Newton-Raphson method, which requires calculation
of the residual vector of the trapped-fluid element. Note that the vector of degrees of
freedom (DOFs) for the considered element includes displacement DOFs of allM nodes of
the surface Γtf and an additional scalar Lagrange multiplier λtf, which is equivalent to the
trapped fluid pressure: [u1, . . .ui, . . .uM , λ

tf]ᵀ = [U, λtf]ᵀ. Therefore, the contribution
of the trapped-fluid element to the global residual vector, based on the terms outlined
in (5.4b), reads:

Rtf =

λtf
[
∂V (U)
∂U

]
V (U)− V tf

0

 , (5.13)

where we used the notation[
∂V

∂U

]
=
[
∂V

∂u1
, . . .

∂V

∂ui
, . . .

∂V

∂uM

]ᵀ
. (5.14)

Next, the tangent matrix of the trapped-fluid element reads:

Ktf =


λtf
[
∂2V (U)
∂U2

] [
∂V (U)
∂U

]
[
∂V (U)
∂U

]ᵀ
0

 , (5.15)

where each entry of the matrix of second derivatives takes the form:[
∂2V

∂U2

]
ij

= ∂2V

∂ui∂uj
, i = 1,M, j = 1,M. (5.16)

We recall here that the method of Lagrange multipliers transforms a constrained
minimization problem into a saddle point problem, which is free of constraints on the
primal variables (displacements ui), however, the dual variables (scalar Lagrange multi-
pliers) are subject to constraints: λn ≤ 0 and λtf ≥ 0. Thus, the resolution of the saddle
point problem (5.4) requires an “active set” strategy for the trapped fluid, termed here
by an analogy with the contact problem, where it was used to enforce constraints on
Lagrange multipliers and find the active contact zone, see (4.62). For the trapped fluid
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element the required strategy also represents a test performed on every iteration of the
Newton-Raphson method to find the state:{

if V (U) > V tf or λtf < 0 ⇒ trapped fluid element is inactive,
if V (U) ≤ V tf and λtf ≥ 0 ⇒ trapped fluid element is active.

(5.17)

If the contact element is active, then its residual vector Rtf and tangent matrix Ktf are
added to the corresponding entries of the global residual vector and tangent matrix. If
the element is inactive, then all associated terms are excluded from global structures,
since in this case the balance of virtual work does not have a contribution from the
trapped fluid. Furthermore, the Lagrange multiplier associated to this element should
be eliminated from the global vector of degrees of freedom. However, the possible
variation of the global number of unknowns between iterations is often undesirable,
especially in a case of an implicit finite-element code. Alternatively, the global residual
vector and tangent matrix can be altered to avoid this change, see [Yastrebov, 2013] for
more details.

It is important to note, that the actual expressions of components of the residual
vector Rtf and the tangent matrix Ktf will depend on the type of the finite-element
formulation used. Indeed, let us consider the derivative of the gap volume (5.10) with
respect to the displacement vector ui. Under assumptions of small deformations and
small rotations, the Jacobian J of each element is considered fixed (to its value in the
initial configuration), as well as the normal to each face nk. Therefore, since the gap
function is linear with respect to the displacement, the second derivative ∂2V/∂ui∂uj =
0, and corresponding components of the tangent matrix vanish. On the contrary, if large
deformations and/or large rotations are taken into account, the Jacobian and/or the
normal become functions of the current coordinates and, in general, ∂2V/∂ui∂uj 6= 0.

5.2.2 Compressible fluid

For the numerical simulations of the compressible trapped fluid using the penalty method,
we may consider the same “super-element”, as was described previously for the case of
the Lagrange multiplier method, with an alteration: no extra degrees of freedom are
involved, and therefore the vector of DOFs has the form U = [u1, . . .ui, . . .uM ]ᵀ. Thus,
using the expression for the virtual work (5.5), the residual vector and the tangent
matrix for the fluid with constant bulk modulus read:

Rtf = − K

V tf
0

(
V tf

0 − V (U)
) [∂V (U)

∂U

]
, (5.18)

Ktf = K

V tf
0

([
∂V (U)
∂U

]
⊗
[
∂V (U)
∂U

]ᵀ
−
(
V tf

0 − V (U)
) [∂2V (U)

∂U2

])
, (5.19)

where ⊗ is the tensor product. In the case of fluid with pressure-dependent bulk modulus
K = K0 +K1p

tf those structures are expressed as:

Rtf = −


(
K0
K1

+ ptf0

)(
V (u)
V tf

0

)−K1

− K0
K1


[
∂V (u)
∂u

]
, (5.20)

Ktf =
(
K0
K1

+ ptf0

)
K1
V tf

0

(
V (U)
V tf

0

)−K1−1 [
∂V (U)
∂U

]
⊗
[
∂V (U)
∂U

]ᵀ
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Figure 5.2: Extension of the trapped fluid zone Γtf on the active contact zone Γc.

−


(
K0
K1

+ ptf0

)(
V (U)
V tf

0

)−K1

− K0
K1


[
∂2V (U)
∂U2

]
. (5.21)

Since the additional Lagrange multiplier for the trapped fluid is not considered,
the “active set” strategy discussed above is not required for the penalty formulation.
However, a test to find the state of the trapped fluid element is still needed, e.g. the
volume of the gap V (U) is to be compared with the initial volume of the fluid V tf

0 . If
V (U) < V tf

0 , then the trapped fluid element is active and its residual vector and tangent
matrix are to be included into the global structures. If V (U) > V tf

0 , then the element
is not active and does not provide any contribution to the balance of the virtual work.

Similarly to the discussed above method of the Lagrange multiplier, the actual ex-
pressions of the components of the residual vector and the tangent matrix will depend
on the finite-element formulation. In particular, the terms corresponding to the second
derivative of the gap volume with respect to the displacement vanish under assumptions
of small deformations and small rotations.

5.2.3 Extension of the trapped fluid zone on the active contact zone

Once the trapped fluid becomes pressurized, the active contact zone Γc and the trapped
fluid zone Γtf are complementary subsets of the potential contact zone Γ: Γtf ∩ Γc = ∅
and Γtf ∪ Γc = Γ. In accordance with numerical procedures for solving the trapped fluid
problem proposed in previous subsections, the trapped fluid zone Γtf and, consequently,
the number of DOFs of the trapped fluid element must be updated on every iteration
of the Newton-Raphson method. Thus, the size of the residual vector and the tangent
matrix of the trapped fluid element may vary between iterations, which increases the
computational complexity.

Below we will show4 that the update of the trapped fluid zone between iterations
can be avoided, if Γtf is extended on the active contact zone Γc, i.e. if the trapped fluid
pressure is considered on a surface Γtf ∪ Γ∗, where Γ∗ ⊂ Γc, see Fig. 5.2. Additionally,
we need to take into account that on Γ∗ the contact pressure will not be equal to the
Lagrange multiplier λn, but to the difference between λn and the value of the trapped
fluid pressure: σn = λn − λtf on Γ∗. Note that λn, which is equivalent to the normal
traction, is negative, while λtf represent fluid pressure, which is positive by definition.

In order to prove the validity of this extension, we will consider a transformation of
the Lagrangian for the coupled system (5.3). We will start by substituting the formula
for the gap volume (5.1) into (5.3), assuming that the trapped fluid is in the active state,

4We demonstrate it here for the case of Lagrange multipliers method, however, it may be also
generalized for the penalty method
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so that Γtf = Γ \ Γc. Therefore, we obtain:

L(u, λn, λtf) = Π(u) +
∫
Γc

λn gn(u) dΓ− λtf
∫

Γtf

gn(u)(−n · ν) dΓ− V tf

 . (5.22)

Let us break the integral over the active contact zone Γc into two integrals over surfaces
Γ∗ ⊂ Γc and Γc \Γ∗ and consider the following representation of the Lagrange multiplier
λn on the surface Γ∗: λn = λ∗n − λtf, where λ∗n ≤ 0. Note that this representation is
valid only if |λn| ≥ λtf, i.e. the trapped fluid zone can be extended only on the part of
the contact zone, where the contact pressure is higher than the trapped fluid pressure.
Then we may write:

L(u, λn, λtf) = Π(u) +
∫

Γc\Γ∗
λn gn(u) dΓ +

∫
Γ∗

(λ∗n − λtf) gn(u) dΓ

− λtf
∫

Γtf

gn(u)(−n · ν) dΓ + λtfV tf

= Π(u) +
∫

Γc\Γ∗
λn g(u) dΓ +

∫
Γ∗
λ∗n gn(u) dΓ− λtf

∫
Γ∗

gn(u) dΓ

− λtf
∫

Γtf

gn(u)(−n · ν) dΓ + λtfV tf, (5.23)

where we used that λtf represents a uniform normal traction. Next, we notice that on
the surface Γ∗ ⊂ Γc n = −ν, i.e. n · ν = −1, which lets us write:

L(u, λn, λtf) = Π(u) +
∫

Γc\Γ∗
λn g(u) dΓ +

∫
Γ∗
λ∗n gn(u) dΓ

− λtf

 ∫
Γtf∪Γ∗

gn(u)(−n · ν) dΓ− V tf

 . (5.24)

Therefore, the presented transformation of the Lagrangian (5.3) into (5.24) shows that:

• without loss of generality, the trapped fluid zone Γtf can be extended on the part of
the active contact zone Γc, where the contact pressure is higher than the trapped
fluid pressure: |λn| ≥ λtf on Γ∗ ⊆ Γc;

• if the trapped fluid is in the active state, the value of λ∗n − λtf is equivalent to the
normal traction on Γ∗.

5.3 Standard finite-element formulation

Alternatively to the “super”-element formulation, the standard finite-element formula-
tion can be used, according to which the residual vector Rtf and the tangent matrix Ktf

are constructed using separate contributions from each face of the trapped fluid zone.
Therefore, the matrix Ktf needs not to be stored, and the contributions from each face
can be directly included into the global matrix. However, in application to the consid-
ered trapped fluid models the standard approach is bound to certain limitations, which
will be discussed below.
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Indeed, the volume of the gap (5.10) can be computed as sum of volumes Vk corre-
sponding to each single face:

V (U) =
m∑
k=1

Vk(Uk), Vk(Uk) =
m∑
k=1

1∫
−1

1∫
−1

nk∑
i=1

gn(uki)Ni(ξ, η) (−nk · ν) J dξdη, (5.25)

where Uk is the vector of displacements of the nodes of the k-th face only. Thus, the
block λtf

[
∂2V/∂U2] of the matrix Ktf, see (5.15), is sparse, and, furthermore, can be

constructed by combining separate contributions from each face of the trapped fluid
zone, the same is valid for the corresponding entries of the residual vector Rtf (5.13).

However, the stated above is not valid for the model of the compressible fluid. The
tangent matrix Ktf for both cases of constant (5.19) and pressure-dependent bulk mod-
ulus (5.21) includes the tensor product of the vectors [∂V/∂U]⊗ [∂V/∂U]ᵀ and therefore
is not sparse and cannot be constructed using the standard assembly process, combining
contribution from each face separately.

Nevertheless, the standard finite-element formulation can be used with the compress-
ible fluid model, if the method of the Lagrange multiplier and the penalty method are
used simultaneously. We shall consider the contribution of the fluid to the combined
Lagrangian for the coupled problem :

W tf = −λtf
(
V (u)− V tf

)
, (5.26)

where instead of the initial fluid volume V tf
0 , we used the current volume of the trapped

fluid V tf, which can be expressed as a function of the pressure, both for model of the
constant (2.63) and pressure-dependent bulk modulus (2.66). Indeed, in the former case
this relation reads:

V tf(ptf) = V tf
0

(
1− ptf − ptf0

K

)
, (5.27)

and in the latter case:

V tf(ptf) = V tf
0

(
K0/K1 + ptf

K0/K1 + ptf0

)−1/K1

, (5.28)

Finally, substituting ptf by λtf in Eq. (5.27) or (5.28), we may express the variation of
the term W tf as:

δW tf = −
[
λtf

∂V (u)
∂u

· δu+
(
V (u)− V tf

0

)
δλtf − λtf ∂V

tf(λtf)
∂λtf

δλtf
]
. (5.29)

However, it is important to note that if a problem under consideration involves mul-
tiple trapped fluid zones, then an additional Lagrange multiplier needs to be considered
for each one of them. However, the number and the extent of trapped fluid zones, can
vary not only between load steps, but also between iterations of the Newton-Raphson
method. The associated inevitable change of the size of the global DOF vector, and con-
sequently, the global matrix, is undesirable, particularly for an implicit finite-element
code, and moreover, can make the algorithm for tracking trapped fluid zones (discussed
in Chapter 6) more complex. Therefore, in this dissertation we followed the proposed
approach of the “super-element” for each trapped fluid zone, which does not require, at
least for the model of the compressible fluid, Lagrange multipliers, i.e. additional DOFs.
Nevertheless, it is important to bear in mind that in this case the tangent matrix of the
trapped fluid element is not sparse, which could increase considerably the storage space
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required for the construction of the global matrix. Apart from that, the non-sparse ma-
trix associated with the proposed “super-element” formulation could have an increasing
effect on the bandwidth of the global tangent matrix.



Chapter 6

Monolithic resolution of the
coupled problem

Résumé de Chapitre 6 “Résolution monolithique du prob-
lème couplé”

Nous concluons la Partie II de cette thèse par la résolution numérique du problème
couplé, tel que formulé sous la forme forte dans le chapitre 2 et la forme faible dans
le chapitre 3. Le traitement des contraintes associées au contact mécanique et au flu-
ide piégé présentées dans les chapitres 4 et 5 est utilisé ici. De plus, nous discutons
de la mise en œuvre par éléments finis du sous-problème d’écoulement fluide mince et
fournissons la formulation numérique pour l’équilibre des tractions sur l’interface fluide-
structure. Enfin, nous proposons une discussion sur l’algorithme utilisé pour distinguer
les zones de contact, les canaux d’écoulement de fluide et les zones de fluide piégées,
nous présentons aussi la structure du système d’équations linéarisées obtenues par la
méthode des éléments finis.

We complete the Part II of this dissertation discussing an approach to the numerical
resolution of the coupled problem, formulated in the strong form in Chapter 2 and in the
weak form in Chapter 3. This is the problem of a thin fluid flow in a contact interface
between a deformable solid and a rigid flat. Furthermore, we take into account fluid
tractions acting on the surface of the solid and the effect of trapped fluid pools on the
contact problem. Note that the handling of constraints associated with the mechanical
contact and the trapped fluid was discussed in Chapters 4 and 5, and will be also used
below. In the present Chapter, we address first the thin fluid flow sub-problem and then
provide the numerical formulation of the virtual work of the fluid-induced tractions on
the surface of the solid. Finally, we discuss in detail the algorithm used to distinguish
between fluid-flow channels and trapped fluid zones, which is essential for resolution of
this coupled problem, and outline the structure of the linearised system of equations
obtained using the finite-element method.

Note that in order to simplify our discussion and concentrate it on the two-way
coupling aspects, we use the small deformations formulation. Furthermore, we assume
small rotations, which is justified (at least partially) by the requirement of small slopes
of the roughness profile for the validity of the Reynolds equation in certain applications,
see Section 2.3.3 and discussions in [Brown et al., 1995]. Nevertheless, the necessary
modifications to take into account large deformations and/or large rotations could be
added into the presented framework.

91
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Figure 6.1: Sketch of the interface highlighting fluid flow elements: Γf is the lubrication
surface (plane z = 0), where the Reynolds equation is defined, Γf

el is a face on this surface
associated to one fluid flow element, p is the fluid pressure DOF, added to each node
of the surface of the solid (note that the constant fluid pressure across film thickness is
assumed).

6.1 Thin fluid flow sub-problem

We start by recalling that the thin isoviscous incompressible Newtonian fluid flow is
governed by the Reynolds equation (2.70a) defined on the lubrication surface Γf, which
is considered here as the projection of the fluid-structure interface Γfsi (attached to the
surface of the solid) on the rigid flat z = 0, see Fig. 6.1. Note that Γfsi ⊂ Γ, termed as
the potential contact zone, which defines the extent of the interface.

For convenience, we reproduce here the weak form of the fluid flow problem (2.70)
(see Section 3.2.3 for more details):∫

Γf

gn(u)3

12η ∇p · ∇δp dΓ +
∫
γq

q0 δp dγ = 0, ∀ δp ∈ P, (6.1)

where p(x, y) is the fluid pressure field defined on the lubrication surface Γf, q0 is the
prescribed fluid flux on γq ⊂ ∂Γf, and the function space P was introduced in (3.37). In
order to concentrate the reader’s attention on the aspects of the coupling, we will assume
here q0 = 0, however, a non-trivial Neumann boundary condition could be included in
the present formulation in the standard manner. Furthermore, for each point (x, y) ∈ Γf

the thickness of the film is computed as the normal gap gn(u) of the corresponding point
(x, y, z) ∈ Γfsi. For brevity, we will omit below the subscript “n” of the normal gap gn.

To include the weak form (6.1) into the finite-element framework for the solid me-
chanics problem, we attribute fluid pressure DOF to each node of the surface Γ, which is
not contradictory to the fact that the Reynolds equation is formulated on the projection
Γf of this surface on the rigid flat, since a constant fluid pressure along film thickness is
assumed. Then, similarly to the face-to-rigid-surface approach for the contact problem
(Section 4.3), we associate a fluid-flow element with each face of the discretised surface
Γf, formed by faces of Γfsi projected on the rigid flat, see Fig. 6.1. We use the same
interpolation for the normal gap, as in (4.105), while for the fluid pressure p and the
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“test” function δp we also have:

p =
n∑
i=1

Ni pi, δp =
n∑
i=1

Ni δpi, (6.2)

where n is the number of nodes which belong to the element. Substituting (4.105)
and (6.2) into (6.1) we obtain the following contribution of one fluid-flow element to the
balance of virtual work:

δW f
el =

n∑
i=1

δpi

1∫
−1

1∫
−1

(
n∑
k=1

Nk gk

)3
J−1

n∑
j=1
∇Njpj

(J−1∇Ni

)
det(J) dξdη, (6.3)

where (ξ, η) are coordinates in the parent space, J is the Jacobian matrix defined as:

J =

∂x∂ξ ∂x
∂η

∂y
∂ξ

∂y
∂η

 (6.4)

and det(J) is its determinant. The Newton-Raphson method, used for resolution of the
essentially nonlinear coupled problem, requires computation of the second variation of
the virtual work. For the fluid-flow element it reads:

∆δW f
el =

n∑
i=1

δpi

{
n∑
j=1

∆pj
1∫
−1

1∫
−1

(
n∑
k=1

Nk gk

)3 (
J−1∇Nj

) (
J−1∇Ni

)
det(J) dξdη

+
n∑
l=1

∂gl
∂ul

∆ul
1∫
−1

1∫
−1

3
(

n∑
k=1

Nk gk

)2

Nl

J−1
n∑
j=1
∇Njpj

(J−1∇Ni

)
det(J) dξdη

}
.

(6.5)

Note that due to the small deformations assumption components of the Jacobian matrix
are considered fixed to their values in the initial configuration. Introducing the residual
vector Rf and the tangent matrix Kf of a fluid flow element allows us to rewrite (6.3)
and (6.5) in a more compact form:

δW f
el =

[
Rf
p

0

]ᵀ [
δp

δu

]
, ∆δW f

el =
[∆p

∆u

]ᵀ Kf
pp 0

Kf
up 0

 [δp
δu

]
, (6.6)

with δp = [δp1, . . . , δpn]ᵀ and similarly ∆p = [∆p1, . . . ,∆pn]ᵀ. The non-zero components
of Rf and Kf are explicitly given as follows:

Rf
p =

[
Rf
p1 , . . . ,R

f
pn

]T
, (6.7a)

Rf
pi =

1∫
−1

1∫
−1

(
n∑
k=1

Nk gk

)3
J−1

n∑
j=1
∇Njpj

(J−1∇Ni

)
det(J) dξdη, (6.7b)

Kf
pipj =

1∫
−1

1∫
−1

(
n∑
k=1

Nk gk

)3 (
J−1∇Ni

) (
J−1∇Nj

)
det(J) dξdη, (6.7c)

Kf
ulpi

= ∂gl
∂ul

1∫
−1

1∫
−1

3
(

n∑
k=1

Nk gk

)2

Nl

J−1
n∑
j=1
∇Njpj

(J−1∇Ni

)
det(J) dξdη. (6.7d)
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Figure 6.2: Sketch of the interface highlighting FSI elements: Γfsi is fluid-structure
interface on the surface of the solid, Γfsi

el is a face associated to one FSI element, p is the
fluid pressure at each node of this surface and n is the outer normal.

with i, j, k, l = 1, n. Note the presented formulation of the fluid-flow element was derived
for the two-way coupled problem, however, it is also suitable for the one-way coupling.
The only required modification to be done to switch to the one way coupling would be
to assume rigid walls of the solid, according to which the variation of the virtual work
with respect to the displacement in (6.5) vanishes and consequently Kf

up = 0.

6.2 Balance of tractions on the fluid-structure interface

In order to take into account tractions (2.71) induced by the fluid on the surface Γfsi

of the solid, we consider the virtual work of the surface traction t acting on the fluid-
structure interface (see Section 3.2.1 for more details):

δW fsi =
∫

Γfsi

(
−pn− gn

2 ∇p
)
· δu dΓ. (6.8)

Note that below, for brevity, we will omit the subscript “n” of the normal gap gn.
Subsequently, we associate each fluid-structure interface element with a face of the

surface Γfsi (see Fig. 6.2) and use the same interpolation of the fluid pressure and the
gap, as in (6.2) and (4.105), respectively, while for the virtual displacement we also
write:

δu =
n∑
i=1

Ni δui. (6.9)

Therefore, the contribution of one fluid-structure interface element to the balance of
virtual work reads:

δW fsi
el =

n∑
i=1

δui

{
n∑
j=1

pj

1∫
−1

1∫
−1

nNiNj J dξdη
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+ 1
2

n∑
k=1

gk

1∫
−1

1∫
−1

(
J−1

n∑
l=1
∇Nlpl

)
NiNk J dξdη

}
, (6.10)

where the gradients of the shape functions ∇Nl are computed on the projection of the
face Γfsi on the rigid flat, i.e. in the same sense as in Section 6.1. The corresponding
Jacobian matrix J was defined in (6.4), and the normal n is given by:

n =
∂x
∂ξ ×

∂x
∂η∣∣∣∂x∂ξ × ∂x
∂η

∣∣∣ , x =
n∑
i=1
xiNi. (6.11)

Note that here J is not det(J), i.e. the determinant of the Jacobian matrix (6.4), but is
computed as in (4.114). The second variation then takes the following form:

∆δW fsi
el =

n∑
i=1

δui

{
n∑
j=1

∆pj
1∫
−1

1∫
−1

nNiNj J dξdη

+ 1
2

n∑
k=1

∂gk
∂uk

∆uk
1∫
−1

1∫
−1

(
J−1

n∑
l=1
∇Nlpl

)
NiNk J dξdη

+ 1
2

n∑
k=1

gk

n∑
l=1

∆pl
1∫
−1

1∫
−1

(
J−1∇Nl

)
NiNk J dξdη

}
, (6.12)

where variations of the Jacobian J and the normal vector n are not considered due to
assumptions of small deformations and small rotations. Finally, the associated virtual
work and its variation could be expressed in a compact form using the residual vector
Rfsi and the tangent matrix Kfsi of a FSI element:

δW fsi
el =

[
Rfsi

u

0

]T [
δu

δp

]
, ∆δW fsi

el =
[∆u

∆p

]T Kfsi
uu 0

Kfsi
pu 0

 [δu
δp

]
. (6.13)

Finally, we outline the non-zero components of the residual vector and the tangent
matrix:

Rfsi
ui =

n∑
j=1

pj

1∫
−1

1∫
−1

nNiNj J dξdη +
n∑
k=1

gk
2

1∫
−1

1∫
−1

(
J−1

n∑
l=1
∇Nlpl

)
NiNk J dξdη, (6.14a)

Kfsi
ukui

= 1
2
∂gk
∂uk

1∫
−1

1∫
−1

(
J−1

n∑
l=1
∇Nlpl

)
NiNk J dξdη, (6.14b)

Kfsi
plui

=
n∑
k=1

gk
2

1∫
−1

1∫
−1

(
J−1∇Nl

)
NiNk J dξdη. (6.14c)

with i, j, k, l = 1, n. Note that in case of one-way coupling the action of the fluid
pressure on the surface of the solid is neglected, so that the virtual work (6.8) vanishes
completely and no contribution of the FSI element is included into the global matrix,
i.e. Rfsi

u = 0,Kfsi
uu = Kfsi

pu = 0.
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6.3 The global residual vector and tangent matrix for the
coupled problem

In the spirit of the monolithic approach, in addition to three displacement degrees of
freedom an extra DOF for fluid pressure p is attributed to each node of the surface
Γ. As will be discussed in the following, p is set to zero if associated to a node that
does not belong to the fluid domain, which permits us avoid reinitialization of DOFs
after each iteration of the Newton-Raphson method and keep the number of unknowns
constant during all solution process. Furthermore, we add to each node of the potential
contact zone Γ a Lagrange multiplier λ, which represents the contact pressure, resulting
from utilization of the augmented Lagrangian method to satisfy contact constraints in
the framework of the face-to-rigid-surface contact discretization approach. Utilization
of this method permits us to keep Lagrange multipliers in the non-contact zones, and,
similarly to discussed above pressure DOFs, preserve the constant number of unknowns
of the problem.

In the previous sections we discussed contribution of all sub-problems to the balance
of virtual works and formulation of the residual vectors and tangent matrices. Subse-
quently, following the monolithic approach, we combine them together, outlining the
general structure of the global tangent matrix and residual vector, constructed on each
iteration of the Newton-Raphson method. We will denote by v = [u;λ, p]ᵀ the global
vector of the nodal degrees of freedom, consisting of displacement components, Lagrange
multipliers for the contact problem and fluid pressure for the fluid flow problem. Note
that the trapped fluid elements do not require any additional degrees of freedom, if the
non-linear penalty method is used, which corresponds to the model of a compressible
fluid with pressure-dependent bulk modulus, see Section 5.2.2. By ∆v = [∆u; ∆λ,∆p]ᵀ
we shall denote here the increment of the DOF vector, corresponding to one iteration.
Moreover, according to the quasi-static analysis approach, the solution is obtained in a
certain number of load steps, and for each one of them the Newton-Raphson method is
invoked. The global linearised system of equations for the coupled problem takes the
following form: 

K∗uu Kc
uλ Kf

up

Kc
λu Kc

λλ 0

Kfsi
pu 0 Kf

pp




∆u

∆λ

∆p

 =


R∗u
Rc
λ

Rf
p

 , (6.15)

where the matrix K∗uu and vector R∗u are assembled using corresponding entities of all
aforementioned sub-problems, introduced in (4.118), (5.20)-(5.21), (6.6) and (6.13):

K∗uu = Ks
uu + Kc

uu + Kfsi
uu + Ktf

uu, R∗u = Rs
u + Rc

u + Rfsi
u + Rtf

u . (6.16)

Note that Rs
u and Ks

uu are the residual vector and tangent matrix of the solid mechanics
problem in absence of contact constraints and fluid flow, computed in a standard way:

Rs
u = ∂Πs(u)

∂u
, Ks

uu = ∂2Πs(u)
∂u2 , (6.17)

where we do not introduce any limitations on the constitutive law for the solid.
Note that Rtf

u and Ktf
uu represent here the assembly of residual vectors Rtfi

u and
tangent matrices Ktfi

uu, i = 1, . . . , ntf, respectively, where ntf is total number trapped
fluid elements considered at the current iteration. Note also that these terms of the
global tangent matrix may be omitted, which gives the possibility to perform simulation
of the two-way coupling neglecting the presence of trapped fluid and considering only
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the effect of fluid pressure in the flow on the deformation of the solid.
It is important to note that in case of two-way coupling the global matrix defined

in (6.15) is not symmetric, since non-diagonal block terms Kf
up and Kfsi

pu are obtained
upon discretization of different equations (see Sections 6.1 and 6.2, respectively) and
therefore are not equal in the general case. However, if the one-way coupling is consid-
ered, as was discussed above, these terms vanish, rendering the global tangent matrix
symmetric. This permits to decrease significantly the memory required for storage of the
matrix, which is essential for the problems involving a significantly fine discretization of
the contact interface.

The convergence of the standard Newton-Raphson method is obtained if the value
of a norm of the global residual vector falls below a prescribed tolerance. However, for
the coupled problem under study in order to ensure the balance between different fields,
we consider separately the norms of the subsets of the residual vector corresponding to
different types of DOFs: R∗u, Rc

λ, Rf
p. The convergence is obtained if all of the following

conditions are simultaneously fulfilled:

||R∗u||2
||Rext

u ||2
< εu, ||Rc

λ||∞ < ελ, ||Rf
p||∞ < εp (6.18)

where εu, ελ, εp are the error tolerance thresholds, chosen separately for each type of
the DOF. Note that for the displacements residual R∗u we consider the relative error,
Rext being the nodal vector related to the external loads, see, for example, [Wriggers,
2008], while for the other two residuals we use the absolute error criterion. The following
notations are used for two different definitions of a norm of a vector R:

||R||2 =

√√√√ N∑
i=1

R2
i , ||R||∞ = max

i=1...N
|Ri|, (6.19)

where N is the length of this vector.

6.4 Resolution algorithm
Finally, the identification of the local status of the interface remains necessary. During
the initialisation of the problem we construct a graph of the interface, vertices of which
represent faces of the surface Γ. We consider the so-called “4-connected” (von Neumann)
neighbourhood, according to which two faces are connected in this graph if they share
an edge, see Fig. 6.3.

At every iteration of the Newton-Raphson method we perform following additional
steps, summarized in Algorithm 2, which can be easily adjusted to one-way and two-way
coupling approaches. We start by identifying active contact elements using the criterion
presented in Sec. 4.3, see Fig. 6.3(a). Next, in order to locate the fluid-flow domain
governed by the Reynolds equation, we perform the connected-component labelling of
non-contact faces using the depth-first search (DFS) [Shapiro, 1996], see Fig. 6.3(b)
and Algorithm 3. Note that this recursive procedure is started first from non-contact
faces adjacent to the inlet side, and then repeated from those adjacent to the outlet
side, in order to find all faces connected to the inlet and/or to the outlet. Once the
domain for the flowing fluid is determined, we continue the connected-component la-
belling of remaining non-contact faces to identify separately each trapped fluid zone,
the corresponding procedure is summarized in Algorithm 4, see also Fig. 6.3(c).

Since the behaviour of each trapped fluid pool depends on the volume of this pool
at the moment of its formation, and also on the corresponding average pressure of
the fluid inside (see Sec. 5.1), a modification of the standard connected-component
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Algorithm 2 Resolution procedure for the coupled problem
Require: vi, i = 0
1: procedure NewtonRaphsonLoop()
2: repeat
3: for all faces of Γ do
4: if corresponding contact element is active then
5: face’s label ← CONTACT
6: else
7: face’s label ← NONE
8: end if
9: end for

10: for all faces with nodes from inlet or outlet do //Dirichlet B.C.
11: DepthFirstSearch(face, FLOW)
12: end for
13: for all faces of Γ do
14: Construct Rc and Kc for corresponding contact element

//ALM permits to have contact elements in non-active zone
15: if face’s label = FLOW then
16: Construct Rf and Kf for corresponding fluid-flow element
17: if two-way coupling then
18: Construct Rfsi and Kfsi for corresponding FSI element
19: end if
20: end if
21: end for
22: if two-way coupling then
23: IdentifyTrappedZones()
24: for all trapped fluid elements do
25: Construct Rtf and Ktf for trapped-fluid element
26: end for
27: end if
28: ∆vi ← −

[
K i(vi)

]−1
·
[
Ri(vi)

]
29: vi+1 ← vi + ∆vi
30: i← i+ 1
31: until (6.18) is validated
32: end procedure

Algorithm 3 Depth-first search (DFS)
1: procedure DepthFirstSearch(face, LABEL)
2: if face’s label = NONE then
3: face’s label ← LABEL
4: for all neighbours of face do
5: DepthFirstSearch(neighbour, LABEL)
6: end for
7: end if
8: end procedure
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Algorithm 4 Trapped fluid zones identification procedure
1: procedure IdentifyTrappedZones()
2: for all trapped fluid elements do //the same list is used for all load steps
3: if element did not exist at the previous converged load step then
4: delete trapped fluid element
5: else
6: empty element’s list of faces
7: end if
8: end for
9: for all faces do

10: if face’s label = NONE then
11: if face’s label at the previous converged load step = TRAP% then
12: id ← corresponding trapped fluid element’s id
13: DepthFirstSearch(face, TRAP+id) //TRAP1, TRAP2, ...
14: else
15: Create new trapped fluid element
16: id ← new number of trapped fluid elements
17: DepthFirstSearch(face, TRAP+id) //TRAP1, TRAP2, ...
18: end if
19: end if
20: end for
21: for all faces do
22: if face’s label = TRAP% then //“%” meaning any number
23: append face to corresponding element’s list of faces
24: end if
25: end for
26: for all trapped fluid elements do
27: if element did not exist at the previous converged load step then
28: Compute mean fluid pressure from the previous converged load step

//the initial pressure is the average fluid pressure over all faces of this element
29: end if
30: end for
31: end procedure
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Figure 6.3: Identification of active contact (a), fluid-flow (b) and trapped fluid zones (c)
by performing the connected-component labelling of the interface graph based on the
4-connected neighbourhood: two faces are connected if they share an edge.
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labelling algorithm is necessary to track creation and evolution of trapped fluid zones.
In particular, for each observed trapped fluid pool two cases are possible: some (or all)
faces of this zone could have belonged to a trapped fluid zone identified at the end of the
previous (converged) loading step, or the considered zone could correspond to a newly
trapped fluid pool formed at the current loading step. In the former case, the trapped
fluid zone inherits the data (the initial volume and the fluid pressure) from the zone
identified at the previous load step. In the latter case, the current volume of a newly
created pool is stored and the initial pressure is computed as the mean of the fluid flow
pressure values calculated at the end of the previous load step. Note that our study
presented in Sec. 8.2 shows that the fluid flow pressure in a zone which would become
trapped at the following load step is close to being uniform.

It is important to note, that in a simulation with an increasing external load, the
splitting of a trapped fluid pool into multiple zones is possible, which will not be recog-
nised by the presented algorithm, i.e. these multiple pools will still be treated as one
volume of trapped fluid. However, the effect of this difference on the transmissivity of
rough contact interfaces studied in Chapter 9, based on the observed results, is not ex-
pected to be significant. The opposite process, i.e. the merging of multiple trapped fluid
zones into one is also not covered by the presented algorithm. However, this process
would require elimination of the contact area between separate pools, while the study of
the trapped fluid problem presented in Chapter 7 shows that a considerable reduction of
the contact area corresponds to a significantly higher external load than the one needed
for the complete sealing of the interface (until which we perform our simulations). It
should be also noted that the presented algorithm is not suited for tracking trapped
fluid zones in the unloading process. Nevertheless, all aforementioned special cases can
be included into the presented framework without considerable difficulties.

Finally, at each iteration we compute the number of local status changes with respect
to the previous iteration (or previous converged load step in case of the first iteration).
At the i-th iteration this value is calculated as:

Si =
m∑
j=1

{
1, sij 6= si−1

j

0, sij = si−1
j ,

(6.20)

where m is the total number of faces of the surface Γ, sij is the label of the j-th face of
the surface Γ, corresponding to the i-th iteration, and, accordingly, si−1

j is the label of
the same face at the previous iteration (or previous converged load step, if i = 1). The
label, according to the Algorithm 2, is from the list {CONTACT, FLOW, TRAP%}. At
the post-processing stage this number of local status changes permits to study the con-
vergence of the Newton-Raphson method and verify the proposed resolution procedure.
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Chapter 7

Trapped fluid in contact interface

Résumé de Chapitre 7 “Fluide piégé dans l’interface de
contact”

Dans ce chapitre, nous étudions le contact mécanique entre un corps déformable présen-
tant une surface ondulée et une surface plane rigide, en tenant compte du fluide piégé
dans l’interface. À l’aide du modèle éléments finis formulé dans les chapitres 4 et 5, nous
étudions l’évolution de la surface de contact réelle, de la traction maximale de frottement
et du coefficient de frottement global sous une charge externe croissante. Des modèles
de matériaux élastiques et élasto-plastiques, de fluides compressibles et incompressibles
et différentes caractéristiques géométriques de la surface ondulée sont considérés. Nous
montrons que dans le cas des fluides incompressibles, la surface de contact réelle et le
coefficient de frottement global diminuent de manière monotone avec l’augmentation de
la pression externe. Une formule analytique de la pression critique d’ouverture du piège
s’est révélée indépendante de la pente de la surface lorsque cette dernière est petite. Dans
le cas de fluides compressibles présentant un module d’élasticité isostatique dépendant
de la pression, nous démontrons un comportement non monotone du coefficient de frot-
tement global dû à une compétition entre l’évolution non linéaire de la surface de contact
et de la pression du fluide. Dans le cas de matériaux plastiques parfaitement élastiques,
nous observons également une pénétration de fluide dans l’interface de contact. Enfin,
nous étudions la distribution des tractions de frottement lors de l’ouverture du piège. Ce
processus conduit à des pics de type singularité dans les tractions de frottement bornées
par la limite de Coulomb près des bords de contact. Nous soulignons la similitude entre
les processus d’ouverture de piège et de propagation de fissure interfaciale et estimons le
facteur d’intensité de contrainte complexe à l’aide de la mécanique de la rupture élastique
linéaire.

In this Chapter we study the problem of the mechanical contact between a de-
formable body with a wavy surface and a rigid flat taking into account pressurized
fluid trapped in the interface. Using the finite-element model, formulated in Chapters 4
and 5, we investigate the evolution of the real contact area, maximal frictional traction
and global coefficient of friction under increasing external load. Elastic and elasto-plastic
material models, compressible and incompressible fluid models and different geometrical
characteristics of the wavy surface are used. Additionally, we study the distribution of
frictional tractions during the process of the fluid entrapment and the subsequent trap
opening.
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7.1 Problem statement

We consider a mechanical contact problem between a deformable half-plane with a peri-
odic wavy surface and a rigid flat under the action of a far-field external pressure. This
case was historically the starting point for the study of contact of rough surfaces [West-
ergaard, 1939, Johnson et al., 1985]. In addition, we take into account the influence of
compressible or incompressible fluid trapped in the free volume between the two bodies,
see Fig. 7.1. We assume the plane strain problem and a linear elastic or elastic-perfectly
J2-plastic (the latter one is presented in Section 7.7) isotropic constitutive laws for the
solid. Note that this problem is similar to the one already solved by [Kuznetsov, 1985],
with the difference that we assume small but finite profile’s slope, which, as will be
shown below, is of great importance for an accurate treatment of this problem.

The initial gap between the wavy profile and the rigid plane, as well as the volume
of this gap for one wavelength of the profile, are given, respectively, by:

gn0(X) = ∆
(

1− cos 2πX
λ

)
, V0 = l

λ∫
0

∆
(

1− cos 2πX
λ

)
dX = l λ∆, (7.1)

where ∆ and λ are the amplitude and wavelength of the wavy surface profile, respectively,
X is the horizontal coordinate in the initial (reference) configuration and l is the length
in the y-direction, and under the assumption of the plane strain state of deformation l
will be assumed hereinafter equal to one length unit. Moreover, due to the symmetry
of the problem, we will consider only one wavelength. Finally, we assume here that the
fluid is not pressurized at the moment of the trapped zone formation.

7.2 Analytical solutions

7.2.1 Westergaard’s solution

The problem of contact between an elastic half-space with a regular wavy surface y =
∆ cos(2πx/λ) and a rigid flat without fluid in the interface was solved by [Westergaard,
1939], see also [Johnson et al., 1985], for the case of infinitesimal ratio ∆/λ � 1, i.e.
infinitesimal slope of the roughness profile. According to this solution the pressure
distribution inside contact patches (−a+ λn ≤ x ≤ a+ λn, n ∈ Z) is given by:

pW (x, a) = 2πE
1− ν2

∆
λ

cos πx
λ

√
sin2 πa

λ
− sin2 πx

λ
, (7.2)

where a is the half-length of contact patch within one wavelength of the profile λ, and
elsewhere pW = 0. E and ν are Young’s modulus and Poisson’s ratio, respectively. The

λ

2Δ

semi-infinite solid body

external pressure applied at infinity

fluid

rigid flatex

ez

Figure 7.1: A sketch of the problem under study.
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mean pressure over the whole contact interface is given by

p̄W (a) = 1
λ

λ∫
0

pW (x, a) dx = p∗
W

sin2 πa

λ
, (7.3)

where p∗
W

= πE∗∆/λ is the pressure necessary to bring the entire interface in contact.
In the static equilibrium p̄W is equal to the value of the external pressure that we will
denote by pext. The complete contact is ensured, if pext ≥ p∗W .

By introducing the notations A = 2a and A0 = λ for the real and apparent contact
areas, respectively, the ratio of the real contact area to the apparent one, based on the
Westergaard’s solution, is given by:

A

A0
= 2a

λ
= 2
π

arcsin
√
pext

p∗
W

, 0 ≤ pext ≤ p∗W . (7.4)

7.2.2 Kuznetsov’s solution

The Westergaard’s solution (7.2) was extended in [Kuznetsov, 1985] by taking into ac-
count compressible fluid trapped in the valleys between contacting peaks of the wavy
profile. Similarly, under the assumption of infinitesimal slope of the profile5, the stress
state in the contact interface in the presence of the additional fluid pressure, applied
beyond the contact patches, was considered as the superposition of the stress state cor-
responding to the same contact area, but without influence of the fluid, i.e. the Wester-
gaard’s solution (7.2), and a uniform field of the fluid pressure ptf, applied everywhere
and assumed not to distort the surface profile:

pK(x, a) =
{
ptf(a) + pW (x, a), if− a+ λn ≤ x ≤ a+ λn, n ∈ Z
ptf(a), elsewhere.

(7.5)

Integration of pK(x, a) over one period of the waviness gives the following relation be-
tween the external pressure pext and the contact area: pext(a) = ptf(a) + p̄W (a), where
p̄W (a) was defined in (7.3).

The fluid pressure ptf can be related to the current contact half-width a using models
of the compressible fluid discussed in Sec. 2.4. If the fluid’s bulk modulus K is assumed
constant, the hydrostatic pressure is proportional to the relative change of the volume:

ptf = K

(
1− V tf

V tf
0

)
, (7.6)

where V tf
0 is the volume of the fluid in unpressurised state and a smaller volume V tf

corresponds to the fluid pressure ptf. A more precise model of the fluid with pressure-
dependent bulk modulus:

K = K0 +K1p
tf (7.7)

states a non-linear relation between the fluid pressure and the volume change:

ptf = K0
K1


(
V tf

V tf
0

)−K1

− 1

 . (7.8)

5 The infinitesimal-slope assumption implies here that (i) the wavy surface behaves as a flat one
and that Flamant’s solution [Johnson, 1987] holds for every surface point, and (ii) that the horizontal
component of the fluid pressure is negligible.
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Finally, it can be noted that the volume of the pressurized fluid V tf is equal to the
volume of the gap V between the contacting surfaces, which can be found from the
displacement field of the Westergaard’s solution [Kuznetsov, 1985] and related to the
current contact half-width a:

V (a) = V0

[
1− sin2 πa

λ

(
1− ln

{
sin2 πa

λ

})]
, (7.9)

where V0 = λ∆ is the initial gap, i.e., corresponding to a = 0. We generalize the original
results [Kuznetsov, 1985] and allow a partial filling of the initial gap by the fluid, so
that V tf

0 = θ V0, 0 < θ ≤ 1. Therefore, two cases are possible:

• If the current gap volume is bigger than the initial fluid volume, V > V tf
0 , i.e.

V/V0 > θ, then the fluid is not yet pressurized, and the Westergaards solution is
valid:

pext(a) = πE∗∆
λ

sin2 πa

λ
. (7.10)

• If V < V tf
0 , or, equivalently, V/V0 < θ, the equation relating the external load to

the contact area has the following form in the case of linear compressible fluid:

pext(a) = πE∗∆
λ

sin2 πa

λ
+ K

θ

[
θ − 1 + sin2 πa

λ

(
1− ln

{
sin2 πa

λ

})]
, (7.11)

and in the case of non-linearly compressible fluid:

pext(a) = πE∗∆
λ

sin2 πa

λ
+ K0
K1

[
θK1

(
1− sin2 πa

λ

(
1− ln

{
sin2 πa

λ

}))−K1

− 1
]
.

(7.12)

It is important to note that Kuznetsov’s solution even in the case of an arbitrary large
modulus of compressibility of the fluid shows the growth of the contact patches under
the increasing load. Furthermore, in the limit of incompressible fluid K →∞ it gives a
constant value of the real contact area, which can be found from the equation V (a) = V tf

0 .
Consequently, Kuznetsov’s solution, based on the assumption of infinitesimal slope of
the profile, cannot predict depletion of the real contact area and escape of the fluid from
the trap, which we demonstrate in following sections dropping out the assumption of
infinitesimal slopes.

7.3 Numerical problem set-up

In order to solve the trapped fluid problem numerically, we implemented the monolithic
approach to handling the contact and the trapped fluid constraints (see Chapters 4
and 5 of this dissertation) in the finite-element suite Z-set [Besson and Foerch, 1997, Z-
set, 2019]. Contrary to Kuznetsov’s analytical results or BEM analysis based on the
Flamant’s solution [Johnson, 1987], we did not assume infinitesimal slopes, i.e. the value
∆/λ is arbitrary. We used a finite element mesh with 1024 nodes in the contact interface
per wavelength (19364 nodes in total in the structural mesh), see Fig. 7.2. Hereinafter,
if not mentioned differently, we considered the roughness profile with ∆/λ = 0.01. In
the following, we will also discuss how this ratio affects the results. The horizontal
dimension of the finite element mesh equals to the wavelength λ and the ratio of the
profile amplitude ∆ to the vertical mesh dimension H is ∆/H = 0.005.

Apart from considering different models of the fluid, material properties of the solid
and different slope of the roughness profile, we study several loading scenarios, corre-
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Figure 7.2: Finite-element mesh and boundary conditions for the trapped fluid problem.
Several loading scenarios are considered, corresponding to frictionless and frictional
simulations. Accordingly, on the vertical walls x = 0, x = λ either symmetric or periodic
boundary conditions are enforced, and on the bottom edge of the solid z = −H either
only vertical displacement, or a vertical displacement followed by a horizontal one is
applied.

sponding to frictional and frictionless simulations. Accordingly, we apply either sym-
metric (u|x=0 = 0, u|x=λ = 0) or periodic (u|x=0 = u|x=λ) boundary conditions on the
vertical walls of the mesh. The bottom edge of the deformable solid is displaced in the
z-direction towards the rigid flat within 200 load steps, which is followed by a x-direction
displacement in frictional simulations. A corotational updated Lagrangian framework
was used in our simulations, which is needed to capture properly that the fluid pressure
applied to the updated configuration is collinear to element normals. In simulation we
measure the vertical reaction, the extension of the contact area, the pressure in the
contact zone and the fluid pressure.

Hereinafter, if not mentioned differently, we performed frictionless simulations with
symmetric boundary conditions on the vertical walls x = 0, x = λ, vertical motion of the
bottom edge z = −H and estimated the value of the global coefficient of friction using
the following approach. We distinguish between the global and the local coefficients of
friction by observing the problem from macroscopic (calculating the reaction forces on
the solid body) and microscopic (studying the traction vector components in the contact
interface) levels, respectively, see also [Azushima and Kudo, 1995]. Due to the effect
of the pressurized fluid, the macroscopic normal reaction force Fn of the interface is
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calculated as a sum of an integral of σn over the active contact zone Γc and an integral
of the fluid pressure ptf over the trapped fluid zone Γtf:

|Fn| =
∫
Γc

|σn| dΓ +
∫

Γtf

ptf dΓ (7.13)

We also note that in the static equilibrium |Fn| = pextλ. Next, the macroscopic tangential
reaction force F t of the interface (with shear forces in the fluid being neglected) reads:

F t =
∫
Γc

σt dΓ, (7.14)

where σt is the tangential component of the traction vector. The global coefficient of
friction µglob is introduced as the coefficient of proportionality between the maximal
macroscopic tangential and normal reaction forces:

‖F t‖ ≤ µglob|Fn|. (7.15)

Furthermore, observing the problem on the microscopic level, we assume that the local
coefficient of friction µloc is given by the Coulomb’s law:

‖σt‖ ≤ µloc|σn|, (7.16)

i.e. the tangential traction is bounded at every contact point and thus is bounded in
the integral sense as follows: ∫

Γc

‖σt‖ dΓ ≤ µloc

∫
Γc

|σn| dΓ. (7.17)

Since the local motion at every point of the interface implies the global motion, by
equating right parts in (7.15) and (7.17), we obtain the ratio between the global and
local coefficients of friction:

µglob

µloc
=
∫
Γc

|σn| dΓ
/
|Fn| =

∫
Γc

|σn| dΓ
/
pextλ, (7.18)

which can be rewritten in a more explicit form as:

µglob

µloc
= 1−

∫
Γtf
ptf dΓ

/
pextλ = 1− ptf(λ− 2a)

pextλ
. (7.19)

Since the last ratio is always non-negative, it follows that the global coefficient of friction
is always smaller than the local one in the case of pressurized fluid, in general: 0 ≤ µglob ≤
µloc. By using the above introduced notations for the real A = 2a and apparent A0 = λ
contact areas, (7.19) can be rewritten as:

µglob

µloc
= 1− ptf

pext

(
1− A

A0

)
. (7.20)

Finally, this expression for estimating the global coefficient of friction was verified using
an actual frictional simulation with periodic boundary conditions enforced on vertical
walls x = 0, x = λ, and a vertical displacement followed by a horizontal one applied at the
bottom edge z = −H, see Fig. 7.5(d). In this loading scenario, once the global tangential
motion of the solid is observed (which means that the whole contact zone is in the slip
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Figure 7.3: (a) The evolution of the real contact area in the vicinity of the “activation”
point of the incompressible fluid with respect to the external pressure normalized by
E∗ for three profiles with different slopes ∆/λ and three cases with different ratios of
the fluid volume to the initial gap volume V tf/V0. (b) The evolution of the real contact
area until the complete opening of the trap for the case V tf/V0 = 0.9 shown for different
slopes ∆/λ.

state) the global coefficient of friction can be computed directly as µglob = ‖F t‖ /|Fn|,
see its definition in (7.15).

7.4 Incompressible fluid

In this section we study the model of an incompressible fluid trapped in the contact
interface. Even if real-life lubricating fluids have significantly lower initial bulk moduli
than metals, this idealized model enables us to focus on mechanisms of fluid entrapment
and the trap opening by the pressurized fluid. The effect of the fluid compressibility of
the contact problem will be considered in the following sections.

7.4.1 Evolution of the real contact area

We study the evolution of the real contact area in the presence of incompressible fluid
in the interface under the increasing external pressure using the Lagrange multiplier
method. We investigate how the magnitude of the slope of the profile (∆/λ) and the
ratio between the trapped fluid volume and the initial gap volume V tf/V0 affect the
solution of the coupled problem.

The evolution of the contact area close to the moment of the activation of the fluid is
presented in Fig. 7.3(a). The regime in which the fluid is not yet pressurized (V > V tf)
coincides withWesterdale’s equation (7.2). According to this analytical solution the ratio
of the current volume of the gap to the initial one V/V0 is a monotonically decreasing
function of contact area and does not depend on the slope of the profile ∆/λ, see (7.9).
Therefore, the contact area Aact, reached when the fluid gets pressurized (V = V tf)
does not depend on the slope of the profile and is increasing with decreasing V tf/V0.
For a given ∆/λ the pressure necessary to activate the fluid pact is also increasing with
decreasing V tf/V0. At the same time, for a given V tf/V0, the value of pact is proportional
to the slope ∆/λ.

One can note in Fig. 7.3(a) that once the fluid is pressurized, the contact area is
slowly decreasing, contrary to the Kuznetsov’s solution, which predicts the contact area
to remain constant. In Fig. 7.3(b) we show the evolution of the contact area in a much
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Figure 7.4: (a) Sketch of the auxiliary problem: deformation of the wavy surface un-
der uniform hydrostatic pressure. (b) Evolution of the ratio V tf/V0 (V tf is the volume
between the deformed surface and a horizontal plane z = z0, where z0 is the current po-
sition of the crest, and V0 is the initial volume of the gap) with the increasing hydrostatic
pressure ptf for several profiles with different slope ∆/λ.

wider range of loads, than in Fig. 7.3(a), and observe a monotonic decrease of the
contact area, ultimately it reaches zero value, which corresponds to the opening of the
trap. Surprisingly, results of simulations with different (decreasing) profile slope ∆/λ
do not tend to the Kuznetsov’s solution (derived under assumption of infinitesimal ∆/λ
and assuming that the wave profile is similar to a flat one), but converge to a different
limit! At the same time we observe that the external pressure necessary to open the
trap popen also converges to a certain limit with ∆/λ→ 0.

7.4.2 Distortion of the periodic wavy surface under a uniform hydro-
static pressure

In order to explain this intriguing result, first we note that since the solution of linearly
elastic problem with and without contact is unique, see, for example, [Truesdell, 1984],
the displacement field at the moment of opening of the trap with external pressure
pext = popen must be equal (up to a rigid body motion) to the one corresponding to a
distributed hydrostatic pressure ptf = popen over the whole interface. Let us consider
an auxiliary problem of the uniform hydrostatic fluid pressure ptf on the wavy profile,
see Fig. 7.4(a). The Kuznetsov’s solution is based on an assumption that a uniform
distribution of the hydrostatic pressure does not distort the wavy surface [Kuznetsov,
1985]. In our numerical simulations we showed that for small, but finite ∆/λ this
assumption does not hold, the wavy surface distorts: the crest’s displacement is bigger
than the displacement of the trough, which is quite an evident result.

Due to the non-zero slope of the contact interface, the fluid pressure acts not only
in the vertical direction but also in the horizontal one, thus leading to the additional in-
plane compression of the material near the crest and, on the opposite, to the additional
in-plane tensile contribution near the trough, see Fig. 7.4(a). Thus, there exists a
linearly elastic solution for a uniformly distributed pressure ptf, which results in such
surface deformation, that the integral of the gap equals to the fluid volume V tf, i.e.:

∃ ptf such that
∫
Γ

(z0 − z) dΓ = V tf, (7.21)
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where z0 is the position of the crest after applying the uniform pressure ptf. We will
derive an analytical formula relating V tf to ptf, based on the assumption of small, but
finite ∆/λ. According to the integrated Flamant’s solution, any uniformly distributed
pressure on the surface will result in a uniform vertical displacement. However, it is true
only if the surface is flat. For a wavy surface, under the action of a uniform pressure,
the crest’s displacement is bigger than the displacement of the trough. The uniform
pressure distribution on the surface is given by −ptfn, where n is the outer normal
to the surface. We consider the vertical p and horizontal q components of the normal
pressure (each one of them contributes to the distortion of the profile):

q(x) = −2πptf∆
λ

sin 2πx
λ

+O

(
∆3

λ3

)
(7.22)

and
p(x) = −ptf +O

(
∆2

λ2

)
(7.23)

in case of small slope. Therefore, keeping the small values of order ∆/λ, we may calculate
the vertical displacement caused by the horizontal component q using the integrated
Flamant’s solution [Johnson, 1987]:

wq(x) = −(1− 2ν)(1 + ν)
2E


x∫
−b

q(s) ds−
b∫
x

q(s) ds

+ C, (7.24)

where b→∞ and C is an arbitrary constant. Substituting q(s) and calculating integrals,
we obtain:

wq(x) = −(1− 2ν)(1 + ν)ptf

E
∆ cos 2πx

λ
+ C. (7.25)

We are also convinced that the uniformly distributed vertical traction p produces exactly
the same vertical displacement:

wp(x) = −(1− 2ν)(1 + ν)ptf

E
∆ cos 2πx

λ
+D, (7.26)

where D is another arbitrary constant. However, this result does not follow from Fla-
mant’s solution, which as already mentioned would predict a uniform displacement.
This result was guessed and confirmed with a very high accuracy (fractions of percent)
by finite-element simulations for different fractions ∆/λ and Poisson’s ratios.6 At this
stage we are content with numerical proof only, which consisted in applying separately
horizontal and vertical components of the pressure over a single period with periodic
boundary conditions and comparing the numerical results with the equations (7.26) and
(7.25). The total vertical displacement reads:

w(x) = wq(x) + wp(x) = −2(1− 2ν)(1 + ν)ptf

E
∆ cos 2πx

λ
+ C̃. (7.27)

We may define C̃ so that w(0) = z0, where z0 is the current vertical position of the

6The simplest analogy would be the Winkler’s foundation [Johnson, 1987] with springs whose lengths
follow the distribution l(x) = L + ∆ cos(2πx/λ), which would mimic the shape of the wavy surface.
However, it is unavailing to obtain the proportionality factor of form (1 − 2ν)(1 + ν)/E.
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crest, thus giving:

w(x) = z0 −
2(1− 2ν)(1 + ν)ptf

E
∆
(

cos 2πx
λ
− 1

)
. (7.28)

We calculate the volume between the distorted wavy surface and the plane z = z0:

V tf =
∫
Γ

(z0 − (Z(x) + w(x))) dΓ, (7.29)

where Z(x) = ∆(cos 2πx
λ − 1) is the initial vertical coordinate. Upon integration, noting

that the initial gap volume V0 = ∆λ, we obtain:

V tf

V0
= 1− 2(1− 2ν)(1 + ν)ptf

E
, (7.30)

which gives the relative change of the volume between the deformed wavy surface and
corresponding plane under action of the uniform hydrostatic pressure ptf. It is important
to note, that horizontal q(x) and vertical p(x) tractions produce also a certain horizontal
displacement u(x). However, it can be shown, that the contribution of this horizontal
displacement to the relative volume change V tf/V0 is an order of ∆/λ smaller than the
contribution of the vertical displacement w(x) computed in (7.30). Therefore, the effect
of u(x) can be neglected in this solution valid for ∆/λ� 1.

Interestingly, the expression for the relative volume change (7.30) does not depend
on ∆/λ, however, this result was obtained under assumption of ∆/λ � 1, therefore it
corresponds to the limiting case of small, but finite slope of the profile. Furthermore,
the relative change of volume induced by a uniformly applied pressure ptf depends on
elastic properties of the solid. In Fig. 7.4(b) the comparison of the derived formula (7.30)
with the numerical results for several profiles with different ∆/λ is shown. Numerical
results are tending towards the analytical solution with decreasing ∆/λ. Therefore, we
have shown that for any given V tf/V0 there exists uniform pressure ptf, which results in
a such distortion of the surface, that the volume between the surface and a rigid flat
equals to V tf. Moreover, in the limit of infinitesimal slopes, this critical pressure does
not depend on the slope. Note also that the equation (7.30) can be readily used to
compute the external load needed to open the trap for a given fluid volume; it is valid
for both incompressible and compressible fluid with constant or pressure-dependent
bulk modulus. Interestingly, in the latter case, see (2.75), Eq. (7.30) can have several
solutions.

The obtained result explains why the curves of evolution of the real contact area
with the increasing pressure for surfaces with different slopes tend to a certain limit
with decreasing ∆/λ (which remains, however, finite), see Fig. 7.3(b). At the same
time; the external pressure necessary to open the trap popen is different for different
V tf/V0, see Fig. 7.5(a). In the case when the fluid fills completely the initial gap volume
(not shown in figures), i.e. V tf = V0, the real contact area equals zero during the whole
process of loading, i.e. the fluid is pressurized, but is never trapped.

7.4.3 Evolution of maximal frictional traction and global coefficient of
friction

We present in Fig. 7.5(b) the evolution of the integral of normal tractions over the contact
area, normalized by λ and E∗, for different values of ∆/λ and V tf/V0. The results show
that just after the fluid becomes pressurized, the integral of contact pressure grows



7.4. INCOMPRESSIBLE FLUID 113

Vtf/V0 =0.9

Vtf/V0=0.8

Vtf/V0 =0.7

(a) (b)

Vtf/V0=0.9
Vtf/V0=0.8

Vtf/V0=0.7

Aact /A 0 (V
tf/V0=0.8)

Aact /A 0 

Aact /A 0 (V
tf/V0=0.7)

Vtf/V0 =0.9
Vtf/V0 =0.8

Vtf/V0 =0.7

(c) (d)

Kuznetsov's
approximation
 (Vtf/V0=0.7)

Frictionless simulation

Frictional simulation

Kuznetsov's solution

ext ext

ext ext

Figure 7.5: (a) Real contact area evolution during opening of the contact, caused by
pressurized incompressible trapped fluid (with respect to the external pressure normal-
ized by E∗) (b) Contact normal force evolution during opening of the contact (with
respect to the external pressure, normalized by E∗). (c) Evolution of the ratio between
global and local coefficients of friction, and (d) a zoom of this evolution for V tf/V0 = 0.9,
where, in addition, the results of frictional simulations are plotted (crosses), as well as
analytical approximations given by (7.32) (dashed curves).
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almost linearly, which is also predicted by the Kuznetsov’s solution in the limit K →∞:

1
E∗λ

∫
Γc
|σn| dΓc = pext

E∗
Aact
A0

+ π

(
1− Aact

A0

) ∆
λ

sin2 π

2
Aact
A0

, (7.31)

where, contrary to numerical results, it was assumed that Aact remains constant under
the increasing external pressure pext. However, due to the fact that we consider finite
slope of the profile in the numerical solution, the linear part in the dependence of contact
reaction on external pressure is followed by a non-linear concave part, reaching maximum
value and then decreasing to zero. Consequently, the global coefficient of friction also
vanishes. The results on the estimation of the ratio between global and local coefficients
of friction are presented in Fig. 7.5(c). Before the fluid gets pressurized, the global CoF
equals to the local one. After that, the global CoF is monotonically decreasing with the
increasing external pressure pext. This decrease is related to repartition of the external
load between the contact and the fluid; the latter is assumed not to resist shear in the
quasi-static limit. Note that for high values of pext, i.e. close to opening of the trap,
the evolution of the global CoF is independent from the slope (∆/λ) and depends only
on the ratio V tf/V0. On the other hand, for low values of pext slightly higher than the
activation pressure (see Fig. 7.5(d)) the Kuznetsov’s solution under the assumption of
infinite K shows the global CoF decreasing as 1/pext:

µglob

µloc
= Aact

A0
+ π

(
1− Aact

A0

) ∆
λ

E∗

pext
sin2 π

2
Aact
A0

. (7.32)

Note, that the term containing 1/pext is proportional to the ratio ∆/λ.
In addition to estimations of the global coefficient of friction (7.18)-(7.20), based on

the frictionless simulation of the coupled problem under normal loading, we performed
a direct computation of µglob = ‖F t‖ /|Fn| in a frictional simulation of the coupled
problem during sliding under both normal and tangential loads, supplemented by pe-
riodic boundary conditions on vertical walls. Note that in the latter case we used the
augmented Lagrangian method for both normal and frictional contact constraints and
the classic Lagrange multiplier method for the fluid constraint. The comparison of the
results is presented in Fig. 7.5(d) for the case of V tf/V0 = 0.9 and different ratios of
∆/λ: Kuznetsov’s solution (7.32) is presented with dashed curves, estimations based on
frictionless simulation are shown as solid curves; results, which were obtained taking ex-
plicitly into account friction in the interface, are presented as crosses for a few particular
values of external pressure pext. This comparison shows that the frictionless result, based
on the assumption of separate consideration of tangential and normal contributions in
the interface [Johnson, 1987], provides a trustworthy estimation of the global coefficient
of friction.

Note that these considerations can be applied to multi-cracked materials such as
rocks with fluid in contact interfaces. The irreversible deformation in rocks is related to
the frictional sliding at crack interfaces, which starts after the mean shear traction 〈σt〉
in the interface reaches the frictional limit determined by the coefficient of friction and
the contact pressure µglob〈σn〉. Being homogenized over all randomly oriented crack ori-
entations, these considerations give rise to Drucker-Prager-type constitutive behaviour
with the initial yield surface given by f = σvM + µglobp − R0, where σvM is the von
Mises stress, p = −trace(σ)/3 is the hydrostatic pressure and R0 is the initial yield
stress for pure shear. Because of the presence of an incompressible fluid in the interface,
the frictional limit does not increase linearly (or equivalently the global coefficient of
friction does not remain constant), but reaches its maximum and decreases down to zero
as shown in Fig. 7.5(b). This behaviour is very similar to advanced pressure-dependent
plasticity models with a so-called cap, which corresponds to the decay of the von Mises



7.5. COMPRESSIBLE FLUID WITH CONSTANT BULK MODULUS 115

yield stress with increasing pressure [Resende and Martin, 1985]. But contrary to the
pore-collapse mechanism [Suarez-Rivera et al., 1990, Perrin and Leblond, 1993, Issen
and Rudnicki, 2000], here this decay results from the decrease of the global friction with
the hydrostatic pressure in presence of the fluid, this result also holds for non-linearly
compressible fluids.

Finally, for the sake of completeness, the distribution of some stress and strain
components in the bulk of the deformable solid during the process of trap opening is
shown in Fig. 7.6.

7.5 Compressible fluid with constant bulk modulus

Here our analysis is extended to the case of compressible fluids. In Fig. 7.7(a) we present
the comparison of the numerical simulation of a linearly compressible trapped fluid under
the linear penalty formulation with the analytical solution (7.11). We plot the evolution
of the ratio of the real contact area to the apparent one under increasing external
pressure for the case when the fluid occupies 70% of the initial gap, i.e. V tf

0 /V0 = 0.7.
Different curves correspond to different values of the modulus of compressibility of the
fluid Kf , normalized by the bulk modulus of the solid body Ks = E/3(1− 2ν), and for
each numerical result a corresponding analytical curve is presented for comparison.

Before pressurization of the fluid, the presence of the latter does not affect the so-
lution and all curves follow the Westergaard’s solution (7.2). For the pressurized fluid,
the results show a good agreement between numerical and analytical solutions for values
Kf/Ks � 1, and for Kf ≈ 0 the solution coincides completely with the Westergaard’s
formula. However, with the increase of the Kf , in the region corresponding to the
active fluid, the difference between numerical and analytical solutions becomes more
pronounced. For the ratio Kf/Ks close to unity, the numerical results shows an al-
most constant value of the real contact area under the increasing load. Note, that the
same result will hold for an incompressible fluid trapped in the interface between two
incompressible solids.

For even greater Kf/Ks, the numerical results show a decrease of the real contact
area, which means that the pressurized fluid starts to open the contact. Due to inherent
assumptions of infinitesimal slopes, these effects cannot be predicted by the analytical
solution.

In Fig. 7.7(a) the results were presented for V tf
0 /Vg = 0.7, note that the smaller

this ratio is, the bigger are the value of pressure necessary to bring the fluid in active
state and the corresponding value of the contact area. However, after the fluid becomes
pressurized, for sufficiently high values of external pressure, the evolution of the contact
area is influenced only by the compressibility modulus of the fluid and the mean slope
of the profile. The bigger is the compressibility modulus or the slope, the smaller is the
contact area for the same external pressure.

To emphasize the difference between the analytical and numerical solutions for a
nearly incompressible fluid, we plot the pressure distribution near a contact patch un-
der the increasing load for both solutions, see Fig. 7.7(b). The representation of the
stress state in the contact patches as a superposition of the stress state for the same
contact area without the influence of the fluid and a uniform fluid pressure, applied
everywhere (7.5) still holds for the numerical solution, but unlike the analytic solution,
in our results a significant reduction of the contact area for nearly incompressible fluid
is observed. Note that in our numerical solution for sufficiently high external pressure
the real contact area vanishes, which means that the fluid separates the contacting sur-
faces everywhere, and the external pressure is entirely supported by the fluid under the
pressure equal to the external one ptf = pext.
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Figure 7.6: Stress and strain components in the bulk of the deformable solid during
the process of trap opening due to the increasing pressure in the fluid. Top to bottom:
vertical stress component σzz, von Mises stress σvM , hydrostatic stress p, horizontal
strain component εxx and the vertical one εzz. Three loading steps are considered,
corresponding to, left to right: maximal contact area (activation of the fluid), half of
the contact opened, contact area is zero (trap is opened). The considered elastic material
is typical aluminium (E = 70 GPa, ν = 0.33), the fluid is assumed incompressible.
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Figure 7.7: (a) Evolution of the ratio of the real contact area to the apparent one
under increasing external pressure pext: comparison of numerical (solid curves with
markers) and analytical (dashed curves) results for different values of the fluid mod-
ulus of compressibility, normalized by the bulk modulus of the solid Kf/Ks; ∆/λ =
0.01, V tf

0 /V0 = 0.7. (b) Distribution of the normal pressure near the contact patch
under the increasing external load pext. Solid lines are the results of the numerical sim-
ulation and dashed lines correspond to the analytical solution under the same external
pressure, ∆/λ = 0.01, V tf

0 /V0 = 0.9, Kf/Ks = 6 · 104.

7.6 Compressible fluid with pressure-dependent bulk mod-
ulus

As was shown in Fig. 7.7(a) for the case of linearly compressible fluid (with constant
bulk modulus), starting from the pressurization of the fluid, the real contact area evolves
monotonically with the external pressure: if the fluid bulk modulus is considerably
less than the one of the solid (Kf � Ks), then the real contact area monotonically
increases, if Kf � Ks, then the contact area decreases down to zero, corresponding to
the opening of the trap. The latter case is interesting for the study of the process of the
fluid permeation into the contact zone and reduction of the global coefficient of friction,
however, as it was mentioned in the Sec. 7.4 for the incompressible fluid, the situation
when the initial fluid bulk modulus is greater than that of the solid remains non-physical
and serves as an idealized model. On the other hand, real fluids behave non-linearly and
their bulk modulus increases with increasing pressure, and thus even if the fluid bulk
modulus is smaller than that of the solid in the first stage of pressurization, it eventually
becomes greater than the one of the solid under the increasing pressure.

We present results of the numerical simulation for coupled problem with non-linear
fluids: evolution of the contact area and global coefficient of friction with increasing
external pressure, see Figs. 7.8(a),(b), respectively. Physically relevant values for two
solid materials are used: a typical steel (E = 200 GPa, ν = 0.28,Ks ≈ 151.5 GPa)
and aluminium (E = 70 GPa, ν = 0.33,Ks ≈ 83.33 GPa), and three types of fluid (see
Eq. (7.7)): water (K0 = 2112.5 MPa,K1 = 6.5), glycerine (K0 = 4151.5 MPa,K1 =
8.74) and a typical mineral oil (K0 = 2000.0 MPa,K1 = 9.25) [Kuznetsov, 1985, Nelle-
mann et al., 1977]. We limit this study to the contact problem with the fluid completely
filling up the gap (but only up to the upper boundary) during the whole process of
loading. Such formulation remains rather general since, due to the realistic fluid model,
the contact zone will inevitably appear in the beginning of loading.

At low external pressures numerical results coincide with the analytical solutions
for non-linear fluids, see (7.12). However, in contrast to the analytical solution, which
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Figure 7.8: Evolution of (a) the ratio of real contact area to the apparent one, (b) the
ratio between global and local coefficients of friction under increasing external pressure
for two elastic solids representing steel and aluminium, and non-linearly compressible
fluids representing water, glycerine and oil. The dashed curves correspond to the an-
alytical solution given by (7.12). Evolution of (c) the ratio of real contact area to the
apparent one A/A0, and of (d) the global to local coefficients of friction under increas-
ing external pressure in the case of elastic-perfectly plastic solid and incompressible
fluid. Note that in the initial configuration the fluid does not occupy the entire gap:
V tf/V0 = 0.9. Dashed curves are presented for comparison with the cases of purely elas-
tic solids, discussed in Sec. 7.4. Vertical dash-dotted line indicates the hardness taken
to be H = 3σY .
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cannot account for depletion of the contact zone, the numerically obtained contact area
reaches a certain maximal value and then decreases (the latter is observed for external
pressures pext/E

∗ > 0.2, not shown in figures since the contact area does not reach zero
value even for extremely high values of the external pressure pext = E∗). Note that
for each of considered materials, the obtained curves for water and oil coincide in the
beginning of loading due to almost equal initial bulk moduli K0 of these fluids, and
deviate for higher external pressures due to difference in K1, while for glycerine K0 is
significantly bigger, leading to a smaller contact area in this case.

The global coefficient of friction (CoF) also shows a non-monotonic behaviour, see
Figs. 7.8(b), first, it rapidly increases up to a certain maximal value. Within this stage,
the numerical and analytical results are very close, while for higher pressures a strong
deviation of analytical and numerical results is observed. In analytical solution, even
though the global CoF may decrease after the first extremum-maximum (see results
obtained for the steel), it eventually increases again after reaching the second extremum-
minimum. More accurate numerical results predict a monotonic decrease of the global
CoF after reaching the first maximum. Note that in the simplified case considered
here, the effect of hydrostatic lubrication lowers significantly the maximal global CoF,
which does not exceed ≈ 36 % of the local CoF for the steel, and does not exceed
≈ 24 % of the local CoF for the aluminium. Such a strongly non-linear behaviour of
the global coefficient of friction is explained by a competition between non-linear fluid
pressurization and non-linear contact area evolution (see Eq. (7.20)).

The numerical solution shows that the maximal value of the CoF and its slope after
passing the extremum both depend on the ratio between the bulk moduli of the fluid
Kf = K0 +K1p

tf and the solid Ks. The bigger is the initial modulus K0, the higher is
the maximal CoF (which explains almost equal peak values of the CoF for water and
oil and much lower value for glycerine). At the same time, the bigger is the coefficient
K1, the faster the CoF decreases.

We performed additional simulations varying the slope of the roughness profile ∆/λ
in the interval [0.005; 0.02]. The results showed that the evolution of the real contact
area is almost independent of the ratio ∆/λ (similarly to the case of the incompressible
fluid). On the other hand, variation of this ratio has a considerable effect on the peak
value of the global CoF, which increases with increasing ∆/λ. However, for high values
of external pressure, the CoF does not depend on the slope of the profile, as it was also
observed for the incompressible case.

7.7 Elastic-perfectly plastic solid

As was shown in the previous section, the pressurized fluid can open the contact only
at unrealistically high pressures, at which the linearly elastic material model is irrele-
vant. Thus, here a more realistic case is presented taking into account a non-linearly
compressible fluid and an elasto-plastic material behaviour. Moreover, such a study
is relevant for the aforementioned experimental observations of entrapment and con-
sequent permeation of the fluid into the contact interface in metal forming processes
and during upsetting of an elasto-plastic cylinder [Azushima and Kudo, 1995, Azushima
et al., 2011]. Here we consider elastic-perfectly plastic materials (von Mises stress cri-
terion): steel, E = 200 GPa, ν = 0.28, yield stress σY = 250 MPa and aluminium,
E = 70 GPa, ν = 0.33, σY = 240 MPa.

It is well known that in elasto-plastic mechanical contact, the contact pressure cannot
exceed the material hardness, which can be reliably estimated as H ≈ 3σY [Bowden
and Tabor, 2001, Johnson, 1987, Mesarovic and Fleck, 1999]. Thus it could be expected
that after the pressure in the fluid reaches material hardness the contact abruptly opens.
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Figure 7.9: Accumulated plastic strain near the contact interface is shown at three
different external loads for the incompressible fluid and for V tf/V0 = 0.9 and ∆/λ = 0.01,
from left to right: (1) the step corresponding to activation of the fluid; (2) the plastic
zone appears in the valley between the asperities; (3) opening of the trap (contact area
is zero; as seen from the plastic field, at this moment the entire solid is plastified).

However, as demonstrated by our simulations, due to the high hydrostatic compressive
state, the pressure in the contact can significantly overpass the material hardness.

First, we study incompressible fluid, and present in Fig. 7.8(c) the evolution of con-
tact area in the case of V tf/V0 = 0.9. It shows significantly different behaviour compared
to elastic material: after the fluid becomes activated, the contact area is non-monotonic
function of external pressure, it has a small increase, and then an abrupt decrease,
corresponding to the state when fluid pressure reaches the value of contact pressure,
and, consequently, permeation becomes possible. Normal tractions in contact interface
increase beyond 6σY due to hydrostatic pressurization of the solid. In Fig. 7.8(d) the
resulting evolution of the global CoF is presented, which shows considerably lower values
of the CoF for both considered materials, than the ones observed in the purely elastic
case (for the same external pressure). Fields of the accumulated plastic strain in the
solid at different loading steps are presented in Fig. 7.9, note that once the fluid gets
pressurized, the plastic zone is not limited to the contact vicinity, but spreads over the
entire interface and, consequently, the whole bulk of the solid. Notably, a secondary
onset of plastic deformation appears in the trough of the wavy profile, it complements
the classical plastic core appearing under the contact zone and spreading to the contact
interface [Johnson, 1987, Mesarovic and Fleck, 1999, Kogut and Etsion, 2002, Alcalá
and Esqué-de los Ojos, 2010].

Varying the slope of the profile as in Sections 7.4 and 7.6, we showed that in contrast
to the case of elastic solids, where the evolution of the contact area during the process
of trap opening does not depend on the slope of the profile ∆/λ, in case of elasto-plastic
solids, for a given ratio V tf/V0, once the fluid gets pressurized, the higher is the ratio
∆/λ, the bigger is the contact area.

The behaviour of the system incorporating the elasto-plastic material and non-
linearly compressible fluid is shown in Figs. 7.10(a-d): the contact area after reaching its
maximum abruptly decreases, resulting in a fast permeation of the fluid in the contact
interface and eventual opening of the contact. Note that after a relatively fast saturation
of the contact pressure at approximate material hardness H ≈ 3σY , a further increase
in pressure without fluid permeation still remains possible up to huge pressure values
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Figure 7.10: The behaviour of the system considering elasto-plastic material and non-
linearly compressible fluid: (a) evolution of the ratio of real contact area to the apparent
one under increasing external pressure; (b) the same as (a), but the results are shown in
range 0 ≤ pext ≤ 0.025E∗; (c) evolution of the ratio between global and local coefficients
of friction; (d) the same as (c), but the results are shown in range 0 ≤ pext ≤ 0.025E∗.
Dashed curves are presented for comparison with the cases of purely elastic solids. Ver-
tical dash-dotted line indicates the hardness H = 3σY .
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pext � σY . In reality however, due to the micro-roughness permeation of the fluid in
the contact interface may happen on earlier stages of the deformation.

In Fig. 7.10(c,d) the evolution of the global CoF is depicted, which shows a rather
similar behaviour to the one observed in the case of the elastic solid, having multiple
extrema in the beginning of loading. Note that the amplitude of the first maximum of
CoF is increasing with increasing slope of the profile, which was also observed in the
simulations with the purely elastic material.

7.8 Friction in the contact interface

In this Section we study the evolution of frictional tractions in the contact interface
during the process of the trap opening. Before presenting these results, we start by a
brief discussion of an example application of the quasi-static incremental framework for
the frictional contact, developed in Chapter 4. Note that here we consider only normal
external loading, supplemented by symmetric boundary conditions on vertical walls.
Furthermore, in order to obtain more reliable results, we refined the mesh to have 512
nodes within the maximal considered extension of the contact zone a/λ = 0.05, keeping
the total number of contact elements equal to 1024.

7.8.1 Validation of the numerical framework

The main purpose of the this discussion is to emphasize the importance of considering
a significant number of load steps to obtain physically relevant results using a quasi-
static frictional framework (which relates the frictional traction to the increment of the
tangential displacement rather than to its rate). We compare two frictional contact
simulations with the same final external load and different loading sequences: the full
load is applied in either 1 or 100 load steps, see Fig. 7.11. Note that in case of simulation
with 100 load steps the displacement of the bottom edge at the i-th step is prescribed
as wi|z=−H = W (i/N)2, where N = 100, and W is the full displacement of the bottom
edge after 100 steps. This type of loading was chosen instead of an equally-stepped
loading in order to improve the representation of the frictional traction at the very
beginning of the loading (i.e., in the zone close to x = 0). We noted that the obtained
result is more smooth if the length of the contact zone 2a is growing linearly between
increments, while, according to the frictionless solution (7.4), in the very beginning of
loading a ∼ √pext, and the external load is proportional to the far-field approach, i.e.
w|−H , see [Popov, 2010]. Therefore, by increasing the displacement quadratically, we
obtain a linear evolution of the contact area.

Clearly, the results of the two presented simulations differ drastically, both in terms
of the value of frictional traction and in the partition of the contact into stick and slip
zones. Moreover, considering frictional traction as a function of the x-coordinate, we
note that in case of 1 load step σt(x) has a non-smooth transition between stick and
slip zones, and, moreover, changes the sign of its second derivative at that point. At the
same time, in case of simulation with 100 load steps the transition between stick and
slip zones is smooth. Since the considered wavy profile in the region of interest is very
close to the parabolic one, the numerical results should be described by the available
analytical solution for the frictional contact between parabolic solids [Spence, 1975].
This solution predicts a smooth transition between stick and slip zones, and, therefore,
we conclude that the numerical result obtained under a loading sequence of 100 steps is
physically relevant, while the other one is not. This conclusion explains a high number
of load steps used in simulations with friction presented in this section.
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Figure 7.11: Comparison of two frictional (normal loading only) contact simulation with
the same final normal load (pext/E∗ = 0.00018), but different loading sequences: the
full load is applied in either 1 or 100 load steps. Full curves with markers represent
frictional (shear) traction, while dashed ones show normal traction multiplied by the
CoF µ = 0.3. Both tractions are normalized by E∗.

7.8.2 Effect of the trapped fluid on frictional tractions

We consider a coupled problem for an incompressible fluid with Coulomb’s friction in
the contact interface, as in previous analysis the shear forces in the trapped fluid are
neglected due to quasi-static analysis. The following geometrical parameters are used:
∆/λ = 0.01, V tf/V0 = 0.95.

We emphasize that the external tangential load is absent in this study, thus we
consider here only normal loading, in which two stages can be distinguished. During the
first stage the external pressure pext increases from zero value to pact, the value necessary
to bring the fluid into active state, and the contact area reaches the maximum value.
Results for the first stage are presented in Fig. 7.12(a), where, in order to visualize stick
and slip zones, we plot normal tractions, multiplied by the coefficient of friction (CoF)
µ = 0.2. Those results are very close to the classic self-similar (remaining the same
for any load under a proper coordinate/pressure scaling [Spence, 1975]) distribution of
tractions, because the wavy profile in the region of interest is very close to a parabolic
curve. During the second stage of loading (pext > pact) the fluid is in the pressurized
state and influences the interfacial traction distribution.

Since the slope of the roughness profile is small, the distribution of normal traction
should resemble, at least for pext not much greater than pact, the analytical solution for
a fluid bulk modulus tending to infinity (K → ∞), in which a uniform pressure offset
is added everywhere to the field of the normal traction corresponding to the external
pressure pact. In accordance to that, tangential traction remains almost unchanged over
the majority of the contact interface. Since the contact pressure is increased by the fluid
pressure offset, all points pass to the stick state, i.e. adhere to their positions. However,
due to the finiteness of the slope being taken into account, the distribution of normal
traction slightly differs from the analytical solution in the same way as was discussed in
Sec. 7.5, see Fig. 7.7(b), i.e. a slight decrease of the contact area takes place.

For pext sufficiently greater than pact, see Fig. 7.12(b), the effects of finite slope
become more pronounced, the contact area is gradually decreasing and a remarkable
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evolution of the tangential traction is observed. A singularity in the tangential traction
emerges at the boundary of the contact zone, with the value at the tip of this singularity
limited by the Coulomb’s law. In order to explain and verify this intriguing result, we
consider an analogy between the process of the trap opening with the interfacial friction
and the mode-II crack propagation in the framework of linear elastic fracture mechanics
(LEFM) theory [Tada et al., 1973].

Note that the analogy is not complete in physical sense: during the process of trap
opening due to pressurization of the incompressible fluid, new surface is not created,
since no atomic bonds must be broken in order to separate the surfaces. The physical
reason for the singularity in tangential stress is the following: when points of the surface
loose contact, their normal traction reduces not down to zero, but to the value of fluid
pressure, thus the frictional limit near the contact edge remains elevated. Thus, the
points of the interface before loosing contact have non-zero shear traction, and being
liberated from this traction after loosing the contact, these points slide freely, in absence
of frictional resistance, towards the centre of the contact zone.

The fluid activation corresponds to the maximal extension of the contact zone, we
shall denote the maximal contact half-length as a∗, and during the subsequent increase
of the external pressure the width of the contact zone is monotonically decreasing. For
sufficiently small slope of the roughness profile, the situation corresponding to contact
half-length a < a∗ can be considered as a configuration of two bonded dissimilar solids
with two aligned semi-infinite interfacial cracks in the interface, separated by 2a, see
Fig. 7.12(c). Using the superposition principle, the observed stress state, corresponding
to the half-length of the contact patch a, can be represented as a superposition of the
initial shear traction σ∗t (x), corresponding to the moment of activation of the fluid, and
a stress induced by the same traction with the opposite sign, σ−t (x) = −σ∗t (x) applied
only on the surfaces of the cracks in the intervals x ∈ [−a∗,−a]and [a, a∗]. Such traction
induces a singular shear stresses in the region between two cracks x ∈ [−a, a], thus σ−t (x)
can be written as:

σ−t (x) =


−σ∗t (x), x ∈ [−a∗,−a] ∪ [a, a∗]

1√
2π Im

{
K(a, σ∗t )

(
(x−a)iε√
|x−a|

− (x+a)iε√
|x+a|

)}
, x ∈ [−a, a]

0, |x| > a∗,

(7.33)

where K is the complex stress intensity factor, see [Rice and Sih, 1965, Rice, 1988],
and two terms in brackets in (7.33.2) correspond to two semi-infinite cracks being con-
sidered, so that σ−t (0) = σ∗t (0) = 0, Im is the imaginary part. Therefore, the resulting
distribution of shear tractions is given by the superposition σt(x) = σ∗t (x) + σ−t (x).

The complex stress intensity factor K is calculated using the existing analytical
formula for considered configuration and shear traction distribution [Rice and Sih, 1965,
Rice, 1988]:

K(a, σ∗t ) = [k1(a, σ∗t ) + ik2(a, σ∗t )]
√
π cosh (πε), (7.34)

where

k1(a, σ∗t ) =
√

2
π

a∗∫
a

σ∗t (x) sin (ε ln (x− a))√
x− a

dx,

k2(a, σ∗t ) =
√

2
π

a∗∫
a

σ∗t (x) cos (ε ln (x− a))√
x− a

dx, (7.35)

and the parameter ε accounts for the different properties of the two bonded solids, in
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Figure 7.12: Distribution of the tangential tractions in the contact interface: (a) Fluid is
not pressurized. (b) Under increasing external load fluid gets pressurized, contact area
is decreasing and a singularity in tangential traction appears (limited by the Coulomb’s
law). (c) Sketch of the analogous problem for two bonded dissimilar solids with two
aligned semi-infinite interfacial cracks in the interface. (d) Comparison of the numerical
results for the shear tractions and approximation provided by the analogy with the
LEFM.
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case one of them being rigid, it equals to

ε = − 1
2π ln (3− 4ν). (7.36)

In Fig. 7.12(d) we plot the approximation of the shear traction distribution in the
interface during trap opening, discussed above. A sound similarity is found between
numerical results and analytical formulae provided by the LEFM. Therefore, we have
shown that during the process of trap opening due to increasing pressure in the fluid
with friction taken into account, the tangential tractions near the contact edges are
elevated up to the limit provided by the Coulomb friction law. Consequently, even if the
majority of the interface remains in stick state, local slip zones emerge at the boundaries
of contact zones. It is important to account for such an elevated shear stress near edges
of contact zones surrounding trapped fluid, which appears under normal loading, in
the analysis of damage evolution and crack onset under monotonic and cycling loading,
including fretting fatigue [Hills, 1994, Proudhon et al., 2005].

7.9 Conclusions

In this chapter we solved the problem of mechanical contact between a deformable body
with a wavy surface and a rigid flat, taking into account pressurized fluid trapped in
the interface. A mathematical framework for this coupled problem for both incompress-
ible and compressible (with constant or pressure-dependent bulk-modulus) fluid was
formulated in Chapters 4 and 5.

The proposed framework accounts for a finite slope of the roughness profile, while in
previous investigations using classical boundary element method (which accounts only
for vertical displacements) and existing analytical solutions only infinitesimal slopes
were considered. We showed that in the considered coupled problem, a reduction of the
contact area can occur due to elastic flattening of asperities by fluid pressure. Thus
the reduction of the global coefficient of friction is caused not only by the external load
repartition between the solid contact and the pressurized fluid, but also by the contact
area reduction.

The reduction of the contact area takes place if the fluid bulk-modulus is higher
than that of the solid. In case of incompressible fluid this criterion is satisfied and
the process of trap opening is observed. However, this case is non-physical, since real
lubricating fluids in the unpressurised state have much lower bulk modulus than solids.
A more relevant case is a compressible fluid with linear dependence of bulk modulus
on pressure, which ensures a non-monotonic variation of the contact area, and thus of
the global coefficient of friction, leading to reduction of the both for sufficiently large
pressures.

Among other applications, the obtained results are relevant for the mechanical be-
haviour of multi-cracked materials such as rocks. We showed that due to the presence
of pressurized fluid in the interface, the frictional limit does not increase linearly with
increasing external load, but reaches its maximum and decreases down to zero. This
behaviour is similar to pressure-dependent plasticity models with a cap (e.g. Drucker-
Prager cap model), which corresponds to the decay of the von Mises yield stress with
the increasing pressure.

In addition to elasticity, we considered physically more relevant elasto-plastic mate-
rials in combination with realistic fluids. In this case, the contact pressure is bounded,
while the fluid can bear arbitrary pressure, consequently under certain external pressure
fluid permeates in the contact zones abruptly.

When interfacial friction is considered in the coupled problem, previously unreported
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quasi-singularities appear in shear stresses near edges of contact patches during fluid-trap
opening under normal loading. We showed that these singularities can be analytically
estimated using the analogy between trap opening and crack propagation in the interface
between two bonded dissimilar solids. It is important to account for such an elevated
shear stress, caused by the trapped fluid, in the analysis of damage evolution and crack
onset under monotonic and cycling loading, including fretting fatigue.

The problem of trapped fluid is relevant for metal forming (drawing and rolling),
where a lubricant is present in the interface and involved loads are high. It is also
relevant in poromechanics, especially in cracked media filled with fluid and subjected
to complex stress states with high hydrostatic component, which can ensure contact
between surfaces of internal cracks. Finally, at the microscopic scale, where the sur-
face roughness plays a crucial role, the trapped fluid provides additional load-bearing
capacity, and thus reduces the macroscopic static friction. Under increasing load, the
trapped fluid is squeezed out of its trap thus resulting in even smaller global coefficient
of friction.
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Chapter 8

Fluid flow in contact interface
with model geometry

Résumé de Chapitre 8 “L’écoulement de fluide à travers
l’interface de contact avec une géométrie du modèle”

Dans ce chapitre, nous évaluons les capacités du cadre numérique développé dans la deux-
ième partie de la thèse. Tout d’abord, l’écoulement induit par la pression dans l’interface
de contact entre un solide élastique présentant une surface ondulée et un plan rigide est
simulé à l’aide de l’approche de couplage bidirectionnelle. Parallèlement, une solution
analytique approchée est obtenue pour ce problème couplé. Une bonne concordance est
obtenue entre les deux solutions dans le domaine de validité de la solution analytique.
Enfin, nous avons montré que la pression externe nécessaire pour sceller le canal est une
fonction affine de la pression d’entrée et ne dépend pas de la pression de sortie. Nous
avons également considéré l’écoulement de fluide au travers d’un canal ondulé avec une
élévation en forme d’anneau de la surface au centre du canal. Cette structure de type
“atoll” forme une zone de fluide piégé. Une fois piégé, le fluide fournit une capacité
de charge supplémentaire, nécessitant une charge externe plus importante pour sceller
l’interface, c’est-à-dire que le fluide piégé augmente la transmissivité. Enfin, nous avons
montré que la convergence quadratique de la méthode de Newton-Raphson est atteinte
dès que la partition de l’interface en zone de contact, d’écoulement et de fluide piégé
finale est atteinte, ce qui confirme la robustesse de l’algorithme de résolution proposé.

In the previous chapter the developed numerical framework was used to solve the
trapped fluid problem without fluid flow in the plane strain formulation. Here, we
extend the application range of the proposed monolithic framework and study the fluid
flow across an extruded wavy channel brought in contact with the rigid flat. Afterwards,
we consider a more complex case, adding a ring-shaped elevation of the surface at the
centre of the channel, which serves as a fluid trap. As a result, this geometry allows to
test the full coupling of contact, fluid-flow and a trapped fluid zone.

8.1 Fluid flow across a wavy channel brought in contact

We study a pressure driven flow in contact interface between an elastic solid with an
extruded wavy surface and a rigid flat, considering the two-way coupling between the
contact and the fluid problems. An approximate analytical solution is obtained for this
coupled problem, while the finite-element monolithic framework (see Chapter 6) is used
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to solve the problem numerically. Furthermore, we calculate the transmissivity of the
contact interface and study the dependence of the critical external pressure, needed to
seal the channel, on the fluid pressure at inlet and outlet.

8.1.1 Problem set-up

We consider an array of wavy channels of length L along theOY -direction (see Fig. 8.1(a))
with a sine-shape section:

z(x′) = ∆[cos (2x′)− 1], (8.1)

where x′ = πx/λ, brought in contact with a rigid flat7, and a pressure driven flow
across this interface of an incompressible viscous fluid. The pressure drop is given by
∆p = pi − po, where pi and po are the inlet and outlet pressures, respectively. We
assume an isothermal fluid flow at a temperature at which it does not evaporate under
the pressure drop on its way from the inlet to the outlet. The system of equations to
be solved takes the following form:

∇ ·
[
g3
n∇p

]
= 0 in Γf (8.2a)

p|y=0 = pi, p|y=L = po, [q · ex]|x=0,λ/2 = 0 (8.2b)
∇ · σ = 0 in Ω (8.2c)
ux|x=0,λ = 0, uy|y=0,L = 0, σzz|z=−∞ = −pext (8.2d)
|σn| − p ≥ 0, gn ≥ 0, (|σn| − p) gn = 0 on Γ ⊂ ∂Ω, (8.2e)

where Eq. (8.2a) is the Reynolds equation for the pressure-driven stationary incompress-
ible viscous Poiseuille flow (see also Section 2.3.3), gn is the distance between immobile
walls, and p is the fluid pressure. Eq. (8.2b) summarizes boundary conditions for the
fluid problem: the fixed inlet pi and outlet fluid pressure po and zero flux q at crests of
the surface resulting from the problem symmetry. Eq. (8.2c) is the momentum balance
equation for the quasi-static solid mechanical problem in absence of volumetric forces,
while (8.2d) summarizes boundary conditions for the solid problem, where pext is the
squeezing pressure applied at infinity. Due to the symmetry, horizontal displacements
are zero at lateral walls orthogonal to the x-axis, which corresponds to an infinite peri-
odic set-up. Vertical walls on the inlet and outlet sides are assumed to remain flat. The
adjusted contact conditions (8.2e) will be explained in the following sub-section.

Linear isotropic elasticity is considered for the elastic half-space Ω, so the stress-
strain relation is given by the Hooke’s law (2.17). Finally, we have one unknown vector
field in three dimensions, displacements u(x, y, z) in Ω, and one unknown scalar field
in two dimensions, which is the hydrostatic fluid pressure p(x, y) in Ωf . We assume
that full contact is not reached in any section parallel to OX, so the fluid can always
circulate.

In Fig. 8.1(a) we also sketch the expected surface normal traction, note that in the
contact zones it is not uniform along the OY axis, but is rather increasing towards the
outlet side, which should be caused by the effect of the fluid pressure acting on the
surface of the solid. Accordingly, the width of contact patches in sections orthogonal
to OY should be also increasing towards the outlet, corresponding to the direction of
the fluid pressure drop, see also sketches of the interface under the one-way coupling
approach (which neglects the effect of the fluid pressure) in Fig. 8.1(b) and the two-way
coupling in Fig. 8.1(c).

7Note that all the discussions are valid not only for an elastic solid with a wavy surface in contact
with a rigid flat, but for two elastic solids with the effective wavy roughness given by z = z1 − z2 + c,
where z1, z2 determine surface geometries of the two contacting solids, and c is an arbitrary constant,
see [Barber, 2003].
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Figure 8.1: Problem set-up: (a) an elastic wavy surface comes in contact with a rigid
flat, and an incompressible fluid flows under pressure difference from the inlet to the
outlet; the resulting normal traction component σn is shown. Sketches of the contact
interface are also given, corresponding to (b) one-way and (c) two-way coupling ap-
proaches. Note that due to fluid pressure acting on the surface of the solid (two-way
coupling), it is expected that the contact patches are wider at the outlet, than at the
inlet, corresponding to the direction of the fluid pressure drop.

We study the evolution of the two fields u and p with the increasing external pressure
pext. In particular, we are interested to know how the contact profile a(y) delimits the
contour of the fluid channel and how its depth gn(x, y) changes. In addition, we will
determine under which conditions the flow is possible through the interface, i.e. what
are the critical values of pi, po, pext resulting in channel closure.

8.1.2 Wavy profile with pressurized fluid in the interface

Before making an attempt to solve the three-dimensional problem formulated in the
previous section, we focus our attention on a simpler, planar contact problem with a
pressurized fluid in the interface. Understanding of this problem will be helpful for the
derivation of the approximated solution for the full problem, which is presented in the
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Figure 8.2: (a) - Contact between an elastic wavy profile and a rigid flat with a pressur-
ized fluid in the interface, (b) - variation of the mean pressure on the surface with the
mean gap.
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following sub-section.
An elastic solid with a wavy surface (Fig. 8.2, Eq. (8.1)) is brought in contact with a

rigid flat in a fluid environment, which is retained under a constant pressure p. A plane
strain problem is considered. The solid mechanical contact problem was solved for this
configuration by Westergaard without fluid pressure (p = 0), under the assumption
of the infinitesimally small slope of the wavy profile [Westergaard, 1939], see [Johnson
et al., 1985] and Section 7.2 of this dissertation. The pressure distribution in contact
region was found to be

pW (x′, a′) = 2p̄W (a′) cos(x′)
sin2(a′)

√
sin2(a′)− sin2(x′), (8.3)

where x′ = πx/λ, a′ = πa/λ, and a is the half-width of the contact zone; the mean
contact pressure reads as

p̄W (a′) = πE∗∆
λ

sin2(a′), (8.4)

i.e. p̄W (a′) =
a′∫
0
pW (x′, a′) dx′, and E∗ is the effective elastic modulus defined by

1
E∗

= 1− ν2
1

E1
+ 1− ν2

2
E2

,

where Ei, νi are the Young’s moduli and Poisson’s ratios of the two contacting solids
i = 1, 2, respectively. Associated effective displacements (taken with a negative sign) in
the contact interface are given by

w(x′, a′) =


−∆ cos(2x′) + C, in contact cos(x′) > cos(a′)
−∆ [cos(2x′) + 2 sin(x′)h(x′, a′) − 2 sin2(a′) ×
× ln

(
sin(x′)+h(x′,a′)

sin(a′)

)]
+ C, out of contact cos(x′) ≤ cos(a′),

(8.5)

where h(x′, a′) =
√

sin2(x′)− sin2(a′).
The solution of the contact problem for the same configuration in the pressurized en-

vironment was given in [Kuznetsov, 1985]. If we assume that the fluid pressure acts only
vertically8 and that the profile slope is infinitesimal, the stress state in the contact inter-
face in the presence of the additional fluid pressure, applied outside the contact patches,
can be considered as a superposition of the stress state corresponding to the same con-
tact area, but without influence of the fluid, i.e. the Westergaard’s solution (8.3), and
a uniform field of the fluid pressure p:

pK (x′, a′) = pW (x′, a′) + p. (8.6)

A detailed rigorous analysis of the trapped fluid in the contact interface without the
assumption of infinitesimal slopes and with the fluid pressure acting normally to the
surface was carried out in Chapter 7 of this dissertation. However, here the simplified
approach (8.6) is sufficient to study analytically the strongly coupled problem (8.2).

In the classical Hertzian contact the pressure decreases to zero towards contact
edges [Johnson, 1987], but in a pressurized environment such a situation is impossi-
ble as the contact would be opened by the environmental pressure. Therefore, the fluid
pressure p represents an offset which can be complemented by the mechanical pressure
rising in contact. Since a constant p does not change the shape of the surface in infinitesi-

8In Chapter 7 of this dissertation this assumption was shown to be too prohibitive for certain appli-
cations even if the surface slope is assumed infinitesimal.
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mal slope assumption, displacements obtained for pressures (8.3) and (8.6) differ only by
a constant, thus Eq. (8.6) satisfies the unilateral contact conditions (see Section 2.2.1),
which can be formulated for the coupled problem in the following way:

|σn| − p ≥ 0, gn ≥ 0, (|σn| − p) gn = 0, (8.7)

where |σn| is the absolute value of the normal traction, gn is the gap, and p is the
pressure of the environment. That is the form which appears in the main system of
equations to be solved (8.2e).

The relation between the mean gap and the contact force almost does not change
compared to the unpressurised case [Johnson et al., 1985, Kuznetsov, 1985], only a force
offset pλ is added for every period. The mean gap can be computed by integrating
gn(x) = z(x) + w(x) in the non-contact region giving

ḡn = ∆
(

1− p̄W
p∗
W

[
1− ln

(
p̄W
p∗
W

)])
, for p̄W ∈ [0, p∗

W
] (8.8)

where p∗
W

= πE∗∆/λ is the pressure needed to bring the wavy surface in full contact
in the absence of fluid pressure; the mean contact pressure in the absence of fluid p̄W is
given by Eq. (8.4). In Fig. 8.2(b) the normalized mean pressure (p̄W + p)/p∗

W
is plotted

with respect to the mean gap ḡn evolution.
Based on this planar solution the following preliminary conclusion can be drawn for

the three-dimensional problem. If the hydrostatic pressure changes only weakly along the
channel, i.e. pi ≈ po, then the contact lines would remain almost parallel to the axis OY
and the derivative of the gap with respect to y may be neglected. Then the hydrostatic
pressure will be an affine function of the coordinate y, i.e. p = pi + (po − pi)y/L. The
flux, which would have a non-zero component only along y axis, can be readily found as
qy(x) = −g3(x)(po − pi)/(12µL); note that it depends only on the x-coordinate. Thus,
naturally for the situation pi ≈ po the channel would be sealed at pext ≈ p∗W + po.

8.1.3 Approximate analytical solution

To provide an approximate analytical solution for the coupled problem formulated in
Eqs. (8.2a)-(8.2e) we suggest to make several strong assumptions. We assume (i) that
in every section y = const, the pressurized Westargaard-Kuznetsov solution (8.6) is
satisfied for a = a(y) and p = p(y). However, it is clear that it should imply that
∂p/∂x = 0, which could seem to exclude the channel narrowing. But since in the
following, the problem will be reduced to a one-dimensional flow along OY axis, this
assumption (i) is not contradictory: the fluid pressure can be considered as the mean
pressure in the section

p(y) = 1
λ− 2a

λ−a∫
a

p(x, y) dx. (8.9)

We also assume (ii), which is the strongest and the least realistic assumption, that in
every section the applied pressure is balanced, i.e.:

pext = p̄W + p = const, (8.10)

for that we require that p ≤ pext in Ω, which is equivalent to require that pi ≤ pext.
Another simplification would be (iii) to reduce the two dimensional Reynolds equation to
a one-dimensional equation for the average gap (8.8), which implies that the hydrostatic
pressure is independent of the x-coordinate: p = p(y). Under these three assumptions
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Eq. (8.2a)-(8.2b) can be rewritten as

ḡ3
np
′ = C1, p(0) = pi, p(L) = po, (8.11)

where the prime sign denotes partial derivative with respect to y, and C1 is the integra-
tion constant. The condition of the zero flow at x = 0, λ (see Eq. (8.2a)) is automatically
satisfied as p is assumed not to depend on x.

Now we can use the relation between the mean gap and the pressure (8.8) through
the relation (8.10), which being substituted in (8.11) yields:

−p∗
W

∆3

C1

ρ(y)∫
ρi

[1− ρ {1− ln ρ}]3 dρ = y, (8.12)

where ρ(y) = (pext − p(y))/p∗
W
, and ρi = ρ(0) = (pext − pi)/p∗W . From (8.12) it follows

that ρ(y) should be a monotonically increasing function of y in the range y ∈ [0;L]. The
boundary conditions now read as:

ρ(0) = ρi = (pext − pi)/p∗W , ρ(L) = ρo = (pext − po)/p∗W . (8.13)

The integral I(ρ) =
∫

[1− ρ {1− ln ρ}]3 dρ from (8.12) with zero integration constant
is evaluated as:

I(ρ) =ρ− α1ρ
2 + α2ρ

3 − α3ρ
4 + β0ρ

2(1− β1ρ+ β2ρ
2) ln(ρ)

+ ρ3(1− γρ) ln2(ρ) + ρ4

4 ln3(ρ), (8.14)

where α1 = 9/4, α2 = 17/9, α3 = 71/128, β0 = 3/2, β1 = 16/9, β2 = 13/16, γ = 15/16.
The solution cannot be provided in the form p(y), but rather y(p), which reads as

y =
−p∗

W
∆3

C1
(I(ρ) + C2), (8.15)

where the integration constants can be found through boundary conditions: C1 =
−p∗

W
∆3 (I(ρo)− I(ρi)) /L and C2 = −I(ρi). The final approximate solution, which

determines the average fluid pressure distribution along the channel coordinate y is
given below:

y

L
= I(ρ)− I(ρi)
I(ρo)− I(ρi)

. (8.16)

Resulting curves for the variation of hydrostatic pressure, mean gap and contact half-
width along the channel are depicted in Fig. 8.3, 8.4(a), 8.4(b), respectively. This
approximate result is able to capture the non-linear hydrostatic pressure distribution
along the channel, to account for the induced deformation of the solid and thus to
obtain the narrowing of the channel.

With the derived approximate solution we may calculate the fluid flux in the y-
direction as

qy(x, y) = −g
3
n(x, y)
12µ

dp(y)
dy

, (8.17)

where the gap gn(x, y) is obtained in each section y = const using the Westergaard’s
solution (8.5) corresponding to the mean pressure p̄W = pext − p(y), and the derivative



8.1. FLUID FLOW ACROSS A WAVY CHANNEL BROUGHT IN CONTACT 135

0 0.5 10.2 0.8 0 0.5 10.2 0.8 0 0.5 10.2 0.8

Normalized distance along the channel, y/L

N
or

m
al

iz
ed

 fl
ui

d 
pr

es
su

re
, p

/
ip

0

0.2

0.5

0.8

1.0

0.4

0.6

(a)

p   /ext
*p =0.05

p =0o

p =p /2o i
p =0.1pi ext

p =0.2pi ext

p =0.5pi ext

p =0.99pi ext

(b)

p   /ext
*p =0.1

(c)

p   /ext
*p =0.2

p =p /2o i
p =p /2o i

p =0o p =0o

p =0.1pi ext

p =0.2pi ext

p =0.5pi ext

p =0.99pi ext

p =0.1pi ext

p =0.2pi ext

p =0.5pi ext

p =0.99pi ext

Figure 8.3: Approximate solution (8.16) for the mean hydrostatic fluid pressure distri-
bution along the wavy channel in contact with a rigid flat for po = pi/2 and po = 0 (a)
pext/p

∗
W

= 0.05, (b) pext/p
∗
W

= 0.1, (c) pext/p
∗
W

= 0.2; the fluid pressure is normalized by
the inlet pressure p/pi and the coordinate is normalized by the channel length y/L.

dp/dy is calculated using (8.16) as

dp

dy
=
(
− 1
p∗
W

L

I(ρo)− I(ρi)
dI(ρ)
dρ

)−1

=
(
− 1
p∗
W

L

I(ρo)− I(ρi)
[1− ρ {1− ln ρ}]3

)−1

.

(8.18)
This result will be used in the following for computation of the mean flux and the
effective transmissivity of the interface and comparison with the numerical solution.
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Figure 8.4: Approximate solutions for (a) normalized contact region half-width a/λ and
(b) normalized mean gap ḡn/∆ evolution along the channel.

8.1.4 Numerical results and discussions

Using the constructed monolithic coupling scheme, we carried out several simulations
for three different fixed inlet fluid pressures pi = 2, 10, 50 MPa, respectively, and for
outlet pressures po/pi = {0; 0.25; 0.5; 0.75}. The solid is gradually brought in contact
by applying vertical displacement on its bottom side. Due to the reflection symmetry
of the geometry and loads, only the half wavelength is simulated using structured finite
element mesh of hexahedral linear elements, with 128×128 square-shaped faces on the
surface, the mesh gradually coarsens with the depth. The mesh is depicted in Fig. 8.5,
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Figure 8.5: Finite element mesh with 128× 128 elements on the contact surface, which
was used to solve the coupled solid-fluid problem.

it contains approximately 109 000 nodes and approximately 98 000 elements with 8 inte-
gration points per element. At the bottom surface z = −H, the displacement vector is
prescribed as ux = uy = 0, uz = kt, where k is a load factor, t is the time. Geometrical
parameters of the problem are the following: L = 1 cm, λ = 2 cm, ∆ = 0.2 mm, H = 1.4
cm, Young’s modulus E = 2 GPa and Poisson ratio ν = 0.3, thus E∗ ≈ 2.2 GPa.

We present the detailed results of numerical simulations in Fig. 8.6 and Fig. 8.7:
the distribution of the fluid pressure and the contact pressure, as well as the gap and
the fluid flux for the case pi = 50 MPa, po = 0 and for two particular load steps:
pext/p

∗
W

= 0.48, 0.8, respectively. On the initial stage of loading no contact occurs and
the load is supported by the fluid solely, which flows along the entire channel (this
classical situation is not presented in the figures). For higher loads, the solid comes in
contact with a rigid flat, the contact starts from the outlet zone (see Fig. 8.6). With
the increasing load the contact zone spreads out and at a certain load reaches the inlet
zone (see Fig. 8.7); starting from this moment the approximate solution (8.16) becomes
applicable. The gap, being bigger at the inlet due to higher inlet pressure, narrows
towards the outlet region. The flow is localized within the trough of the wavy profile,
and the flux intensifies towards the outlet. Due to the narrowing of the channel along
the flow direction, the current lines converge towards the outlet, it results in a small but
still distinguishable fluid pressure gradient in the OX direction, which was not explicitly
taken into account in the derivation of the approximate solution.

In Fig. 8.8 numerical results for the variation along the channel of mean fluid pres-
sure, mean gap and the contact width, as well as the contact and fluid pressure profiles
in the section y = L/2 are compared with approximate solution from Section 8.1.3. A
rather good agreement is obtained in the range of validity of the approximate result: the
inlet pressure and external pressure satisfy the following conditions pi ≤ pext, pext < p∗

W
,

and they are chosen such that the contact zone reaches the inlet, see (8.10) and the
discussion in Section 8.1.3. These limitations are quite strong and in reality ensure only
a limited range of validity of the approximate solution.

In Fig. 8.9(a) the numerically computed evolution of the width of the contact zone on
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Figure 8.6: Results of the numerical simulation: (a) normalized fluid pressure p/pi, (b)
normalized contact pressure |σn|/|σn|max, (c) normalized fluid flux intensity |q|/|qmax|,
(d) normalized gap g/∆; pext/p

∗
W

= 0.48, pi/p∗W = 0.72, which corresponds to pi/pext =
1.5.

the inlet and the outlet sides with the increasing pressure is depicted for three different
inlet pressures pi/p∗W = 0.03, 0.14, 0.72 and po = 0. These results are compared with the
analytical solution, which is valid if the external pressure is in the interval pi < pext <
p∗
W
. In agreement with the assumptions of the approximate solution, the evolution of

the width of the contact zone on the outlet side is independent of the inlet fluid pressure.
However, in the numerical results curves both for inlet and outlet sides shift into the
region of higher external pressures with the increasing inlet pressure. Note also that in
the numerical results the outlet contact width grows faster than the inlet one. Finally,
the strongly coupled numerical model shows that the higher is the inlet pressure pi, the
higher external load is needed to completely seal the channel.

In Fig. 8.9(b) the effective transmissivity Keff of the wavy channel brought in contact
is plotted: it is defined as

Keff = − 12µQL
∆3(po − pi),

(8.19)
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Figure 8.7: Results of the numerical simulation: (a) normalized fluid pressure p/pi, (b)
normalized contact pressure |σn|/|σn|max, (c) normalized fluid flux intensity |q|/|qmax|,
(d) normalized gap g/∆; pext/p

∗
W

= 0.8, pi/p∗W = 0.72, which corresponds to pi/pext =
0.9.

where Q is the mean flux over the area λ× L, i.e.

Q = 1
λL

λ∫
0

L∫
0

qy dxdy. (8.20)

For computation of the local flux qy(x, y) we used the results of numerical simulations
as well as the approximate solution (8.16)-(8.18). We considered the same three cases
as before with different inlet pressures. For each case we highlight the corresponding
external pressure necessary for the contact to appear at the inlet and outlet sides. As
soon as the contact appears on both sides, the evolution of the transmissivity becomes
exponential with respect to the external pressure normalized by p∗

W
with the exponent

≈ −8 in all three cases. We note that this coefficient is lower than the one observed in
simulations of the interface transmissivity for the surfaces with representative random
roughness, where it was reported to be of order ≈ −12 [Dapp and Müser, 2016]. Closer
to the complete sealing (the percolation limit) the transmissivity decays faster and can
be very accurately described by a power law with respect to the difference between
the critical external pressure pcrit, necessary to seal the channel, and pext, i.e. Keff ∼
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Figure 8.8: Comparison of results of numerical simulations with the approximate ana-
lytical solutions for (a) normalized contact region half-width a/λ, (b) normalized mean
gap ḡn/∆ and (c) normalized fluid pressure p/pi evolution along the channel, (d) normal
traction component |σn|/E∗ in the section y = L/2.

(pcrit−pext)γ . Note that for our results γ was estimated as 6±0.5, while in accurate but
one-way coupled studies of the percolation limit of bi-sinusoidal surfaces it was found
to be equal to 3.45 [Dapp and Müser, 2015, Dapp and Müser, 2016].

The transmissivity for the lowest inlet pressure pi/p∗W = 0.03 almost coincides with
that of the one-way coupling analysis and is well described by Kuznetsov’s analytical
solution. For higher inlet pressures we obtain significantly higher transmissivity. In the
region of the exponential decay in case of two-way coupling we have ≈ 1.6 times higher
transmissivity than in the case of the one-way coupling for pi/p∗W = 0.14 and ≈ 32 times
higher for pi/p∗W = 0.72. Note that the transmissivity curves based on the analytical
approximation (8.17)-(8.18) are in a very good agreement with the numerical ones in
the range of the validity of the former. However, the analytical result cannot be used to
study the flow near the percolation, since the pressure needed to seal the channel given
by the approximate solution (i.e. pext = p∗W + po) strongly underestimates the real one,
which can be accurately studied using the numerical approach.

In the inset of Fig. 8.9(b) we plot the effective transmissivity with respect to the
real contact area fraction, curves coincide for three different cases in the beginning of
loading, while the complete sealing occurs at different values of the real area fraction
A/A0 = 80% − 90%. Note that in one-way coupled studies of the percolation limit of
the randomly rough surfaces in contact, the complete sealing was found to correspond
to ≈ 42% of the real contact area [Dapp et al., 2012].
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Figure 8.9: The evolution with the increasing external pressure of: (a) the width of
the contact zone on the inlet and the outlet sides; (b) the effective transmissivity Keff
of the interface; results are plotted for three different values of the inlet fluid pressure
pi/p
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and zero outlet pressure po = 0. Analytical results (8.17)-(8.18) are shown as
thick dashed curves, numerical results are presented using markers, while full curves
are fittings of power law Keff ∼ (pcrit − pext)γ , where γ = 6 ± 0.5. “Cross” and “star”
markers are used to highlight the external pressure necessary for the contact to appear
at the outlet and inlet sides, respectively. Inset in (b) shows the evolution of the effective
transmissivity with respect to the ratio of the real contact area to the apparent one.
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the approximate analytical solution remains valid; IV - the contact interface is com-
pletely sealed, no flow passes through it, the fluid is under the inlet hydrostatic pressure
and ensures some load-bearing capacity in the non-contact region. (b) Evolution of the
mean flux across the interface with the increasing external pressure for pi/p∗W = 0.14
and four cases of the outlet pressure po/pi = 0, 0.25, 0.5, 0.75, showing that the critical
pressure, necessary to seal the channel, is independent of the outlet pressure. Markers
represent numerical results, while full curves are fittings to the power law discussed
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Finally, we evaluated the critical external pressure necessary to seal the channel, i.e.
to prevent the fluid flow across the interface. The results are presented in Fig. 8.10(a).
The relationship between the inlet pressure and the critical external pressure is found to
be close to linear, the results of the least squares fitting are presented in Fig. 8.10(a).
So the critical external pressure pcrit needed to seal the channel can be approximately
found as:

pcrit ≈ p∗W + 0.8pi, (8.21)

where 0.8 is a fit parameter. In order to verify the effect of the outlet pressure, we
performed additional simulations with different outlet pressures for a given inlet one.
The results are presented in Fig. 8.10(b), where we plot evolution of the mean flux
Q (8.20) with the increasing external pressure. In the beginning of loading the mean
flux is lower in case of a smaller pressure drop, however, under the increasing external
load curves converge, and complete sealing of the channel occurs at the same value of the
critical external pressure, which therefore is determined only by the inlet pressure. The
explanation comes from the fact that close to the complete sealing of the channel, the
fluid pressure drop occurs in the vicinity of the outlet, while in the remaining channel
the pressure is close to the inlet one. Therefore, remarkably, the load-carrying capacity
of the fluid in the interface close to percolation is defined only by the inlet pressure.

In addition, in Fig. 8.10(a) we highlight the external pressure at which the contact
appears on the inlet side, this corresponds to the onset of validity of the approximate
solution. The end of its validity corresponds to pext/p

∗
W

= 1. The narrow validity
range of our approximate solution can be improved by dropping the assumption (ii) in
Section 8.1.3 and by including strong elastic interaction between y-sections, which would
lead to a much more complicated analysis and is not addressed here.

8.2 Fluid flow across a wavy channel with an “atoll” island
and a trapped “lagoon”

In this section we present examples which show full capabilities of the proposed com-
putational framework, considering the flow in the contact interface with the possibility
of fluid entrapment. We highlight the difference between solutions obtained under one-
way and two-way coupling approaches, and, moreover, discuss the status-wise and the
DOF-wise convergence of the Newton-Raphson method.

We consider the fluid flow across an extruded wavy channel with an added ring-
shaped elevation of the surface at the centre of the channel. Once the solid is gradually
brought in contact with a rigid flat, this elevation forms a contact patch in a shape of
an “atoll”, which encircles a “lagoon” where the fluid gets trapped, see Fig. 8.11. The
surface of the solid is given by the formula:

z(x, y) = ∆
(
A(x, y) cos 2πx

λ
− 1

)
, (8.22)

A(x, y) = 1− 2α
[
(x− λ/2)2 + (y − L/2)2

]
e1−α[(x−λ/2)2+(y−L/2)2],

where ∆ and λ are the amplitude and the wavelength of the channel profile, L is the
length of the channel, and coefficient α controls the radius of the “atoll” Ra = 1/

√
α.

Note that the centre of the “lagoon” is at (λ/2, L/2), and the atoll’s elevation is equal
to the elevation of the crest on the periphery of the simulated geometry. Therefore,
the contact zone will appear simultaneously at the crest of the wavy profile and at the
atoll’s ridge line.

We apply the following boundary conditions. On the vertical faces of the solid we
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apply zero normal displacement: uy|y=0 = uy|y=L = 0 and ux|x=0 = ux|x=λ/2 = 0.
The bottom face of the solid is displaced vertically towards the rigid flat within 100
load steps until the fluid channel is completely sealed. We consider throughout the
whole loading process a constant fluid pressures prescribed at the inlet: p|y=0 = pin
and the outlet p|y=L = pout, accompanied by conditions of zero flux at the remaining
part of the boundary of the fluid domain Γf: q0|x=0 = q0|x=λ/2 = 0. Note that these
boundary conditions account for the reflection symmetry with respect to planes x = 0
and x = λ/2.

The geometrical parameters are given in the caption of Fig. 8.11. For the solid we
consider material parameters typical for a soft matter: Young’s modulus E = 1 GPa
and Poisson ratio ν = 0.4 (effective elastic modulus is E∗ = E/(1 − ν2) ≈ 1.19 GPa),
while fluid parameters are of a typical mineral oil with initial bulk modulus K0 = 2GPa
and K1 = 9.25. The inlet fluid pressure is chosen to be pin = 10MPa and the outlet one
pout = 0.

The results of the simulation are presented in Fig. 8.12. Note that only three of hun-
dred loading steps are shown. At the beginning of the loading sequence, see Fig. 8.12(a),
the atoll’s contact zone grows from two opposite (inlet and outlet) sides, therefore the
fluid is not yet trapped and is flowing inside the “lagoon”. Simultaneously a contact zone
on the crest at x = 0 also starts to grow starting from the outlet end. Note that the
contact zones are not symmetric with respect to a line y = L/2 (which would be the case
for the considered geometry if the one-way coupling was used), since the fluid pressure
applied to the surface of the solid is maximal at the inlet and is monotonically decreasing
towards the outlet. Interestingly, the fluid pressure inside the lagoon before its closure
is almost uniform and is significantly higher than the mean value between the inlet and

Figure 8.11: Finite-element mesh with 128 × 128 faces in the contact interface which
was used to solve the problem of the fluid flow across a channel with an “atoll” island.
Note that the amplitude of the surface profile is exaggerated to highlight its features,
while in the actual simulation the following geometrical parameters were used: ∆ =
0.02 mm, λ = 2 mm, L = 1 mm, B = 1.4 mm, Ra = 0.333 mm, α = 9 mm−2.
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outlet fluid pressures (pin+pout)/2, even if the centre of the lagoon is at (λ/2, L/2). This
is also an effect of considering the two-way coupling, since the fluid pressure decrease
from the inlet to the outlet is not linear (which is the case under one-way coupling),
but is rather concave, cf. Fig. 8.6, 8.7 and 8.8(c). At the second loading stage, see
Fig. 8.12(b), corresponding to a higher external load, two atoll’s zones of contact merge
and form a non-simply connected patch, which encircles an out-of-contact lagoon with
the trapped fluid inside. Under increasing external pressure, see Fig. 8.12(c), the con-
tact area continues to grow, reducing the area corresponding to the fluid flow. At the
same time, the area of the trapped fluid zone is also decreasing, however, much slower
compared to the contact area increase at the crest of the profile, which is caused by
a higher pressure in the lagoon than in the channel, the former being governed by the
compressibility model (2.75). Note that the effect of considerably higher pressure in the
trapped fluid than in the fluid flow may be observed by comparing the value of stress
component σzz at Γfsi (bottom of the channel) and at Γtf (bottom of the lagoon).

8.2.1 Comparison of the interface transmissivity between one-way and
two-way coupling approaches

In Fig. 8.13 we present the comparison of the transmissivity of the interface in case
of one-way and two-way coupling approaches, the second is also presented with and
without taking into account the trapped fluid. We compute the effective transmissivity
as (see also [Pérez-Ràfols et al., 2016]):

Keff = − 12µQL
∆3(pout − pin), (8.23)

where Q is the mean flux over the area λ/2× L, i.e.

Q = 2
λL

λ/2∫
0

L∫
0

qy dxdy, (8.24)

and qy = −g3/(12µ) ∂p/∂y is the fluid flux in the y-direction.
Clearly, one-way coupling neglects the additional fluid-induced normal traction on

the surface of the solid, which in its turn impacts the fluid flow. As a result, the
transmissivity of the interface is underestimated, and, consequently, the critical pressure
needed to seal the channel is higher if the two-way coupling is considered. We recall that
in Section 8.1 we studied the fluid flow across a wavy channel brought in contact with a
rigid flat using the same framework. We showed that the critical sealing pressure is an
affine function of the inlet pressure and does not depend on the outlet pressure. In case
of the channel with an atoll island studied here, once a trapped fluid pool is formed,
it provides additional load-bearing capacity, while its pressure is increasing with the
increasing external load. Therefore, the critical sealing pressure is further elevated if
the effect of the trapped fluid is taken into account, see Fig. 8.13.

Note also that in the same figure we plotted the curve of evolution of transmissivity,
obtained under one-way coupling and shifted by an external pressure offset pin/2. This
offset represents a simple estimation of the additional fluid-induced load-bearing capac-
ity, which is accounted for in the two-way coupling approach (we recall that pout = 0).
Remarkably, the shifted curve almost exactly coincides with the transmissivity of the
two-way coupling in the region of intermediate loads, and underestimates the transmis-
sivity closer to the complete sealing. Moreover, the simple estimation of the load-bearing
capacity used here obviously cannot take into account the effect of the trapped fluid,
which was shown to further increase the transmissivity in the numerical simulation.
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Figure 8.12: Fluid flow across a wavy channel with an “atoll” island. Three different
load steps are presented: (a) beginning of loading, contact occurs only at the crest of
channel profile and at two opposite sides of the atoll, therefore fluid is not trapped
yet (at pext/E∗ ∼= 0.007); (b) two atoll’s contact zones merge and fluid is trapped (at
pext/E

∗ ∼= 0.015); (c) under increasing load trapped fluid is further pressurized (at
pext/E

∗ ∼= 0.037). For each loading step in the left column the bulk view of the solid
is shown, with colour representing the σzz component of the stress tensor, moreover,
fluid flow lines with the colour representing the normalized fluid flux intensity q/qmax
are added. In the right column the interface view is given, with colour representing the
normalized fluid pressure in the flow p/pin, the contact patches are shown in grey colour
and the trapped fluid zone is purple. Note that the trapped fluid pressure corresponding
to loading step (b) is ptf/pin ∼= 1.2, step (c): ptf/pin ∼= 4.5.
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Figure 8.13: The evolution of the effective interface transmissivity Keff under increasing
external load with comparison between 3 simulations: one-way coupling approximation,
two-way coupling neglecting effect of the trapped fluid and two-way coupling with the
trapped fluid. Additionally, the results of the one-way coupling simulation are shown
shifted by an offset of the external load equal to pin/2 (see explanations in the text).

8.2.2 Convergence of the Newton-Raphson method

We demonstrate in Fig. 8.14 the DOF-wise and the status-wise convergence of the
Newton-Raphson method corresponding to one particular load step, during which two
atoll’s contact patches merge and encircle the trapped fluid zone. Note that this step
is the most challenging of the whole sequence, since the highest number of local status
changes is observed after this step, see (6.20). We present for comparison results ob-
tained in 2 simulations with different values of the fluid inlet pressure: pin = 2 MPa,
see Fig. 8.14(a), and pin = 10 MPa, see Fig. 8.14(b), while for both cases pout = 0. We
also used in both simulations the same tolerance thresholds for different types of DOF:
εu = 10−6, ελ = εp = 10−12.

According to the presented results for both cases, while the local status of faces
keeps changing between the iterations, see (6.20), the DOF-wise convergence is not
quadratic. Note that a high peak of the number of status changes, corresponding to
the 2nd iteration in both cases, is caused by the first detection of the trapped fluid
zone. However, the number of status changes monotonically decreases starting from the
3rd iteration. Eventually, the quadratic DOF-wise convergence of the Newton-Raphson
method is recovered once the number of status changes reaches zero value, meaning that
the tangent matrix (6.15) was implemented correctly. In case of a lower fluid pressure,
see Fig. 8.14(a), the convergence under the specified error tolerance is obtained after 6
iterations. However, in case of higher fluid pressure, see Fig. 8.14(b), more iterations
are needed to find the correct status for each face. Note also that the quadratic DOF-
wise convergence is recovered only for displacement DOFs and the Lagrange multipliers
(equivalent to the contact pressure). The possible reason for the lack of quadratic
convergence for the fluid pressure DOFs is that when the correct tangent matrix is
obtained, the norm ||Rf

p|| is already below the convergence threshold εp (and even close
to the double machine precision ≈ 10−16).
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Figure 8.14: DOF-wise (top) and status-wise (bottom) convergence of the Newton-
Raphson method corresponding to a load step during which the trapped fluid zone
is formed. Results presented for 2 simulations with different values of the fluid inlet
pressure: (a) pin = 2 MPa and (b) pin = 10 MPa. DOF-wise convergence is shown in
terms of the relative criterion for the residual corresponding to the displacement DOFs
and the absolute criterion for the other two residuals, see Section 6.3. The status-wise
convergence is shown for the number of status changes defined in (6.20). Note that the
evolution of the number of status changes from the 3rd iteration until the last one is
shown in insets for each considered case.

We would like to remark that the parameter ε of the augmented Lagrangian method,
see (4.110), was chosen to be ε = 108 in presented examples. Interestingly, our studies
showed an unusual dependence on this parameter, which was, however, rather weak.
A small oscillation of the surface traction field appeared in the solution at the border
between the contact and the fluid flow and/or trapped fluid zones: see surface tractions
in the trapped fluid zone in Fig. 8.12(c) and also contact tractions in Fig. 8.6(b) and
Fig. 8.7(b). The reasoning of this oscillation may come from utilization of the integral
(weighted) gap in the contact constraints (4.107), while for the thin fluid flow the actual
nodal gap is used, see, for example, (6.1). Our studies showed that this oscillation
is dumped if the value of the augmentation parameter is increased. Unfortunately, it
cannot be arbitrary high, since it may lead to bad conditioning of the global tangent
matrix. However, the discussed artefact does not affect the solution in the whole domain,
and therefore does not undermine the consistency of the proposed method. Nevertheless,
it presents an interesting topic of the future investigation.
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8.3 Conclusions
In this Chapter we presented a theoretical study of the pressure driven creeping flow in
contact interface formed between a deformable solid with regular wavy surfaces and a
rigid flat. This problem is relevant for certain applications of thin fluid flow in contact
interfaces, including sealing, hydrogeology and biological systems. A two-way coupling
between fluid flow and deformation of the solid was assumed, which is crucial for appli-
cations in which the fluid pressure is comparable with the mean contact pressure, for
example, for the soft matter or biological tissue.

We derived an approximate analytical solution based on the Westergaard-Kuznetsov
solution and a one-dimensional formulation of the Reynolds equation. This solution
describes both the solid deformation and the fluid pressure distribution in the strongly
coupled case. A finite-element monolithically coupled framework developed in the Part
II of this dissertation was also used to solve this non-linear multi-field problem and to
prove the validity of the approximate solution. Despite a rather limited interval of loads
within which the latter is applicable, it can provide a useful first-order approximation
for the analysis of transmissivity of contact interfaces. At the same time, numerical
results showed that in a wide range of the external loads up to the complete sealing of
the channel, the transmissivity of the interface can be described by a power law, which
has already been reported in the studies of contact interfaces having representative and
model roughness.

Both numerical and analytical results, which take into account two-way coupling,
showed that the interface transmissivity is significantly higher than this predicted by
the one-way coupling if the fluid pressure is high enough. An additional result of this
study is the affine dependence of the external critical pressure which seals the channel
on the inlet fluid pressure: this relation may be shown useful in sealing applications as
well as in soft porous or cracked media, in zones where the flow can be described by the
Reynolds equation. Remarkably, this critical pressure was found to be independent of
the outlet pressure.

We considered also the fluid flow across an extruded wavy channel with a ring-
shaped elevation of the surface at the centre of the channel, which forms a non-simply
connected contact patch, when the solid is brought into contact with a rigid flat. A
study of this problem showed again, that the transmissivity of the interface is higher
if the two-way coupling is considered. Furthermore, once the fluid gets trapped and
pressurized, it provides an additional load-bearing capacity, requiring a larger external
load to seal the interface, i.e. the trapped fluid further increases transmissivity. Finally,
the study of DOF-wise and status-wise convergence of the Newton-Raphson method
showed that the quadratic convergence is recovered once the correct partition of the
interface into contact, fluid-flow and trapped fluid zone is found, which confirms the
robustness of the proposed resolution algorithm and the validity of the global tangent
matrix implementation.



Chapter 9

Fluid flow through rough contact
interface

Résumé de Chapitre 9 “L’écoulement du fluide à travers
l’interface de contact rugueux représentantive”

Le neuvième chapitre présente des simulations d’écoulement de fluide mince à travers
une interface de contact entre un solide avec une surface rugueuse représentative et
une surface plane rigide. Nos résultats confirment que le couplage unidirectionnel sous-
estime la perméabilité de l’interface et la charge externe critique nécessaire pour sceller
complètement l’interface. Nous avons effectué une étude de la transmissivité des sur-
faces rugueuses gaussiennes, isotropes et auto-affines en contact avec un plan rigide pour
une large gamme de pressions d’entrée et de sortie. Nous avons élaboré une équation
phénoménologique régissant la transmissivité des interfaces de contact rugueuses. Enfin,
le cadre développé a été utilisé pour calculer la fuite de fluide dans une interface de con-
tact entre une surface métallique et un saphir, en utilisant les mesures de surface réelles.
Une loi de comportement élasto-plastique a été introduite dans le modèle numérique, ce
qui a permis d’étudier la performance de véritables joints d’étanchéité utilisés dans les
centrales nucléaires. Les résultats numériques proposés dans cette thèse sont en meilleur
accord avec l’expérience que les estimations provenant des études précédentes.

In this chapter we solve two problems involving fluid flow through representative
rough contact interfaces. The roughness of many natural and engineering surfaces can be
considered as random, self-affine down to atomistic scale [Nayak, 1971]. The roughness
of contacting surfaces has strong implications in mechanics and physics of contact: the
evolution of the ratio of the real contact area to the apparent one under increasing
external load determines essential contact properties such as friction, wear and adhesion.
Furthermore, the distribution of the free volume between contacting surfaces governs
the fluid transport along the interface and thus is responsible for leakage/percolation
phenomena [Dapp et al., 2012, Paggi and He, 2015], which is one of the main topics of
this dissertation.

9.1 Fluid flow through rough contact interface with mul-
tiple trapped fluid pools

The first problem under study is the contact between a deformable solid with a rough
surface and a rigid flat in presence of a thin fluid flow in the free volume between the
two surfaces, see Fig. 9.1 for the sketch of the problem set-up. A physically relevant
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simulation of a rough surface requires a very fine discretization, which becomes a bot-
tleneck in FEM studies. One possible approach is to model a part of the surface, which
is small enough to make the computation possible, and at the same time big enough
to act as a representative surface element (RSE), see [Yastrebov et al., 2011, Durand,
2012].

It is important to note, that the resolution of problems involving thin fluid flow
in contact interfaces is often performed using the boundary element method [Pérez-
Ràfols et al., 2016] or Green’s function molecular dynamics [Dapp et al., 2012] for the
mechanical contact problem and the finite-differences method for the Reynolds equation.
On the one hand, this approach permits to use a much finer discretization of the surface
than is possible with FEM, however, on the other hand, the consideration of the two-
way coupling is problematic with the aforementioned approach. The one-way coupling
is often used under the assumption that the deformation of the solids results mainly
from the contact interaction and the fluid pressure effect on the solid is negligible.
However, a justification for this choice (see, for example, [Dapp and Müser, 2016]), lacks
a quantitative study of the range of applicability of the one-way coupling depending on
the material properties of the solid and the fluid, and also on the fluid pressure, which
will be addressed in the present chapter using the finite-element method.

It should be also noted that the spectrum of the roughness has to be rich enough
to be physically representative at least to a certain extend, i.e. the frequency cut-offs
in the model spectrum have to be chosen with some physical motivation and kept at
values for which the continuum mechanics remains valid see, for example, discussion
in [Luan and Robbins, 2005]. Using the approach discussed in [Yastrebov et al., 2015],
we generated Gaussian, isotropic and self-affine surface with the following parameters:
smallest wavenumber kl = 8π/L (which corresponds to the longest wavelength λl =
L/4), highest wavenumber ks = 64π/L (corresponding to the shortest wavelength λs =
L/32), number of points on each side of the surface N = 256, Hurst exponent H = 0.8.
The standard deviation (the root mean squared, or the rms) of height of the generated
surface, defined as:

Sq = 〈(z − z̄)2〉
1
2 =

√√√√√ 1
L2

L∫
0

L∫
0

(z(x, y)− z̄)2 dxdy, (9.1)

equals to Sq = 1 µm, while the standard deviation of the height gradient (the rms of
slope)

Sdq = 〈|∇z|2〉
1
2 =

√√√√√ 1
L2

L∫
0

L∫
0

|∇z(x, y)|2 dxdy (9.2)

equals to Sdq ∼= 0.055. Note also that the generated surface geometry is periodic, i.e.

z(x, y) = z(x+ i L, y + j L), i, j ∈ Z. (9.3)

The boundary conditions for the problem under study are as follows. We consider
throughout the whole loading process a constant fluid pressures prescribed at the inlet:
p|y=0 = pin and the outlet p|y=L = pout. However, following the approach of a repre-
sentative surface element (RSE), here we consider periodic boundary conditions at two
other sides of the fluid domain: p|x=0 = p|x=L. On vertical faces adjacent to the inlet
and the outlet zones we apply the boundary conditions of zero normal displacement
uy|y=0 = uy|y=L = 0, while on two other faces we prescribe the periodic boundary con-
dition: u|x=0 = u|x=L. The bottom face of the solid is displaced vertically towards the
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Figure 9.1: Sketch of the second problem under study: contact between a deformable
solid with a representative rough surface (a), brought in contact with a rigid flat (b), in
presence of the thin fluid flow in the free volume between the two surfaces (c). Note that
the amplitude of the surface roughness is exaggerated, while in the actual simulation we
used a surface with root mean square of heights Sq = 1 µm (see definition in the text),
and the lateral size of the studied square surface is L = 1 mm. The vertical size of the
FEM mesh is B = 1.4 mm.

rigid flat within 100 load steps until all channels connecting the inlet and the outlet is
closed, i.e. the fluid flow is no more possible. We use here the same material properties
as in the “atoll” example considered in Sec. 8.2, i.e. parameters typical for a soft matter:
Young’s modulus E = 1 GPa and Poisson ratio ν = 0.4, therefore the effective elastic
modulus is E∗ = E/(1− ν2) ≈ 1.19 GPa.

The results of the simulation with the fluid inlet pressure pin = 4 MPa and zero
outlet pressure are presented in Fig. 9.12, note that only 3 load steps out of 100 are
shown. At the first considered step (a) trapped fluid zones are not yet observed, however,
they appear during further loading. Interestingly, atoll-type zones, which were studied
previously in a model geometry, appear naturally in case of a representative rough
interface, see Fig. 9.2(b) and (c), at the last presented step the number of these zones is
ntf = 54. Similarly to the previous example, we may observe elevated surface traction
at the bottoms of the trapped fluid zones, caused by a pressure in the trapped fluid,
which is higher than the fluid pressure in the flow.

It is also important to note, that the spatial distribution of the fluid pressure on
its way from the inlet to the outlet changes drastically with the increasing external
load. In Fig. 9.2(a) the pressure decreases rather gradually over the whole interface,
with a more rapid change closer to the outlet, which is an effect of considering the
two-way coupling, see discussion in Sec. 8.2, Fig. 8.12 and also Fig. 8.8. However,
under a higher external load, see Fig. 9.2(b), we observe a certain “clusterisation” of the
fluid pressure field, which becomes divided into zones partially surrounded by contact
patches. Within these “clusters” the fluid pressure varies little and the intensity of the
fluid flow is low, however, the fluid pressure gradient in narrow channels connecting
these “clusters” is high. Under the external pressure close to the complete sealing of
the interface, see Fig. 9.2(c), the major part of the area is under the inlet pressure,
while almost all remaining part is under the outlet pressure, and virtually all pressure
drop is happening over a narrow constriction connecting these two zones, which is in
agreement with theoretical predictions [Persson and Yang, 2008, Persson, 2010] and
previous numerical simulations [Dapp and Müser, 2016].
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Figure 9.2: Fluid flow through the contact interface between a deformable solid with
representative rough surface and a rigid flat. Three different load steps with increasing
external pressure are presented: (a) pext/E∗ ∼= 0.002, (b) pext/E∗ ∼= 0.007, (c) pext/E∗ ∼=
0.013. For each loading step in the left column the bulk view of the solid is shown, with
colour on the surface representing σzz component of the stress tensor, moreover, fluid
flow lines with the colour representing the normalized fluid flux intensity q/qmax are
added. In the right column the interface view is given, with colour representing the
normalized fluid pressure in the flow p/pin, the contact patches are shown in grey colour
and all trapped fluid zone are purple (note that the fluid pressure in each trapped
zone is different and is increasing with the increasing external loading). At the step
(b) 7 trapped fluid zones are present (ntf = 7), the highest trapped fluid pressure is
ptf/pin ∼= 3.6, at the step (c) ntf = 54, highest pressure ptf/pin ∼= 6.4.
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Figure 9.3: Fluid flow through representative rough contact interface: comparison of
the effective transmissivity for different coupling approaches.

9.2 Comparison of the interface transmissivity in one- and
two-way coupling approaches

We compare the effective transmissivity of the contact interface between the representa-
tive surface element and a rigid flat in case of one-way and two-way coupling approaches.
Considering the representative surface roughness we compute the effective transmissivity
as

Keff = − 12µQL
S3
q (pout − pin) , (9.4)

where Q is the mean flux over the apparent contact area A0 = L× L:

Q = 1
L2

L∫
0

L∫
0

qy dxdy, (9.5)

and Sq is the standard deviation (the root mean squared) of height in the undeformed
state. Note that in this study we consider pin = 5 MPa, while pout = 0 MPa.

In Fig. 9.3(a) we present the evolution of the transmissivity under increasing exter-
nal load. Again we observe a higher transmissivity of the interface (for the same given
external pressure) in case of the two-way coupling than under the one-way approach.
Consequently, the critical external pressure necessary to completely close the interface
for the fluid flow is also higher if the effect of the fluid pressure is taken into account.
Note also that in Fig. 9.3(a) we plotted the curve corresponding to the one-way cou-
pling shifted by an offset of the external load (pin + pout)/2 (however, in the considered
simulation pout = 0). As was already discussed in Sec. 8.2 devoted to the “atoll” exam-
ple, this shift represents a simple estimation of the fluid load-bearing capacity, i.e. an
approximation of the transmissivity evolution with increasing external load correspond-
ing to the two-way coupling approach. However this estimation does not work for the
evolution of transmissivity with the contact area, see 9.3(b).

Alongside with the critical external pressure, another parameter important for seal-
ing applications is the ratio of the real contact area A to the apparent one A0 = L×L,
computed at the moment when the fluid flow through the interface stops. The corre-
sponding value of A/A0 is often termed as the percolation threshold, see [Dapp et al.,
2012, Dapp and Müser, 2016]. These studies show that for randomly rough self-affine
surfaces A/A0 ≈ 0.42 at the percolation, being valid for a wide range of the roughness
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Figure 9.4: Comparison of the real contact area morphology for one-way and two-
way coupling simulations, shown results correspond to approximatively equal effective
transmissivity Keff ≈ 10−6 (close proximity of the percolation threshold). The real
contact area in the one-way coupling simulation: A/A0 = 0.36, in the two-way: A/A0 =
0.33. Grey colour: contact zones observed in both simulations; red colour: contact zones
observed only in the one-way simulation; blue colour: contact zones observed only in
the two-way simulation.

parameters. However, these studies neglected the effect of the fluid pressure, i.e. were
limited to the one-way coupling approach.

In Fig. 9.3(b) we plot the effective transmissivity with respect to the fraction of the
real contact area, comparing one-way and two-way coupling (the latter is considered
with and without trapped fluid). For the considered surface the percolation threshold
is A/A0 ≈ 0.4 under the one-way coupling approach, which is in agreement with the
aforementioned studies. However, if the two-way coupling is considered (even without
trapped fluid), our results show that the same effective transmissivity corresponds to
a smaller contact area, than observed in the one-way coupling case. Accordingly, the
percolation thresholds is also lower: A/A0 ≈ 0.36. Moreover, if the effect of numerous
trapped fluid pools is taken into account, the percolation threshold is further decreased
down to A/A0 ≈ 0.34, which is in agreement with the results of the “atoll” example, see
Sec. 8.2, with only one trapped fluid zone. The contact patches expand into the zones
previously occupied by the fluid flow much faster, than into the trapped fluid zone, due
to a considerably elevated trapped fluid pressure. Note that here we used the refined
approach to the contact area computation, proposed in Section 4.3.2. The comparison
of the two methods of the area computations is presented in Sec. 9.4.

In order to investigate further the difference between one- and two-way coupling
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Figure 9.5: The decrease of the transmissivity with the increasing external load, shown
for one- and two-way coupling simulations. The stationary regime corresponding to the
exponential decay is highlighted.

simulations, namely, the difference in the real contact area close to percolation, see
Fig. 9.3(b), we show in Fig. 9.4 the comparison of the contact area morphology for these
two approaches. Note that the presented results correspond to an approximatively equal
effective transmissivity: in both cases Keff ≈ 10−6. We use different colours to highlight
contact zones which are observed in both simulations, zones present only in the one-way
simulation, and only in the two-way simulation. As expected, due to the additional fluid
pressure applied to the surface of the solid, in the major part of the interface the extent
of contact zones is smaller in two-way coupling than in one-way simulation. However,
in the part of the interface located close to the outlet, where the fluid pressure is al-
most equal to the outlet pressure pout = 0, see Fig. 9.2(c), contact patches observed in
two-way coupling simulation are larger than in the one-way study. In other words, a cer-
tain redistribution of the real contact area, corresponding to approximatively the same
transmissivity, takes place in the two-way coupling. At the same time, Fig. 9.4 shows
that in case of the one-way coupling the contact area grows freely inside of the zones
considered as trapped in the two-way coupling, which confirms the results presented in
Fig. 9.3(b).

9.3 Effective interface transmissivity as a function of the
mean fluid pressure and its gradient

The comparison of one- and two-way coupling approaches for the problem of the thin
fluid flow in contact interfaces with model (Chapter 8) and rough (the current chapter)
surface geometry showed that the transmissivity of the interface is higher if the two-way
coupling is considered. The fluid provides additional load-bearing capacity, so that for
the same external load the real contact area is smaller, and, accordingly, the volume of
the gap between the contacting surfaces is bigger, than if the effect of the fluid pressure
is neglected. Therefore, for a given external load and the fluid pressure drop between the
inlet and outlet, the mean fluid flux is higher in the two-way coupling approach, than
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Figure 9.6: Fluid flow through representative rough contact interface: comparison of
the effective transmissivity: for (a) fixed outlet pressure and several inlet pressures, (b)
fixed inlet pressure and several outlet pressures.
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Figure 9.7: Sketch showing the considered pairs of inlet and outlet pressures.
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if the one-way coupling is considered. Furthermore, as was demonstrated above, by
accounting for the mean fluid pressure shift of the curve corresponding to the evolution
of transmissivity for the one-way coupling, a satisfactory estimation of the two-way
coupling transmissivity can be obtained, see Fig. 8.12 and Fig. 9.3.

Nevertheless, a question remains: how does the interface transmissivity depend quan-
titatively on the fluid pressure if the two-way coupling is considered? We will address
this question here, and, moreover, motivated by the results presented in Sec. 8.1, we will
extend this study by considering the dependence not only on the mean fluid pressure:
(pin + pout)/2, but also on the mean gradient of the fluid pressure: (pout− pin)/L, where
L is the distance between the inlet and outlet boundaries.

Observing the results presented in Fig. 9.3(a) for the one-way coupling, we may
conclude that there are three regimes of the evolution of the effective transmissivity
under the increasing external load. Two of them are transitional; the first one in the
beginning of loading, when the first contact patches form. The second transitional regime
is in the end of the curve, before the complete sealing (percolation) of the interface, when
the fluid flux is rapidly decreasing due to the last possible channels closing. Between
these two transitional regimes we observe a stationary phase, where transmissivity is
decreasing exponentially with the increasing external load, see Fig. 9.5:

Keff ∝ e−γ pext/E∗ . (9.6)

We performed a set of simulations varying the inlet pressure with constant outlet
pressure, and varying outlet pressure with constant inlet pressure, see sketch in Fig. 9.7.
The results presented in Fig. 9.6 show that the coefficient γ in the exponential law is
almost the same for all considered cases, meaning that the change of the inlet and outlet
pressures provides an offset to the exponential law. Therefore, we proposed the following
formula for fitting the results:

lnKeff = ao − γ
pext
E∗

+ α
pin + pout

2E∗ − β pout − pin
LE∗

, (9.7)

taking into account the dependence of the transmissivity on the external load and the
effect of both the mean fluid pressure and the mean gradient of the pressure. Thereupon,
performing the fitting of the results obtained in simulations with 10 different realizations
of the random surface roughness (however, with the same spectrum cut-offs λl = L/4,
λs = L/32, Hurst exponent H = 0.8, the rms of heights Sq = 1 µm and the rms of
slopes Sdq ∼= 0.055) for each pair of inlet and outlet fluid pressures (see again Fig. 9.7),
we obtained the following averaged results for fitting parameters:

a0 ≈ 1.1, γ ≈ 727.7, α ≈ 708.8, β ≈ 75.7 [mm]. (9.8)

It is important to note, that the coefficient α in the term corresponding to the mean fluid
pressure is very close to coefficient γ (for all studied cases, the relative difference between
these two coefficients did not exceed 3%), which is in accordance with mentioned above
estimations of the two-way coupling using the mean pressure offset.

Moreover, the proposed formula can also serve for a quantitative estimation of the
range of applicability of the one-way coupling. Let us rewrite it in the following way:

lnKeff = ao + 1
E∗

(
−γ pext + α

pin + pout
2 − β pout − pin

L

)
. (9.9)

If the solid is considered linearly elastic, then the sealing external pressure is about pext ≈
0.01E∗, see [Yastrebov et al., 2012], meaning that for a soft matter with E∗ ≈ 1 GPa,
as in the results of simulations presented above, the sealing pressure is pext ≈ 10 MPa.
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Therefore, the term corresponding to the mean fluid pressure is of the same order of
magnitude as the first term in brackets in (9.9), and the effect of the fluid pressure,
observed if the two-way coupling is considered, is significant. However, if the solid is
hard, e.g. with E∗ ≈ 100 GPa, then, accordingly, a high external pressure is necessary
to seal the interface, such as pext ≈ 1GPa. However, this high pressure is unphysical for
fluids used in sealing and lubrication applications. Therefore, the terms in the bracket
corresponding to the mean fluid pressure and its gradient are negligible compared to the
first term during almost all process of loading, except for the very beginning of it.

9.4 Comparison of two methods of the real contact area
computation

The real contact area and its morphology are important not only for the study of the
percolation in the sealing applications, but represent the key quantity determining the
interfacial behaviour in many other physical problems, see e.g. [Vakis et al., 2018, Bow-
den and Tabor, 2001, Pei et al., 2005]. Therefore, it is important to ensure the accurate
estimation of the contact area in numerical simulations, see also [Yastrebov et al., 2017a].
We present in Fig. 9.8 the comparison of the two methods of the real contact area com-
putation, discussed in Section 4.3.2.

We perform a mesh convergence study, comparing the values of the real contact
area obtained in simulations with three different meshes: with 128 × 128, 256 × 256
and 512× 512 face elements on the surface Γ, respectively. It is important to note that
the spectrum of the surface roughness is preserved exactly the same for all considered
meshes. Using the approach discussed in [Yastrebov et al., 2015], we generated the
surface with following parameters: smallest wavenumber kl = 8π/L, highest wavenum-
ber ks = 64π/L, Hurst exponent H = 0.8. The generated roughness with 513 × 513
points is mapped on the corresponding mesh. In order to obtain the surface geometry
with coarser discretisations (257×257 and 129×129 points), a point-wise sampling was
used, which is easy to perform, since the generated finite-element mesh has a regular
quadrilateral grid on the surface.

The results show a significant difference between different meshes in case of the con-
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tact area computation based on simple summing up of areas of active contact elements,
see (4.120). The convergence seems to take place, but it is very slow. On the contrary,
a refined approach to contact area computation (4.121), that we proposed, leads to a
rather mesh-independent calculation of the real contact area.

9.5 Effect of elasto-plastic material behaviour on sealing
properties

One of the most common industrial applications of the problem under discussion is the
sealing engineering. The sealing engineering is particularly important in the nuclear
industry, where commonly used fluid pressures are significantly high, and, at the same
time, even micro-leakage is a critical issue. Due to operational conditions, the polymers
are of limited use in such applications, and metal-to-metal contact seals are often uti-
lized. In this case the problem is further complicated by the non-linear behaviour of
the material, such as plastic flow, which results in irreversible changes of the surface
geometry.

Recently, an experimental tool for measurement of the fluid micro-leakage in a con-
tact interface between a rough metallic surface and a flat sapphire was developed [Marie
and Lasseux, 2007]. This apparatus was used in the Ph.D. dissertation of C. Val-
let [Vallet, 2008] to study the fluid leakage through an annular seal and to measure the
interface transmissivity with respect to the applied external load in a loading-unloading
cycle. Furthermore, measurements of the actual topography of the rough seal’s surface
were performed and approximate numerical estimations of the interface transmissivity
were compared against the aforementioned experimental results. These estimations were
further elaborated in the subsequent Ph.D. thesis of J. Durand [Durand, 2012], where
a simplified model of contact and fluid flow was proposed. However, the agreement
between numerical and experimental results in both studies was only qualitative: a
difference of the transmissivity of an order of magnitude was observed.

Therefore, the purpose of this study is to perform a more rigorous numerical simu-
lation of the fluid leakage in the same problem set-up, as in aforementioned works. The
novel monolithic coupling component of Z-set framework, developed in this dissertation,
was used to study the fluid leakage through a metallic seal brought in contact with a
flat sapphire.

9.5.1 Problem set-up

A physically relevant contact simulation involving rough surfaces requires a very fine
discretization, which becomes a bottleneck in finite-element studies. Therefore, a com-
monly used approach is to model a part of the surface, which is small enough to make
the computation possible, and at the same time big enough to act as a representative
surface element, see [Yastrebov et al., 2011, Durand, 2012] for details. We study here
the thin fluid flow in the contact interface formed between a deformable solid Ω, which
initially occupies a domain [0;Lx]× [0;Ly]× [−H; 0] in the Cartesian coordinate system
{ex, ey, ez}, and a rigid flat z = 0, see Fig. 9.9. We outline briefly boundary conditions
for the solid problem:{

ux|x=0 = ux|x=Lx = 0, uy|y=0 = uy|y=Ly = 0, (9.10a)

uz|z=−H = u0
z(t), (9.10b)

where (9.10a) are the symmetry (zero normal displacement) conditions on the vertical
walls of the solid and (9.10b) is the Dirichlet B.C. on the bottom face of the solid,
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Figure 9.9: A sketch of the problem set-up: contact between a deformable solid with
a rough surface and a rigid flat in presence of the thin fluid flow in the free volume
between two surfaces.

which enforces the displacement control of the contact problem. Note that the normal
approach is performed in 50 load steps, followed by the unloading (also in 50 steps).
The boundary conditions for the fluid problem read:{

pf|y=0 = pi, pf|y=L = po (9.11a)
ey · q|x=0 = ey · q|x=Lx = 0, (9.11b)

where (9.11a) are the Dirichlet B.C. with prescribed inlet pi and outlet po fluid pressure,
and (9.11b) are the no-flow Neumann B.C. on the remaining of the boundary of the fluid
domain.

9.5.2 Material properties

In experiments performed in [Vallet, 2008] the seal’s rough surface was made of Stellite,
a cobalt-based alloy designed for high wear and erosion resistance [Kennametal Inc.,
2012, Beaurin, 2012] This material is frequently used in the sealing industry, however,
its application in nuclear power plants was associated with certain problems: even tiny
amounts of this material released into the process fluid caused significant radiation upon
entering the reactor. A number of materials for replacing Stellite in nuclear applications
were developed, including an alloy called Norem, which was used for numerical simu-
lation in [Durand, 2012]. Mechanical properties of these two alloys are summarized in
Table 9.1:

Table 9.1: Mechanical properties of two alloys used in the current study:

Alloy
Young’s modulus Poisson’s Yield strength Ultimate tensile

E, [GPa] ratio, ν σ0.2, [MPa] strength, σu, [MPa]

Norem 02 175 0.3 678 949
Stellite 6 237 0.3 750 1265

Here we use the same J2 plastic constitutive law with a non-linear isotropic hardening
model, as in the numerical study [Yastrebov et al., 2011, Durand, 2012]. According to
this model, the yield stress is represented by the following function:

σY = R0 +Q
(
1− e−bp

)
, (9.12)

where p is the accumulated plastic strain, R0 is the initial yield stress, while for large
strains the yield stress tends to R0 + Q, and the parameter b controls how fast this



9.5. ELASTO-PLASTIC SEAL 161

saturation limit is reached. The model parameters for Norem were identified in [Durand,
2012] using the experimental data, and for Stellite we used the parameters obtained by
fitting the mechanical properties, given in Table 9.1, to the model (9.12). For both
materials the parameters are provided in Table 9.2, and the corresponding stress-strain
curves are presented in Fig. 9.10.

Table 9.2: Parameters of the non-linear hardening model (9.12) for two studied alloys:
Alloy R0, [MPa] Q, [MPa] b

Norem 02 442.7 493.5 242.2
Stellite 6 493.1 771.9 202.4

True strain, ε [mm/mm]
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Figure 9.10: Stress-strain curves of two studied alloys, corresponding to the non-linear
hardening model (9.12).

9.5.3 Surface topography

Surface measurements of four different zones of Stellite annular seal were performed
in [Vallet, 2008] and are used here, see Fig. 9.11 for these surface topographies. The
lateral extent of all zones is the same and equals approximately to Lx = 606.3µm, Ly =
461.1µm, which corresponds to a measurements grid of 736×480 points. Assuming that
z(x, y) is the height of the surface, A is the surface area, z̄ is the mean value of surface
height, the following properties of roughness were identified and listed in Table 9.3.

• Average of absolute values of height Sa, [µm]:

Sa = 1
A

∫
A

|z(x, y)− z̄| dA

• Standard deviation (root mean squared) of height Sq, [µm]:

Sq =
√√√√ 1
A

∫
A

(z(x, y)− z̄)2 dA
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• Maximal valley depth Sv, [µm]: Sv = min
A
z(x, y)

• Maximal peak height Sp, [µm]: Sp = max
A

z(x, y)

• Skewness Ssk, [adim]:

Ssk = 1
AS3

q

∫
A

(z(x, y)− z̄)3 dA

• Kurtosis Sku, [adim]:

Sku = 1
AS4

q

∫
A

(z(x, y)− z̄)4 dA

• Average of absolute value of gradient (slope) Sda, [adim]:

Sda = 1
A

∫
A

|∇z(x, y)| dA

• Standard deviation (root mean squared) of height gradient (slope) Sdq, [adim]:

Sdq =
√√√√ 1
A

∫
A

|∇z(x, y)|2 dA.

Table 9.3: Surface roughness properties of four zones of Stellite annular seal:

.

Name
Sa Sq Sv Sp Ssk Sku Sda Sdq

[µm] [µm] [µm] [µm] [adim] [adim] [adim] [adim]

Surface N 0.351 0.450 -3.767 2.926 0.002 3.756 0.273 0.322

Surface S 0.374 0.482 -3.105 2.811 -0.057 3.783 0.288 0.341

Surface E 0.364 0.470 -3.898 2.571 -0.111 3.836 0.289 0.342

Surface O 0.342 0.443 -3.142 3.502 -0.112 4.095 0.275 0.326

9.5.4 Computational framework

In the problem under study, we neglect the effect of the fluid pressure on the contact
problem and therefore follow the one-way coupling approach. The justification comes
from the fact that the physically relevant fluid pressure is considerably lower (≈ 1MPa)
than the local pressure arising in metal-to-metal contact (≈ 1GPa), see also discussions
in [Pérez-Ràfols et al., 2016]. Furthermore, we do not consider here the possibility of
fluid entrapment inside pools completely bounded by contact zones (i.e., inside non-
simply connected contact patches), since the real contact area does not exceed 12%
during the whole loading process, and therefore the “trapped” part of the interface is
negligible compared to the fluid-flow zones. Moreover, the pressure developed inside
trapped fluid zones (if any of them appear) does not considerably differ from the mean
fluid pressure.

The utilization of elasto-plastic material requires application of a special stabilization
technique due to combination of nonlinearities due to contact constraints and to the
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Figure 9.11: Surface topography measurements of 4 zones of the Stellite seal (736× 480
measurement points). Black frame shows the part of the surface used in simulations
(325× 325 points).

material behaviour. It consists in splitting each increment (load step) into 2 successive
phases:

• severe non-linear iterations: during this initial phase, material non-linearities are
deactivated (i.e. the material behaviour is linearised around the state obtained
at the end of the last converged increment), and only contact non-linearities are
active;

• standard equilibrium iterations: once a preliminary stabilized contact state has
been obtained at the end of the previous phase, material non-linearities are reac-
tivated, and conventional equilibrium iterations proceed until convergence. Note
that the contact non-linearities are included, such that the contact state may
indeed change during this phase. However, smaller contact-state variations are
expected compared to the case where the first phase is not done.

9.5.5 Results

In our numerical simulations we studied, following [Vallet, 2008, Durand, 2012], a part
of each of four surfaces, corresponding to a frame of 325 × 325 points, see Fig. 9.11
and also Fig. 2.11. The whole computational mesh consists of ≈ 542000 nodes, and the
coupled problem includes ≈ 1.8 million DOFs.

The results of one of the simulations with the surface “S” and material properties of
alloy Stellite are presented in Fig. 9.12, note that 4 load steps out of 100 are shown. The
first step corresponds to the beginning of loading, when almost all interface is occupied
by the fluid flow. During the next two steps, due to increasing external load, the real
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Figure 9.12: Fluid flow through a contact interface between deformable solid with a
rough surface a rigid flat. Four different load steps are shown, corresponding to (top to
bottom): (a) pext = 5 MPa, (b) pext = 50 MPa, (c) pext = 290 MPa, (d) pext = 0 MPa,
where the last step corresponds to the fully unloaded state. For each loading step in the
left column the bulk view of the solid is given, with colour on the surface representing
accumulated plastic strain, and the stream lines are shown with colour representing
the normalized fluid flux intensity q/qmax. In the right column the interface view,
corresponding to the same loading steps, is given.
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contact area is growing and, accordingly, the free volume is decreasing and the intensity
of the fluid flow is diminishing. The 3rd step corresponds to the maximal external
load (minimal fluid flow). Finally, the last step shows the interface in the completely
unloaded state (when the external load reaches zero value). Note that, however, the
displacement in the z-direction of the bottom of the solid is not zero at this stage due
to irreversible changes of the surface topography caused by the plastic deformation.
Interestingly, the fluid flow pattern at this stage is not similar to the one corresponding
to beginning of loading (pext = 5MPa), but is rather close to the one of the intermediate
load (pext = 50 MPa).

Next, we computed the effective transmissivity K [µm3] of the fluid flow in the
numerical simulation as [Vallet, 2008, Durand, 2012]:

K = − QLyµ

po − pi
, (9.13)

where Qy is the mean flux in y-direction over the area Lx × Ly, i.e.

Qy = 1
LxLy

Lx∫
0

Ly∫
0

qy dxdy, (9.14)

and qy = −g3/(12µ) ∂p/∂y is the fluid flux in the y-direction. The evolution of the
effective transmissivity of the interface during the whole loading-unloading process for
all four zones is shown in Fig. 9.13: (a) corresponds to the simulation with material
properties of Norem alloy, and (b) with those of Stellite.

In Fig. 9.13(a) our results are compared with the approximate numerical estimations
of [Durand, 2012]: the current plots show an approximately 2 times smaller transmis-
sivity in the whole loading range from 0 to 300 MPa than the previous ones. The
transmissivity obtained in simulations using properties of Stellite, Fig. 9.13(b), is com-
pared with both experimental and numerical results from [Vallet, 2008]. Since this alloy
has a higher Young’s modulus (and the yield stress), than Norem, the transmissivity of a
Stellite seal is higher than the one made of Norem, for the same external load. Again, we
observe that our numerical results show ≈ 2 times smaller transmissivity than previous
estimations. However, our computations differ from the experimental data, nevertheless,
this difference is smaller than the one observed between the experiment and previous
estimations.

9.6 Conclusions

In this Chapter we performed simulations of the thin fluid flow through a contact in-
terface between a solid with a representative rough surface and a rigid flat. Obtained
results confirmed that the one-way coupling underestimates the interface permeability
and the critical external load needed to completely seal the interface. Additionally, we
performed a study of transmissivity for a wide range of inlet and outlet pressures and
formulated a non-local phenomenological equation for the transmissivity of rough con-
tact interfaces. We showed that the logarithm of the effective transmissivity is an affine
function of the applied pressure, the mean fluid pressure and the mean fluid pressure
gradient.

Finally, the developed framework was used to calculate the fluid leakage in a contact
interface between a metallic surface and a sapphire plate, using the real surface measure-
ments. An elasto-plastic material behaviour with nonlinear hardening was introduced
into the computational model, which permitted to study the performance of real seals
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Figure 9.13: Evolution of the interface transmissivity during loading-unloading process.
Simulations performed using material properties of two alloys: (a) Norem and (b) Stel-
lite.

used in nuclear power plants.
In order to obtain a robust convergence in case of combination of contact and ma-

terial nonlinearities a stabilization technique was successfully utilized. We showed that
the direct monolithic simulation provides a possibility to resolve the coupled problem
without introducing any additional assumptions and simplifications. Furthermore, it
provides output data for easy combined visualization of the solid’s deformation and the
fluid flow’s patterns.

The results of our simulations are quantitatively different from numerical approxi-
mations of C. Vallet and J. Durand: in all studied cases the transmissivity is approxi-
matively 2 times smaller in current computations, than in the previous ones. However,
our results still differ from the experiment data, nevertheless this difference is smaller
than using the previous estimations.

To find the explanation of the difference between the experiment and simulations,
further studies under these both approaches may be needed. From the numerical side,
additional simulations with other parts and/or larger zones of the seal’s surface should be
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performed, which could require bigger meshes and, possibility, additional measurements
of the surface topography. From the experimental side, the verification of previous
results and the method of computation of the effective transmissivity could be useful.
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Chapter 10

Conclusions and perspectives

Résumé de Chapitre 10 “Conclusions et perspectives”

Dans le dernier chapitre de la thèse, nous énonçons les remarques finales. Première-
ment, nous mettons en évidence les contributions originales en lien avec la mécanique
numérique :

(i) développement d’un cadre monolithique en éléments finis pour l’écoulement d’une
couche mince de fluide dans une interface de contact entre un solide déformable et
un plan rigide ;

(ii) formulation d’un élément de fluide piégé ;
(iii) la mise en œuvre d’une procédure de partitionnement de l’interface en zones de

contact, d’écoulement de fluide et de fluide piégé.

Ensuite, nous rappelons les résultats obtenus. Pour le problème du fluide piégé dans
l’interface entre un solide déformable avec une surface ondulée et un plan rigide :

(iv) la surface de contact diminue en raison de l’augmentation de la pression du fluide
piégé ;

(v) une formule analytique pour la déviation du profil ondulé provoquée par une pres-
sion hydrostatique uniforme ;

(vi) la limite de frottement n’augmente pas linéairement avec l’augmentation de la
charge externe, mais atteint un maximum et diminue jusqu’à zéro ;

(vii) des quasi-singularités apparaissent dans les contraintes de frottement près des bords
des zones de contact lors de l’ouverture du piège à fluide.

Pour le problème d’écoulement de fluide à travers des interfaces de contact avec une
géométrie du modèle ou une surface rugueuse :

(viii) une solution analytique approximative dans le cas d’un surface ondulée ;
(ix) une dépendance affine de la pression externe dite d’étanchéité, qui scelle le canal

d’entrée du fluide ;
(x) une équation phénoménologique pour la transmissivité des interfaces de contact

rugueuses.

Enfin, nous décrivons les perspectives d’évolution possible du cadre actuel et d’autres
problèmes mécaniques importants.
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In the final chapter of this dissertation we make concluding remarks highlighting
original contributions to the computational mechanics and to the study of problems
involving thin fluid flow in contact interfaces. Furthermore, we outline perspectives
for possible improvements of the current framework, and for further problems that are
worth investigating.

10.1 Original contributions

First, we will outline contributions to the computational framework from Part II, and
after that summarize the results of the studies presented in Part III.

10.1.1 Computational framework

In this dissertation (i) a monolithic finite-element framework was developed aimed at
solving a problem of thin fluid flow in a contact interface between a deformable solid and
a rigid flat subject to a normal load. Both one-way and two-way coupling approaches
were considered. This framework combines the state-of-the-art contact resolution algo-
rithms, fluid-flow elements for solving the Reynolds equation for incompressible viscous
flow and fluid-structure interface elements to transfer fluid tractions onto the solid. Ad-
ditionally, the possibility of fluid entrapment in the contact interface and its consequent
pressurization was considered using both incompressible and compressible fluid models.
In the latter case, constitutive laws with constant or pressure-dependent bulk modulus
were used. (ii) We introduced all aforementioned models of the trapped fluid into the
finite-element framework formulating a “super-element” for each trapped fluid zone.

One of the main complexities of the problem of fluid flow in contact interfaces is
caused by the dependency of the extent of fluid-flow domain and the trapped fluid
zones on the solution of the contact problem, which can be enhanced by a sophisticated
morphology of the contact area resulting from deterministic or random features of the
surface geometry. In the developed framework this complexity is handled by a proce-
dure of (iii) partitioning the interface into contact, fluid-flow and trapped fluid zones,
performed at every iteration of Newton-Raphson method using connected-component la-
belling of the interface graph; the standard algorithm based on the depth-first search was
further elaborated to take into account formation and evolution of trapped fluid zones.

The proposed framework was implemented in the non-linear finite-element code Z-
set, in particular: contact elements based on two discretization approaches: “node-to-
rigid-surface” (2D, with and without friction) and “face-to-rigid-surface” (3D, in the
spirit of the mortar approach, frictionless); fluid-flow, trapped-fluid, and fluid-structure
interface elements, and, finally, modifications of the Newton-Raphson iterative procedure
to perform connected-component labelling of the interface graph and tracking of trapped
fluid zones at every iteration.

The description of the discussed above computational framework is presented in a
paper entitled “Computational framework for monolithic coupling for thin fluid flow in
contact interfaces” submitted for consideration of publication [Shvarts et al., 2019].

10.1.2 Trapped fluid in contact interface

We considered separately the problem of mechanical contact between a deformable body
with a wavy surface and a rigid flat, taking into account pressurized fluid trapped in the
interface, accounting for a finite variation of the slope of the surface profile. We showed
that (iv) a reduction of the contact area can occur due to the fluid pressure applied to
the solid’s surface beyond the contact patches, and therefore, the reduction of the global
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coefficient of friction is caused not only by the external load repartition between the solid
contact and the pressurized fluid, but also by the contact area reduction.

(v) We derived an analytic formula for the deflection of the wavy profile (in case of
small, but finite ratio of the amplitude to the wavelength) caused by a uniform hydrostatic
pressure. This result is used to derive an expression for the external pressure required to
open a trap of a given volume. We showed how the evolution of the real contact area and
of the global coefficient of friction under increasing external load depends on properties
of the fluid and the solid, and on geometry characteristics of the surface profile.

(vi) We showed that in case of of an incompressible trapped fluid and an elastic solid
due to the presence of pressurized fluid in the interface, the frictional limit does not
increase linearly with increasing external load, but reaches a maximum and decreases
down to zero. Such a behaviour is similar to pressure-dependent plasticity models with
a cap (e.g. Drucker-Prager cap model), which corresponds to the decay of the von Mises
yield stress with the increasing pressure. A compressible fluid with pressure-dependent
bulk modulus is responsible for a non-monotonous behaviour of the global coefficient of
friction, due to a competition between a non-linear evolution of the contact area and
of the fluid pressure. At the same time, in case of elastic-perfectly plastic materials we
observed an abrupt fluid permeation into the contact interface.

(vii) When interfacial friction is considered in the coupled problem, previously unre-
ported quasi-singularities appear in shear stresses near edges of contact patches during
fluid-trap opening under normal loading. We showed that these singularities can be an-
alytically estimated using an analogy between the trap opening and a crack propagation
in the interface between two bonded dissimilar solids.

The results of this study have been already published [Shvarts and Yastrebov, 2018b].

10.1.3 Fluid flow in contact interface with model geometries

To validate the robustness and optimal convergence rate of the proposed monolithic
formulation and the efficiency of the resolution algorithm we studied a fluid flow through
an extruded wavy interface and a channel with an “atoll”-shaped elevation of the profile,
which forms a trapped fluid zone (“lagoon”). According to obtained results, once the
local interface status is preserved between two Newton-Raphson iterations, the quadratic
convergence is recovered.

Furthermore, for the problem of the thin fluid flow across a wavy channel (viii) we
derived an approximate analytical solution based on the Westergaard-Kuznetsov solution
and a one-dimensional formulation of the Reynolds equation. A good agreement be-
tween this result and a numerical solution was found in the range of the validity of the
approximate one.

Both numerical and analytical results, which take into account two-way coupling,
showed that the interface transmissivity is higher than this predicted by the one-way
coupling. An additional result of this study is (ix) the affine dependence of the external
sealing pressure on the inlet fluid pressure only, i.e the outlet pressure does not affect
the pressure needed to seal the channel. If the effect of the trapped fluid is taken into
account, the critical pressure further increases, while the contact area corresponding to
the complete sealing of the interface is found to be smaller.

The results of this study have been already published [Shvarts and Yastrebov, 2018a].

10.1.4 Fluid flow through representative rough contact interface

Simulations of the thin fluid flow through a contact interface between a solid with a rough
surface and a rigid flat showed that the one-way coupling approach underestimates the
interface permeability and critical external load needed to completely seal the interface.
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At the same time, for an elastic solid with the value of Young’s modulus typical for soft
matter the real contact area observed close to the percolation is approximatively 15%
smaller if the two-way coupling is considered.

We performed a study of transmissivity of representative Gaussian, isotropic and
self-affine rough surface in contact with a rigid flat for a wide range of inlet and outlet
pressures, and (x) formulated a non-local phenomenological equation for the transmissiv-
ity of rough contact interfaces. We showed that the logarithm of the effective transmis-
sivity is an affine function of the applied pressure, the mean fluid pressure and the mean
fluid pressure gradient. Using this equation it is now possible to quantitatively estimate
the range of applicability of the one-way coupling approach.

Finally, the developed framework was used to calculate the fluid leakage in a contact
interface between a metallic surface and a sapphire plate, using the real surface measure-
ments. An elasto-plastic material behaviour with nonlinear hardening was introduced
into the computational model, which permitted to study the performance of real static
seals used in water cycles of nuclear power plants. The novel numerical results are in a
better agreement with the experiment than the previous estimations.

10.2 Perspectives
We outline here perspective developments for the computational framework, as well as
propositions of additional studies.

10.2.1 Computational framework

• Consider large deformations and large rotations formulations, which would require
taking into account variations of Jacobian and normals, i.e derivation of a more
elaborated structure of consistent tangent matrices. This modification would per-
mit to study the effect of more complex, e.g. hyper-elastic material models, and
also consider the variation of the surface geometry in a wider range of parameters.

• Including Coulomb’s friction into the face-to-rigid-surface approach, using the
penalty or augmented Lagrangian methods, would permit to expand the study
of the trapped fluid problem to 3D set-up and investigate further the observed
phenomenon of quasi-singularities in tangential tractions.

• A higher order interpolation for the formulated elements would enhance the repre-
sentation of the contact interface, in particular, description of the gap and of the
surface tractions, as well as of the fluid flux.

• Include tangential motion of the solid walls into the problem, consider the cor-
responding terms of the Reynolds equation. This would permit to expand the
developed framework to mixed lubrication problems.

• Consider compressible fluid and/or pressure-dependent viscosity within the Reynolds
equation, which is relevant, e.g. for gas seals and elasto-hydrodynamic lubrication
problems.

• Introduce parallel implementation for contact, fluid-flow, fluid-structure interface
and trapped fluid elements, which would permit to consider a finer discretization
of the contact interface.

• Consider the standard approach to finite element formulation instead of the “super”-
element formulation, permitting to avoid the storage of a matrix of the “super-
element”, which can be vast if a fine discretization of the surface is used and
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the trapped fluid zone is large. However, the standard formulation would require
adding and removing additional degrees of freedom (changing the size of the global
DOF vector) after each iteration, making the resolution procedure more complex.
The comparison of effectiveness of the “super-element” and standard formulations
is therefore of interest.

10.2.2 Studies

• Using the parallel implementation, perform simulation with a finer mesh, which
would allow to use a richer spectrum of roughness, and study effects of the two-way
coupling close to percolation.

• Elaborate the study of the elasto-plastic seal’s performance in order to find out
the reason for the remaining difference between the numerical simulations and ex-
perimental results, investigate other parts and/or larger zones of the seal’s surface.

• Perform a more detailed study of the novel phenomenological law for the rough
interface transmissivity, consider realistic problems of cracked medium, e.g. in
hydrogeology, for which this law would be of importance.

• Study the mixed lubrication problem, considering relative tangential motion of
the contacting solids, the developed framework could allow to compute the global
coefficient of friction in the two-way coupling.
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RÉSUMÉ

Cette thèse traite du problème de l’écoulement d’un fluide dans des interfaces étroites entre des solides en contact sous
un chargement normal, ce qui est important pour de nombreuses applications en tribologie, ingénierie et géophysique.
Le traitement de ce problème nécessite de prévoir un couplage entre la mécanique des fluides et celle des solides. Les
contraintes liées à la présence du contact, ainsi que les caractéristiques complexes de la géométrie de surface rajoutent
un niveau de complexité significatif. Dans cette thèse, un solveur monolithique par éléments finis permettant la gestion
du contact frottant, des écoulements visqueux incompressibles et du transfert des efforts induits par le fluide sur le solide
est développé. De plus, la possibilité que le fluide se retrouve piégé dans des cavités délimitées par des zones de
contact est prise en compte par l’élaboration d’un nouvel élément dit “de fluide piégé”, qui utilise une loi de comportement
compressible non linéaire. Le code résultant de cette méthode comprend des algorithmes d’analyse d’image permettant
de distinguer les zones de contact, d’écoulement de fluide et de fluide piégé. En outre, le code convient aux approches
de couplage uni- et bidirectionnel. Le cadre développé a été appliqué dans un premier temps à l’étude d’un fluide piégé
entre un solide déformable présentant une surface de contact ondulée et un plan rigide. Pour un système soumis à
une charge externe croissante, nous avons examiné l’évolution de la surface de contact et du coefficient de frottement
global en fonction des propriétés du fluide et du solide, ainsi que de la pente du profil de surface. Nous avons ensuite
étudié l’écoulement d’un fluide entre un plan rigide et un solide déformable avec une géométrie modèle ou une surface
rugueuse. Nous avons obtenu une solution analytique approchée qui gouverne le flux de fluide à travers une interface
de contact ondulée, et cette dernière a été comparée à nos résultats numériques. Enfin, nous avons montré pour
un intervalle de paramètres physiquement pertinents, que le couplage unidirectionnel sous-estime, par rapport à une
approche bidirectionnelle, la perméabilité de l’interface ainsi que la charge externe critique nécessaire à la fermeture de
l’interface. Une loi phénoménologique raffinée de perméabilité macroscopique des interfaces de contact rugueuses a été
proposée. Enfin, le cadre développé a été utilisé pour calculer l’évolution de la fuite de fluide à travers une interface de
contact métal sur saphir en utilisant un comportement matériau élasto-plastique et des mesures réelles de la rugosité de
surface.

MOTS CLÉS

Méthode des éléments finis, contact frottant, rugosité de surface, écoulement de fluide mince, couplage
multi-physique, fluide piégé

ABSTRACT

This thesis deals with the problem of a thin fluid flow in narrow interfaces between contacting solids subject to a normal
loading, which is relevant for a range of tribological and engineering applications, as well as for geophysical sciences.
The treatment of this problem requires coupling between fluid and solid mechanics, further complicated by contact con-
straints and potentially complex geometrical features of contacting surfaces. In this thesis a monolithic finite-element
framework for handling frictional contact, thin incompressible viscous flow and transfer of fluid-induced tractions to the
solid is developed. Additionally, we considered fluid entrapment in “pools” delimited by contact patches and formulated
a novel trapped-fluid element using a non-linear compressible constitutive law. This computational framework makes
use of image analysis algorithms to distinguish between contact, fluid flow and trapped fluid zones. The constructed
framework is suitable for both one- and two-way coupling approaches. First, the developed framework was applied to a
study of a fluid trapped between a deformable solid with a wavy surface and a rigid flat. We showed how the contact
area and the global coefficient of friction evolve under increasing external load, depending on fluid and solid properties
and on the slope of the surface profile. Next, we studied a thin fluid flow between a rigid flat and a deformable solid
with a model geometry or random surface roughness. An approximate analytical solution for the fluid flow across a wavy
contact interface was derived and compared with numerical results. We showed that for a range of physically relevant
parameters, one-way coupling underestimates the interface permeability and the critical external load needed to seal the
interface, compared to the two-way approach. A refined non-local phenomenological law for macroscopic permeability of
rough contact interfaces was proposed. Finally, the developed framework was used to calculate the evolution of the fluid
leakage through a metal-to-sapphire contact interface using an elasto-plastic material behaviour and real measurements
of surface roughness.

KEYWORDS

Finite-element method, frictional contact, surface roughness, thin fluid flow, multi-physical coupling, trapped
fluid
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