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Abstract

The goal of this work is to derive a consistent framework for the
treatment of contact problems within the Finite Element Method using
the Node-to-Segment discretization. Three main components of the
computational contact have been considered: geometry, detection and
resolution techniques. For the sake of completeness, the mechanical
aspects of contact as well as numerous numerical algorithms and
methods have been discussed. A new mathematical formalism called “s-
structures” has been employed through the entire dissertation. It results
in a comprehensive coordinate-free notations and provides an elegant
apparatus, available for other mechanical and physical applications.
Several original ideas and extensions of standard techniques have been
proposed and implemented in the finite element software ZéBuLoN (Z-
set). Numerical case studies, presented in the dissertation, demonstrate
the performance and robustness of the employed detection and
resolution schemes.

Le but de ce travail était de fournir un cadre cohérent pour le
traitement des problemes de contact en utilisant une discrétisation
de type nceud a segment. Trois aspects principaux de la mécanique
numérique du contact ont été particulierement considérés : la
description de la géométrie, le probléme de détection de contact
et les techniques de résolution. Le manuscrit contient cependant
une présentation complete de la mécanique du contact et des
algorithmes numériques qui lui sont attachés. Un nouveau formalisme
mathématique — les s-structures — est employé dans l'ensemble de
la these. Il fournit un cadre de formulation intrinseque qui permet
d’exprimer de fagon compacte un grand nombre de problémes de
mécanique et de physique. La thése propose plusieurs idées originales
et des extensions des techniques classiques, qui ont toutes été mises
en ceuvre dans le code de calcul par éléments finis ZéBuLoN (Z-set).
Plusieurs études de cas, présentées dans la these, viennent démontrer
les performances et la robustesse des méthodes numériques utilisées
pour la détection et la résolution.
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Notations

Vectors and tensors:

Scalar (zero-order tensor) — small latin and greek letters:

a,ab,...

Vector (first-order tensor) — underlined small bold latin and greek letters:

cp.d,...

Second-order tensor — capital bold latin letters underlined twice:

EFE,...

Higher order tensor — capital bold latin letters underlined twice with
upper left index of order:

GH,...

V-Vectors and V-tensors:

- V-scalar (“vector of scalars”) — small latin and greek letters underlined
by a wave:

m_n

1’7/,...6150

- V-vector (“vector of vectors”) — small latin and greek letters underlined
by a line and a wave:

m_n

- V-tensor (“vector of tensors”) — capital bold latin letters underlined by a
double line and a wave:

m_n

€15,

IR
2~

T-Vectors and T-tensors:

- T-scalar (“tensor of scalars”) — capital bold latin letter underlined by a
double wave:

m_n

M, N, €5,

- T-vector (“tensor of vectors”) — small latin and greek letters underlined

by a line and a double wave:

m_n

..ezsl

IS
uI=
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- T-tensor (“tensor of tensors”) — capital bold latin letters underlined by a
double line and a double wave:

m_n

€,5

211
210

Vector and tensor operations:

|| a || — euclidean norm of a vector;

detA - determinant of a tensor;
- £ — unit tensor;

- L — unit t-scalar;

- trA - trace of a tensor;

- A7! —inverse of tensor;

- AT — transpose of tensor;

- 1/21 -'B ="""°C - scalar or dot product;

i j i+j-1
- AX B= " C-vector or cross product;

-A®B=" j]j = ”j(_? — tensor product;

i j i+j—4 .
- A--B= " C-tensor contraction.

Other operations:

(o) = ‘;—; — full time derivative;

0(e), A(e) — first variations;

5(e), A(e) — full first variations;

Ab(e) — second variation;

Ad(e) — full second variation;

V ® (o) — gradient;

V - (e) —divergence;

V X () — rotor.
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Miscellaneous:
- 6{ — Kronecker’s delta 65 =1,ifi = jelse 6{ =0;
- {x) = %(x + |x[) — Macaulay brackets;.
- [e, o]; (o, ®); (e, o] — closed, open, open-closed intervals;

-V, 3, 3, AN A-forall, exists, exists only one, exists infinitely many, does
not exist;

- =, &, & —sufficient, necessary, sufficient and necessary conditions;

- min, max, ext, sup, inf — minimum, maximum, extremum, supremum,
infimum,;

- min, max — global minimum, global maximum;

i =1,n—ichanges from 1 to n.

Abbreviations:

- PM, LMM, ALM - penalty, Lagrange multiplier, augmented Lagrangian
methods;

FEM, FEA - Finite Element Method, Finite Element Analysis;

CAD - Computer-Aided Design;

NTN, NTS - Node-to-Node, Node-to-Segment discretizations;

MPC — Multi-Point Constraints;

PDN - Partial Dirichlet-Neumann;

SDMR, MDMR - Single Detection Multiple Resolution, Multiple
Detection Multiple Resolution.

@ Remark on Macaulay brackets, dist(.,.) and 0(.) functions.

Throughout the dissertation we use the notation of Macaulay brackets

x, x>0, ) =x, x<0,
<x>‘{o, x<0’ <_x>‘{ 0, x>0

The O function is a similar notation widely used in both engineering and mathematical
literature

-x, x<0,
0, x>0

X,

6(x) = max(x,0) = { 0

x>0, T _
<0’ o( x)—mm(x,O)—{
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or a more general dist(,) function

dist(x, Q) = { dZSt(J(C)’ d0), ;58

where dist(x, dQ) is a somehow defined distance from point x to the closure of the set
Q. For example, in the simplest case Q = R_, x € R, then JR- =0

2 - <
e 1 ={ 0 i;%’; dist(x, R ={ o ;8/

All these functions are equivalent for the considered case and interchangeable, so the
reader is invited to interpret the Macaulay brackets as one of above mentioned functions
to which he is more accustomed.
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Chapter 1

Introduction to contact
mechanics

B B Résumé de Chapitre 1 «Introduction i la mécanique de
contact»

Ce chapitre présente une bréve histoire des développements de la mécanique du
contact, de sa naissance jusqu’a nos jours. On insiste en particulier sur les aspects
numériques et on présente une formulation mathématique rigoureuse des problémes
associés. La littérature concernant la méthode du Lagrangien augmenté est exposée en
détail.

De plus, ce chapitre introduit les notions de base qu’on exploite au cours du
manuscrit. Pour donner une vue globale sur le traitement numérique des problemes
de contact, on éclaircit toutes les étapes de I'algorithme : la détection du contact, la
discrétisation et la résolution. On présente la revue des possibilités existantes pour
chaque de ces étapes et on argumente les choix qui seront effectués par la suite :
méthode de «bucket sort» modifiée pour la détection, méthode du Lagrangien augmenté
et méthode de pénalisation pour la résolution et la discrétisation «Nceud-a-Segment».

On expose également les éléments qui ont motivé ce travail et on présente le plan du
manuscrit.

From a mechanical point of view, at macroscale, contact is a notion for
all types of interactions between separate bodies coming in touch. Direct
contact between solids allows to transfer a load, a heat and an electric
charge from one body to another. The physics of the contact interaction is
particularly rich and complicated, due to the multiscale and multiphysical
nature of the phenomenon. The branch of mechanical engineering studying
this interaction is called tribology — a science of relative motion of interacting
surfaces in a comprehensive framework combining mechanical, physical and
chemical effects at different scales. This dissertation presents the mathematical
description and modeling of the mechanical aspects of this interaction.

Contact problems in mechanics of deformable solids can be singled out
in a particular class. There are several reasons for that. Contact occurs in

5



the interface formed by two separate continuous surfaces. However, the
contact constraints arising in this interface cannot be replaced by ordinary
boundary conditions imposed on both contacting surfaces. At the same time,
the contact interface itself cannot be simply considered as an internal surface.
In an idealized case, the contact interface is a zero thickness layer, which
sustains only compressive stress in the direction orthogonal to the contact
interface (Fig. 1.1,a.), any stretching leads to vanishing of the contact interface
(Fig. 1.1,b.). In case of frictionless contact, the contact interface contrary to an
ordinary internal surface, does not sustain any tangential efforts, which allows
two surfaces slide relatively to each other (Fig. 1.1,a.). In case of frictional
contact, tangential resistance of the contact interface is similar to the resistance
of an elasto-plastic material with saturation. For example, in case of the classic
Coulomb’s friction law in stick state, the contact interface represents an internal
surface — no separation, no tangential sliding — locally both surfaces remain
glued to each other (Fig. 1.1,c.). If a critical shear stress is reached, the surfaces
start to slip relatively to each other, however the nonzero shear stress remains
equilibrated (Fig. 1.1,d.). It follows from this simple representation that the
contribution of the contact interface to the energy of the system is always zero
except in the case of frictional slip.

frictionless contact separation

stick state local reference frame slip state

Figure 1.1: Analogy between contact interface and internal interface: a —
frictionless contact sustains compressive stress in the local reference frame,
b — any stretching leads to vanishing of contact interface, ¢ — frictional contact
interface can transfer shear stress; d — in Coulomb’s friction law in stick state
there is no relative sliding up to reaching a critical shear stress.

Mechanical problems are classically formulated as boundary value
problems, where a governing differential equations should be fulfilled within
the domain ) and ordinary boundary conditions are imposed on the domain’s
closure dQ). The balance of virtual work yields a weak (integral) form of this
boundary value problem, which presents a basis on which the structural Finite
Element Method is constructed. Contact constraints are formulated as sets of
inequalities. Such a formulation is not usual for boundary value problems. The
rigorous construction of a variational principle leads to a variational inequality
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Chapter 1. Introduction to contact mechanics

instead of a classic variational equality. Such a new mathematical structure
requires new solution approaches. The problem becomes even more complex
when a frictional effect is assumed at the interface. Coulomb’s friction law
states that tangential resistance depends upon the normal contact pressure,
but the latter is known only if the solution is known. Roughly speaking,
the boundary conditions are solution dependent, which naturally leads to
difficulties in the formulation of the frictional contact problem. Moreover,
the nature of Coulomb’s friction law yields a nonsmooth energy functional
resulting in even more difficulties from a numerical point of view. As pointed
out in the book of Kikuchi and Oden [Kikuchi 88] “Frictional contact problem
between continuous deformable solids involves formidable mathematical
difficulties”.

Another mathematical difficulty in contact mechanics arises from a rigorous
description of continuous interacting surfaces. First, contacting bodies may
penetrate each other or be separated. In both cases, a bijection between points
of the contacting surfaces does not always exist. Second, the finite element
discretization results only in piecewise smooth contacting surfaces, which leads
to mathematical and numerical difficulties. Third, a considerable effort has to
be undertaken to derive a rigorous linearization of the variational principle,
which in turn requires second order variations of the normal gap and the
tangential sliding, which is not an easy task. Basic knowledges of differential
geometry is needed to obtain the relevant quantities.

The discretization of the contact interface is a third challenge in
computational contact mechanics. A simple and stable discretization for
conforming meshes, i.e. each node on one contacting surface has a
corresponding node on the other surface, can be established only in case of
small deformations and infinitely small relative sliding. Such a discretization
is called Node-to-Node. A less simple but multipurpose discretization implies
the creation of contact pairs consisting of a node of one surface and a
corresponding segment of the other surface. This approach is known as
Node-to-Segment discretization. However, this discretizations does not fulfill the
so called Babuska-Brezzi conditions and leads to an unstable discretization.
Recently, new techniques based on segment-to-segment discretizations — Nitsche
and mortar methods — have been successfully introduced in computational
contact mechanics, however, the computer implementation of these methods
for a general case presents a real challenge both from algorithmic and technical
points of view. Seeking for a stable and relatively simple discretization of the
contact interface is still in progress.

All forementioned difficulties are related to the resolution phase of the
contact algorithm. It follows the detection phase, which determines the
contacting pairs on discretized surfaces. At first glance, the detection phase
is a standalone task, but in reality it appears to be strongly connected with
the discretization type of the contact interface, with the definition of the gap
function and with the type of contact (e.g., simple contact or self-contact). The
detection phase may present a bottleneck for an efficient treatment of contact
problems, both for rapidity and robustness. The contact detection becomes
one of the most crucial points for an efficient parallelization of the whole
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1.1 Historical remark

resolution scheme. Elaboration and implementation of an efficient contact
detection algorithm is an absolute necessity for a robust and fast Finite Element
Analysis of large contact problems.

In this introduction, after a brief historical review, the main notions of
contact mechanics and related applications will be given, followed by a short
presentation of the general concept of contact treatment in the framework of the
Finite Element Method and implicit integration. The questions of detection,
discretization and resolution will then be addressed in first approximation.
Further, the main physical aspects of frictional contact will be introduced.
Finally the contents of the dissertation will be presented.

1.1 Historical remark

The modern contact mechanics is about 130 years old. It started in 1882
with the publication of Hertz’s famous paper On the contact of elastic solids
[Hertz 82], which gives the solution for frictionless contact between two
ellipsoidal bodies. This problem had arisen from the problem of the optical
interference between glass lenses. Futher developments in the contact theory
appear only in the beginning of XX century in application to railways,
to reduction gears and to rolling contact bearing industry. Progress in
contact mechanics was associated with removing the restrictions of the Hertz
theory, such as pure elasticity, frictionless and small deformations. A large
contribution has been made by the Russian school of mechanicians, starting
from Galin [Galin 53], [Galin 76] and Muskhelishvili [Muskhelishvili 66].
A synthesis of analytical solutions and approaches for contact problems
can be found in monographs [Lurie 70], [Alexandrov 83], [Johnson 94],
[Goryacheva 98], [Goryacheva 01], [Vorovich 01], etc.

Since the analytical solution is achievable only for a few simple
geometries, boundary conditions, and mostly for linear materials, only rough
approximations based on these solutions can be established for complicated
frictional contact problems. These problems come from industrial needs and
are usually coupled with complex geometries, boundary conditions and non-
linear materials. For that reason, with approaching computer age, more and
more numerically based semi-analytical solutions for contact problems appear.
But it is still not sufficient to answer the industrial demand for a fast and
accurate resolution of contact problems, which may include friction, wear,
adhesion, large deformations, large sliding and non-linear material.

Since 1965 (NASTRAN) the Finite Element Method (FEM) becomes one of
the most usable and efficient tools for the treatment of problems in structural
mechanics. In order to fulfill industrial demands related to contact problems,
the scientific society worked out a rigorous mathematical framework valid for
incorporation of the contact in the Finite Element Method. This task required
formidable efforts from the mathematico-mechanical community. First, the
frictionless Signorini’s problem (unilateral contact between a deformable body
and a rigid foundation) has been treated, further the developed approaches
have been extended to the case of unilateral frictional contact in small and
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large deformations and finally to bilateral! or multibody contact. At the same
time, the engineering practice tested the solution schemes and proposed new
challenging tasks. The work on a stable approach for treatment of large sliding
frictional contact is still in progress.

The history of the computational contact began in 1933 with the works
of Signorini who was the first who formulated the general problem of the
equilibrium of a linearly elastic body in frictionless contact with a rigid
foundation [Signorini 33], [Signorini 59]. The works of Fichera represents
the first treatment of questions of existence and uniqueness of the variational
inequalities arising from the minimization of functionals on convex subsets of
Banach spaces, which yields from his rigorous analysis of a class of Signorini’s
problems [Fichera 63], [Fichera 64], [Fichera 72]. Variational inequality is a
new structure in the field of the optimization theory; new approaches are
required to make use of such formulations for practical problems of physics and
mechanics. “Inequalities in mechanics and physics” by Duvaut and Lions (first
published in French and rapidly translated in English [Duvaut 76]) was a real
scientific breakthrough in this direction, the authors investigated the solution
of frictional contact problems and large deformation contact. Among the
early relevant contributions related to contact problems, the following can be
enumerated Cocu [Cocu 84], Panagiotopoulos [Panagiotopoulos 85], Rabier et
al [Rabier 86]. A consistent description of the variational inequality approach to
contact problemsis given in the book by Kikuchi and Oden [Kikuchi 88], where
among other important results the existence and uniqueness of the solution of
Signorini’s problem is proven. Stability questions of contact problem solution
have been discussed by Klarbring [Klarbring 88]; examples of non-uniqueness
or non-existence were demonstrated by Klarbring [Klarbring 90] and Martins
et al. [Martins 94]. The existence and uniqueness results for dynamic contact
problems can be found in Martins and Oden [Martins 87], Jarusek and Eck
[Jarusek 99] and others.

The frictionless contact problem formulated as a variational inequality
presents a special type of minimization problems with inequality
constraints, which can be efficiently treated in a standard manner (penalty
method, Lagrange multiplier method, augmented Lagrangian method, efc.).
Unfortunately, there is no associated minimization principle for the frictional
contact problem [Kikuchi 88], [Mijar 00]. Such a problem is rather complicated
and unusual for optimization theory since the energy of the system (objective
function) depends on the frictional status which depends on the normal contact
pressure, which in turn depends on the displacements, i.e. on the solution of
the problem which again depends on the energy of the system. Since there is
no smooth energy functional associated with the frictional contact problem, its
formulation and resolution present real challenges.

The assumption of a known a priori contact interface on the current
computational step results in a reformulation of the variational inequality into a
variational equality problem with a special contact term; the form of this term

bilateral - contact between two or more deformable solids, in contrast to unilateral contact -
contact between a deformable and a rigid solid.
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depends on the method chosen to enforce the contact constraints. Among
the well-known and widely used methods there are: barrier and penalty
methods, Lagrange multiplier methods and their combinations. Another
branch of methods makes use of different techniques from mathematical
programming: application of the simplex method to contact problems can be
found in [Chand 76], parametric quadratic programming method is employed
in [Klarbring 86], [Zhong 88]. Separately from these two branches, there is
a group of direct methods, which treats the contact problem independently
from the structural one: the flexibility method proposed by Francavilla and
Zienkiewicz [Francavilla 75], modified and improved by Jean [Jean 95], rarely
mentioned in the scientific literature, in practice this method demonstrates
a higher robustness and rapidity in comparison to ordinary methods if
the number of nodes in contact remains moderate. But this method is
not applicable for large contact problems and its parallelization is hardly
possible. A detailed description of the method and its application can be
found in [Wronski 94]. A complete list of methods used for the numerical
treatment of contact problems can be found in [Wriggers 06] and [Laursen 02].

1.1.1 The augmented Lagrangian method

As mentioned in the previous section, the assumption of a known a priori
contact surface allows to replace the variational inequality by a variational
equality with an additional contact term. The form of this contact term
depends upon the choice of the optimization method; the most usable in contact
mechanics are the Lagrange multiplier method, the linear penalty method and
an augmented Lagrangian method, the two latter methods are implemented
in leading modern finite element analysis softwares: ANSYS [Bhashyam 02],
[Oatis 07], [ANS 05], ABAQUS [ABA 07], COMSOL [COM 10] and others. In
this dissertation all forementioned methods are considered, but a particular
attention is paid to the augmented Lagrangian method, possessing several
advantages in comparison to other methods.

Within the framework of classical Lagrange multiplier method (LMM),
contact conditions are exactly satisfied by the introduction of extra degrees of
freedom called Lagrange multipliers. The constrained minimization problem
converts into an unconstrained saddle point problem often called min-max
problem. Due to inequality constraints this formulation has to be considered
in combination with an active set strategy [Luenberger 03], [Murty 88], i.e. a
check and update of active and passive constraints should be integrated in
the convergence loop. Moreover, the additional degrees of freedom of the
LMM introduce supplementary computational efforts. Penalty method (PM)
is simple to implement and to interpret from the physical point of view,
but, on the other hand, the contact conditions are fulfilled exactly only in
case of the infinite penalty parameter which results in ill-conditioning of
the numerical problem. The augmented Lagrangian method (ALM) is a sort of
Lagrange multiplier formulation regularized by penalty functions. It yields a
smooth energy functional and fully unconstrained problem, resulting in exact
tulfillment of contact constraints with a finite value of the penalty parameter.

10
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In this section a few historical remarks concerning the augmented Lagrangian
method are given. For a more detailed background the reader is referred to the
articles and books cited below.

The augmented Lagrangian method has been proposed in the first
raw approximation by Arrow and Solow in 1958 [Arrow 58b]. Further
a more elaborated version of the ALM method for optimization problems
subjected to equality constraints has been independently proposed by
Hestenes [Hestenes 69] and Powell [Powell 69] in 1969. As mentioned by
Pietrzak [Pietrzak 97] it was proposed "rather in an intuitive way" and a lot
of questions have not been considered. The way to apply the ALM method
to optimization problems with inequality constraints has been developed by
Rockafellar [Rockafellar 70], [Rockafellar 73b] and Wierzbicki [Wierzbicki 71].

Using the augmented Lagrangian method as well as the Lagrange
multiplier method leads to the saddle point problem, i.e. the objective function
is to be minimized by "ordinary" primal variables (e.g., displacement degrees
of freedom (dof) in the displacement based FEM) and is to be maximized
by dual variables - Lagrange multipliers which represent contact stresses.
All forementioned authors approach this min-max (saddle point) problem
by an independent consecutive updating of the primal and dual degrees of
freedom. An algebraic formula is used to update the Lagrange multipliers
at each iteration step and consequently a standard minimization procedure is
used to update the primal degrees of freedom. This idea has been worked
out by Powell [Powell 69]. Nowadays such an approach is employed under
the name of Uzawa’s algorithm and the full method is referred as a nested
augmented Lagrangian algorithm. Another approach has been developed by
Fletcher [Fletcher 70]. It consists in a continuous minimization of the resulting
saddle problem with a simultaneous update of both primal and dual variables.

One of the first applications of the augmented Lagrangian method
to frictionless contact problem can be found in Glowinski and Le
Tallec [Glowinski 89] and Wriggers, Simo and Taylor [Middleton 85]. The first
application of the augmented Lagrangian method with Uzawa’s algorithm to
frictional problems has been reported by Simo and Laursen [Simo 92]. The
first successful attempt to apply the coupled augmented Lagrangian method
to frictional contact problems has been undertaken by Alart [Alart 88], and
Alart and Curnier [Alart 91]. The augmented Lagrangian approach has been
elaborated by developing the perturbation approach to convex minimization
as proposed in [Rockafellar 70] and first applied by Fortin [Fortin 76] to visco-
plastic flow problems (rather similar to frictional contact problems).

Further developments of the ALM method to large deformations, large
sliding and nonlinear materials can be found in [Heegaard 93], [Mijar 04a],
[Mijar 04b], etc. A comprehensive investigation on the implementation of
the ALM method in the framework of the Finite Element Method to large
deformation frictional contact problems has been carried out by Pietrzak and
Curnier [Pietrzak 97], [Pietrzak 99]. The attempts to work out a technique
for penalty parameter updating are worth mentioning, since it became
a crucial factor for convergence of the ALM. A direction was proposed
in early works [Hestenes 69] and [Powell 69]. The need was mentioned
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by Rockafellar [Rockafellar 73b], discussed in [Alart 97] and an approach
has been proposed by Mijar and Arora [Mijar 04a], [Mijar 04b]; another
phenomenological approach has been proposed in [Bussetta 09]. An early
attempt to parallelize the ALM has been undertaken by Barboteu and
Alart [Barboteu 99] for particular structures.

The augmented Lagrangian method combines advantages of both methods
LMM and PM and avoids their drawbacks, precisely it converges to the exact
solution for a finite value of the penalty coefficient and if a nested update
of dual variables is used, there is almost no additional computational efforts.
Following Pietrzak, we would like to emphasis the smoothing effect of the ALM
which is not the only advantage over ordinary LMM. Even in case of a smooth
objective function the ALM method shows its superiority. The ordinary LMM
does not fully reduce the optimization problem with inequality constraints to
an unconstrained problem, since the condition of positivity of the Lagrange
multipliers A > 0 has to be satisfied. The ALM method does not have this
restriction and therefore is better for practical use. An elaborated presentation
of the method will be given in Section 4.7.

1.2 Basics of the numerical treatment of contact problems

The part of the implicit Finite Element code aimed at the treatment of contact
problems consists in the following steps: contact detection, construction of
“contact elements”, incorporation of these elements with associated residual
vectors and tangential matrices in the general nonlinear problem and finally
resolution of the resulting problem. Here we give the main ideas and a
general view of these steps, which will be presented in details further in the
corresponding chapters.

Contact elements are a kind of “bridge elements” between locally separated
but potentially interacting surfaces. Each contact element contains components
(nodes, edges, segments or their parts) of both surfaces; the composition
of these components depends upon the choice of the contact discretization
method. Each contact element has its own vector of unknowns, residual
vector and tangential matrix, which are assembled with unknowns, residual
vectors and matrices of ordinary structural elements. The set of unknowns and
the structure of the residual vector and the tangential matrix are determined
by the resolution method. For example, in addition to primal unknowns
(e.g. displacement) contact elements may contain dual unknowns (Lagrange
multipliers) representing contact stresses.

The Contact detection is a step preceding all others. The aim of this step
is to create contact elements containing the proximal components of both
surfaces which may contact on the current solution step. As a consequence
the detection algorithm is based on a search for the closest components and
presents a particular algorithmic task. The criterion of proximity is either
provided by a user or is chosen automatically based on boundary conditions
and/or discretization of contacting surfaces. In order to incorporate contact
elements in the resolution cycle, they should be created before a contact occurs

12
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and if needed should be removed and recreated at each solution step. Contrary
to this scheme, in case of explicit integration, the searching step consists in the
detection of penetration, which has already occurred.

In order to treat contact problems, from the programmer’s point of view, a
standard finite element code has to be complemented by

1. aclass governing contact;
2. a contact detection algorithm;
3. aclass of contact elements;

4. the corresponding residual vectors and tangential matrices.

1.2.1 Contact detection

The development of numerical methods and the increasing demands on
complexity (large deformation, large sliding, self-contact) and size of problems
in computational contact mechanics entailed the development of contact
detection techniques. As previously mentioned the contact detection presents
a purely algorithmic task and is strongly connected with the discretization of
the contact interface. For example, in the case of Node-to-Node discretization,
the contact detection consists simply in establishing close pairs of nodes: nodes
from one surface form pairs with their closest opponents from another surface.
Since the Node-to-Node discretization is limited to small deformation and
infinitely small slidings, once created contact pairs do not change during the
solution steps. Node-to-segment discretization requires a more elaborated
detection procedure: for nodes of one surface (slave) the closest point on the
other surface (master) has to be found, the master segment possessing this point
complemented by the slave node forms a Node-to-Segment contact element.

This simple detection procedure generates several difficulties. First, the
detection of the closest point on the master segments may fail if the slave node
is not sufficiently close to the master surface or if the latter is not smooth, which
is the case in case of finite element discretization of the surface. The numerical
scheme of the closest point detection is based on the seeking for a minimum
of the distance function, but on the one hand this minimum does not always
exist, and on the other hand there may be several or infinitely many equivalent
minimum points. Second, the detection has to be organized in a smart way.
Large contact problems imply a large number of contacting nodes on both
surfaces, that is why a simple detection technique, based on a comparison of
distances from each slave node to all components of the master surface, leads to
an excessively time-consuming algorithm, especially if contact elements must
be frequently updated.

Segment-to-segment discretization requires totally different detection
algorithms based on surface topologies. Since we confine ourself to
consideration of the Node-to-Segment contact discretization, the questions of
detection for other discretizations will be omitted. The geometrical questions
of the closest point definition will be discussed in Chapter 2 and the detection
algorithms will be presented in Chapter 3.

13
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1.2.2 Contact discretization

As already mentioned, the contact discretization predetermines the structure
of contact elements transferring efforts from one contacting surface to another.
Three main types of discretizations may be distinguished:

e Node-to-Node, NTN
e Node-to-Segment, NTS
e Segment-to-Segment, STS

The simplest and the oldest Node-to-Node discretization [Francavilla 75]
(Fig. 1.2) does not allow any finite sliding or large deformations and introduces
restrictions on mesh generation. On the other hand it passes the contact
patch test — uniform pressure is transferred correctly through the conforming
contact interface. The NTN discretization is applicable for linear and quadratic
elements in two dimensional case and only to linear elements in three
dimensional case. The NTN technique smoothes the asymmetry between
contacting surfaces. However, the normal vector for each pair of nodes is
usually determined according to one of the surfaces. Different possibilities of
normal definition are presented in Remark 3.2 in Sec