Multiscale Simulations of Materials and
Structures

Lecture 7.
Dislocation Dynamics

Vladislav A. Yastrebov

MINES ParisTech, PSL University, CNRS
Centre des Matériaux, Evry, France

@ Centre des Matériaux (virtually)
February 18, 2021

Creative Commons BY
Vladislav A. Yastrebov



Basics of dislocations
Notions in 2D

Extension to 3D

Burgers circuit
Dislocations motion

A Stress field

Interaction of dislocations
B DDD in 2&3D



Introduction

Notion of plasticity

m Plasticity. . . irreversible change
of shape

m In metals plasticity is the result 3 4

—
of motion of linear defects of the 1§ F )(::)_»

crystal lattice: dislocations

m In rocks, for example, the
plasticity is caused by slip at
microcracks

e=l/L
Adapted from Wikipedia
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of shape

m In metals plasticity is the result
of motion of linear defects of the
crystal lattice: dislocations

m In rocks, for example, the
plasticity is caused by slip at
microcracks
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o=F/A

residual strain e=l/L

Adapted from Wikipedia



Introduction

Notion of plasticity

m Plasticity. . . irreversible change o
of shape

m In metals plasticity is the result S A~ f———
of motion of linear defects of the & F )m—»
crystal lattice: dislocations J
E

m In rocks, for example, the
plasticity is caused by slip at
microcracks
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Notion of plasticity

m Plasticity. . . irreversible change
of shape

m In metals plasticity is the result
of motion of linear defects of the
crystal lattice: dislocations

m In rocks, for example, the
plasticity is caused by slip at
microcracks

Objective:

m Understand basics of
dislocation motion
(V' for DMS students)

m Convert this understanding into
a computational model:
Dislocation Dynamics

V.A. Yastrebov

Introduction

e=l/L
Adapted from Wikipedia

from
[1] Bulatov V.V., Cai W. Computer Simulations of

Dislocations, Oxford University Press, 2006.
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Basic concept

m Dislocation is a line defect, a
curve in a volume

m But the basics can be
understood in 2D. ..

Square lattice
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Basic concept

m Dislocation is a line defect, a
curve in a volume

m But the basics can be
understood in 2D. ..

Atoms arrangement
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Basic concept

m Dislocation is a line defect, a
curve in a volume o 0 O ® o o
m But the basics can be e 0 © ® o o
understood in 2D. . . e o © ® e @
e 06 © 06 o o
@ 0 © 06 ¢ o
@ 0 6 o o o

Insert a half atomic layer

(line in 2D, plane in 3D)
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Basic concept

m Dislocation is a line defect, a
curve in a volume @ © 0 06 0 o o
m But the basics can be @ 0 0 0 ¢ o0 o
e 0 0 6 0 ¢ o

understood in 2D. ..
Slip plane (line) N

Obtain a dislocation defect
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Basic concept

[ Dlslocgtlon is a line defect, a © 060 060 o
curve in a volume

m But the basics can be ¢ 6 606 9090

understood in 2D. .. ® 6 6 0 0 o

e ¢ ¢ o6 o o

® 6 6 6 o o

® 6 ¢ 6 o o

g—

Another option: let’s shear this lattice
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Basic concept

[ Dlslocgtlon is a line defect, a -0 ©6 © ©6 0 ©
curve in a volume

m But the basics can be ..

understood in 2D. .. -0 6 6 0 o o

-—0 O 6 o o o

-9 O 6 o6 o o

-—Q O o o o o

or rather push and pull along a particular plane
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Basic concept

[ Dlslocgtlon is a line defect, a o000 0 ©
curve in a volume

m But the basics can be 060660606 09

understood in 2D. .. @ 0600 0 o

e 6 ¢ o o o

® 6 6 6 o o

® 6 ¢ 6 o o

v

Shift (make a step on left side)
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Basic concept

m Dislocation is a line defect, a - .—7
curve in a volume ® oo
m But the basics can be ®© 06 6 0900
understood in 2D. . . © ©0 ¢ 0 0
Slip plane (line) y .

Of course the lattice deforms accordingly,
we can also imagine that we are far from free surfaces

(add transparent atoms)
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Basic concept

m Dislocation is a line defect, a #.
curve in a volume . ® o
m But the basics can be ® 0 06 06 0 o0
understood in 2D. .. @ © 00 ¢ o
_Slip plane (line) Lo
e o © ® o o
e 0 © 0 o o
e 0 ¢ 6 o o

~—

Let’s shear more
or we might keep the same shear and wait until thermal
fluctuations of atoms make the dislocation to step one

step further
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Basic concept

. .. . .

m Dislocation is a line defect, a - pr
curve in a volume * ¢ o
m But the basics can be L ®© o o0
understood in 2D. .. e ©° © 0 o
Slipplane (ine) My .
e o0 © ®© o o
e 0 © 0 ¢ o
e © ¢ o o o

|

It has just make one more step
The configuration is equivalent as if we introduced a half

atomic layer
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Basic concept

m Dislocation is a line defect, a —_—
. e © 6 6 o o
curve in a volume
m But the basics can be ® 0 0 6 0 o0

understood in 2D. ..

............................. Lo
o 0o 0 0 0 o
e 0 0 © o o
e ¢ ¢ ¢ o o

~—
Another step
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Basic concept

. .. . 1
m Dislocation is a line defect, a S 5 »
curve in a volume ¢ e o
m But the basics can be ®© o 0 0 0 0
understood in 2D. .. e © 0 o
_Slip plane (line) Lo
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Basic concept

m Dislocation is a line defect, a r——
. ® ¢ ¢ 6 o o
curve in a volume
m But the basics can be © 6 66 0 o0 o
understood in 2D. .. © ©6 0 © M
b
e ¢ 6 6 o o
e ¢ 6 6 o o
e 6 6 6 o o
~—

One more, and there is no more dislocations... but if we
remove shear, an irreversible deformation remains in the

system
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Basic concept

m Dislocation is a line defect, a r——
. ® ¢ ¢ 6 o o
curve in a volume
m But the basics can be © 6 66 0 o0 o
understood in 2D © © 0 © m
m Carpet fold analogy 777 . """ . . """ . ..
e ¢ 6 6 o o
e 6 6 6 o o
—

One more, and there is no more dislocations... but if we
remove shear, an irreversible deformation remains in the

system
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Dislocation in 2D: Peierls potential

m Basics can be understood in 2D

e © ¢ ¢ ¢ o o
m Concept of an array of potential
wells and energy barriers

Dislocation

V.A. Yastrebov
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Dislocation in 2D: Peierls potential

m Basics can be understood in 2D
@ 0 0 0 0 0 o
m Concept of an array of potential
wells and energy barriers © 0 0 6 06 900
e 0 0 060 o o0
Lo

Potential
energy

Dislocation position
(system configuration)

Dislocation in a stable equilibrium

V.A. Yastrebov



Dislocation in 2D: Peierls potential

m Basics can be understood in 2D

m Concept of an array of potential
wells and energy barriers LA 4
m Peierls potential o 0 0 0 0 o
o o

Potential
energy
AE

Dislocation position
(system configuration)

Array of potential wells and energy barriers
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Dislocation in 2D: Peierls potential

m Basics can be understood in 2D
e 00 0 0 0

m Concept of an array of potential
wells and energy barriers
® 0 0 0 00

m Peierls potential
e o o

Potential
energy

Dislocation position
(system configuration)

Jump to the right well
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Dislocation in 2D: Peierls potential

m Basics can be understood in 2D

m Concept of an array of potential

wells and energy barriers © 06 06 6 06 0 o

m Peierls potential @ 0 0 060 ¢ o
o 0 0 © o o
e 0 © 0 o o
e ¢ 6 o o o

Potential
energy
AE

Dislocation position
(system configuration)

Array of potential wells and energy barriers (Peierls

potential)
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Dislocation in 2D: Peierls potential

m Basics can be understood in 2D

@ © ¢ 06 0 o0 o
m Concept of an array of potential

wells and energy barriers ® © 0 6 00 o
m Peierls potential o o : ® 0o 0 o
e © 6 o o0 o
@ © 6 ¢ o0 o
@ ¢ 6 o o0 o

Potential
energy

Dislocation position
(system configuration)

Jump to the left well

N

N
N
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Dislocation in 2D: Peierls potential

m Basics can be understood in 2D
e 0 ¢ 06 ¢ o o
m Concept of an array of potential
wells and energy barriers @ 0 0 6 0 0 o0
@ 0 © 06 0 ¢ o

m Peierls potential 1
m Thermally activated motion

Potential
energy

Dislocation position
(system configuration)

Increasing temperature kg T increases the probability of

jump
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Dislocation in 2D: Peierls potential

m Basics can be understood in 2D
e 06 ¢ 06 ¢ o o
m Concept of an array of potential
wells and energy barriers @ 06 0 06 0 0 o0
@ 0 © 06 0 ¢ o

m Peierls potential 1
m Thermally activated motion

Potential
energy

Dislocation position
(system configuration)

Increasing temperature kg T increases the probability of

jump
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Dislocation in 2D: Peierls potential

m Basics can be understood in 2D

Concept of an array of potential

1
1
. 1
wells and energy barriers ‘:. © 0 6 06900
. . g
m Peierls potential i e @O I ® 0o o
T e e e
m Thermally activated motion s '@ @ © O ¢ o
£
m Interaction with free surface e @ © 0 o o
|
‘e @ 0 © 0 o
5.,  Ppreferable
E=R ) el T
EE direction \ E
& ° © :

Dislocation position
(system configuration)
Near the free surface, an energetically faborable

direction of motion is towards the surface
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Dislocation in 2D: Peierls potential

m Basics can be understood in 2D ~ T/,_-,\ =
O O O O O O O o
m Concept of an array of potential
. ~ ) o ;j o ( s C
wells and energy barriers g Oy 2 000
m Peierls potential O o0 O O -
m Thermally activated motion O o O O
m Interaction with free surface oo o0 O O o0 oo
O O - D
EE
2s \/\/\/\/\/ 4
28
0 )

Dislocation position
(system configuration)

Shear loading
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Dislocation in 2D: Peierls potential

m Basics can be understood in 2D

m Concept of an array of potential
wells and energy barriers O

m Peierls potential @)
m Thermally activated motion O

m Interaction with free surface

Potential
energy

Dislocation position
(system configuration)

Shear loading bias the potential and dictates the

favorable direction of motion
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Dislocation in 2D: Peierls potential

m Basics can be understood in 2D

m Concept of an array of potential
wells and energy barriers

m Peierls potential
m Thermally activated motion
m Interaction with free surface

m Peierls stress

V.A. Yastrebov

zero slope

Increasing applied shear stress may result in a complete

removing of the energy barrier (Peierls stress 7p)

w
@
N



Dislocation in 2D: stress effects

m Basics can be understood in 2D

m Applied stress affects
. . . 0 000 0 0 0 0
dislocation motion
© 000 00090 0
0000:0000
e 0 06 © 0 o0 o0 o
o0 00 0 0 0 o0
o0 00 060 0 0

Potential
energy

Dislocation position
(system configuration)

Dislocation
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Dislocation in 2D: stress effects

. . Hydrostatic pressure
m Basics can be understood in 2D Y P

o=tr(o) 1
m Applied stress affects

e 00 0 o
dislocation motion e o ¢ e
°
L

o000 © 000

m Rather insensitive to hydrostatic © 000000 00
pressure T e e e ete e e e
© 0 0 © 0 0 00

o0 00 00 00

Potential
energy

Dislocation position
(system configuration)

Dislocation under hydrostatic pressure

Here tr(o) > 0
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Dislocation in 2D: stress effects

. . Hydrostatic pressure
m Basics can be understood in 2D Y P

o=tir(o) 1
m Applied stress affects
: . . o0 00 0 o
dislocation motion e il
@000 00000
m Rather insensitive to hydrostatic e 000 ®0 oo e
pressure P e e e e E e

energy

\VAVAVAVAVA

Dislocation position
(system configuration)

Potential

Dislocation under hydrostatic pressure

Here tr(o) > 0
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Dislocation in 2D: stress effects

Stress tensor
c =%tr(o‘) I+s

m Basics can be understood in 2D
\ ® 0 0 o ./

m Applied stress affects
dislocation motion

m Rather insensitive to hydrostatic

pressure
m Sensitive to the stress deviator
/ @ 0 00 0 0 0 o0

Traction on dislocation
T=n-o-t=nst

Potential
energy

Dislocation position
(system configuration)
Dislocation is sensitive to the deviatoric part of the stress

tensor s = o — %tr(o)l

W
3
N
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Dislocation in 2D: stress effects

m Basics can be understood in 2D

m Applied stress affects
dislocation motion

m Rather insensitive to hydrostatic
pressure

m Sensitive to the stress deviator

m Dislocation itself induces
stresses

Perfect crystal

V.A. Yastrebov 38/117



Dislocation in 2D: stress effects

insert atomic layer

m Basics can be understood in 2D

o o
m Applied stress affects o o
dislocation motion . &

m Rather insensitive to hydrostatic
pressure

m Sensitive to the stress deviator

m Dislocation itself induces
stresses

== =)

tension

Dislocation: crystal with an inserted layer of atoms

Tensile stress below iy < 0: gyy >0
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Dislocation in 2D: stress effects

m Basics can be understood in 2D

@ 0 0 0 0 0 o
m Applied stress affects o 0 © e 0 o
dislocation motion
e o0 O b ® o o
m Rather insensitive to hydrostatic o e oNe e o
pressure
o ) e © o/ 0 ¢ o
m Sensitive to the stress deviator s & Blle 5 &
m Dislocation itself induces remove atomic layer

stresses

compression

60— =~—o0<0

Dislocation: crystal with a removed layer of atoms

Compressive stress above iy > 0: oyy <0
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Dislocation in 2D: stress effects

m Basics can be understood in 2D

m Applied stress affects
dislocation motion

© Inclusion particle

m Rather insensitive to hydrostatic
pressure

[

()

o

m Sensitive to the stress deviator °
o
()

e 0 O 0 o o - (%)
m Dislocation itself induces e 00 © ¢ o °
stresses (%)
. . . . e o o
m Interactions with neighbouring ol ol

defects: interstitial and vacancy
defects

Inclusion on the glide line

V.A. Yastrebov 41/117



Dislocation in 2D: stress effects

m Basics can be understood in 2D @ Interstitial defect
m Applied stress affects
; . . e 6 o
dislocation motion o 0 o o
m Rather insensitive to hydrostatic =~ ® @ A
pressure e © 0 O I ® 0o 0 o
m Sensitive to the stress deviator " e 0 © © ¢ o °
m Dislocation itself induces e © 0 00 0 0 o
stresses ()
e ® 06 0 060 o0

m Interactions with neighbouring
defects: interstitial and vacancy
defects

zone in tension

Interstitial defects migrate towards the zone of tensile

stress induced by the dislocation

V.A. Yastrebov 42/117



Dislocation in 2D: stress effects

m Basics can be understood in 2D © Interstitial defect

m Applied stress affects

dislocation motion .
m Rather insensitive to hydrostatic :
pressure o o ~e
3 1 .
m Sensitive to the stress deviator D -
m Dislocation itself induces Cottrell atmosphere!!
stresses —
S > X
E=R )
m Interactions with neighbouring &E g 3
[ '

defects: interstitial and vacancy
defects Deepens the potential well
Interstitial defects migrate towards the zone of tensile
stress induced by the dislocation
[1] Cottrell & Bilby. Dislocation theory of yielding and
strain ageing of iron. Proc Phys Soc A 62 (1949)

V.A. Yastrebov 43/



Dislocation in 2D: stress effects

m Basics can be understood in 2D © Interstitial defect

<o

m Applied stress affects
dislocation motion /

m Rather insensitive to hydrostatic

pressure .
m Sensitive to the stress deviator T
m Dislocation itself induces Cotfrell afmosptissa®
stresses q s, )
m Interactions with neighbouring EE ?‘530 I 3
[-9

defects: interstitial and vacancy
defects Deepens the potential well
Interstitial defects migrate towards the zone of tensile
stress induced by the dislocation
[1] Cottrell & Bilby. Dislocation theory of yielding and
strain ageing of iron. Proc Phys Soc A 62 (1949)
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Dislocation in 2D: stress effects

m Basics can be understood in 2D

zone in
compression

Applied st ffect:
m Applied stress atfects e 0 0 06 06 0 g 0 o

dislocation motion

® Rather insensitive to hydrostatic =~ @ @ ° 9 .\_./ . ®

pressure @ 00 0 060 0 4 4
- T N ..
m Sensitive to the stress deviator e 0 0 © © ¢ ¢ o
m Dislocation itself induces e 0 0 © © ¢ 0 o
stresses
@ ¢ 0 ¢ 0 o o0 o

m Interactions with neighbouring
defects: interstitial and vacancy
defects

{3 Vacancy defect

Vacancy defects migrate towards the zone of

compressive stress induced by the dislocation
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Dislocation in 2D: stress effects

m Basics can be understood in 2D

m Applied stress affects
dislocation motion

Foe © o
...l...
oo.'.. "

m Rather insensitive to hydrostatic
pressure

m Sensitive to the stress deviator

m Dislocation itself induces
stresses \

m Interactions with neighbouring
defects: interstitial and vacancy
defects ket

m Interactions between
dislocations

Interaction of two “up” dislocations is repulsive
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Dislocation in 2D: stress effects

m Basics can be understood in 2D

m Applied stress affects
dislocation motion

m Rather insensitive to hydrostatic
pressure

° °

° °

° o

° °

° °
m Sensitive to the stress deviator ° °
m Dislocation itself induces

stresses

m Interactions with neighbouring

defects: interstitial and vacancy
defects

m Interactions between
dislocations

Interaction of “up” and “down” dislocations is attractive
and leads to annihilation of both defects
V.A. Yastrebov
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3D lattices

m Basics can be understood in 2D

pce

m But the complete picture can be
drawn only in 3D

m Crystallographic lattices in 3D:
e primitive cubic (pcc)
(very rare for pure metals, Po)
¢ body-centered (bcc)
(common, Fe, Cr, W, Nb)
e face-centered cubic (fcc)
(common, Al, Cu, Au, Ag)
¢ hexagonal close packed (hcp)
(common, Be, Mg, Zn, Ti)
+ and 10 other bravais lattices.

m Slip planes n = (ijk) (often the most
densely packed)

m slip systems d = [prs] (often the most
densely packed)
(n-d=ip+jr+ks=0)
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m Basics can be understood in 2D

pce

m But the complete picture can be
drawn only in 3D

m Crystallographic lattices in 3D:
e primitive cubic (pcc)
(very rare for pure metals, Po)
¢ body-centered (bcc)
(common, Fe, Cr, W, Nb)
e face-centered cubic (fcc)
(common, Al, Cu, Au, Ag)
¢ hexagonal close packed (hcp)
(common, Be, Mg, Zn, Ti)
+ and 10 other bravais lattices.

m Slip planes 1 = (ijk) (often the most
densely packed)

m slip systems d = [prs] (often the most
densely packed)
(n-d=ip+jr+ks=0)
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3D lattices

m Basics can be understood in 2D

pee Densely packed
m But the complete picture can be planes
drawn only in 3D (001)
o 2 (010)
m Crystallographic lattices in 3D: ez\T_.e] (100)
e primitive cubic (pcc)
(very rare for pure metals, Po) bee
e body-centered (bcc) (011)(01T)
(common, Fe, Cr, W, Nb) (101)(101)
(110)(110)

e face-centered cubic (fcc)
(common, Al, Cu, Au, Ag)

¢ hexagonal close packed (hcp)

. (111)(1T1)
(common, Be, Mg, Zn, Ti) AT
+ and 10 other bravais lattices.
m Slip planes 1 = (ijk) (often the most e
densely packed) (0001)
m slip systems d = [prs] (often the most E?)HO)
densely packed) pyramidal

(n-d=ip+jr+ks=0)

(1011)... '\K'Z

34
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3D lattices

m Basics can be understood in 2D pec Densely packed
m But the complete picture can be planes
drawn only in 3D (001)
€3
. Lo (010)
: €
m Crystallographic lattices in 3D: e (100)

e primitive cubic (pcc)
bece

(very rare for pure metals, Po)

e body-centered (bcc) (011)(O1T)

(common, Fe, Cr, W, Nb) (101)(101)
(110)(110)

e face-centered cubic (fcc)

(common, Al, Cu, Au, Ag) fec

¢ hexagonal close packed (hcp)

(common, Be, Mg, Zn, Ti) a1ndin

(ATH(A1T)
+ and 10 other bravais lattices.
m Slip planes 1 = (ijk) (often the most
densely packed)

basal

(0001)
prislnilic
(0110)...

pyramidal

(1011)... ‘\K'Z

m slip systems d = [prs] (often the most
densely packed)
(n-d=ip+jr+ks=0)
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3D lattices

m Basics can be understood in 2D pec Densely packed

= But the complete picture can be planes & directions
drawn only in 3D
e,
m Crystallographic lattices in 3D: ex (01001001
€
e primitive cubic (pcc)
(very rare for pure metals, Po) bee
¢ body-centered (bcc)
(common, Fe, Cr, W, Nb)
e face-centered cubic (fcc) (on[i11]

(common, Al, Cu, Au, Ag)

¢ hexagonal close packed (hcp) .
(common, Be, Mg, Zn, Ti)

+ and 10 other bravais lattices. ain[ion]
m Slip planes 1 = (ijk) (often the most

densely packed)

basal (Be, Mg, Co, Zn, Cd)

(0001)~fee(111)

m slip systems d = [prs] (often the most
densely packed)
(n-d=ip+jr+ks=0)
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3D lattices

m Basics can be understood in 2D pec Densely packed

m But the complete picture can be planes & directions
drawn only in 3D
m Crystallographic lattices in 3D: (010)[ 100]
e primitive cubic (pcc)

(very rare for pure metals, Po)
¢ body-centered (bcc)
(common, Fe, Cr, W, Nb)

e face-centered cubic (fcc) (Ton[i11]
(common, Al, Cu, Au, Ag)

fce

® 0
¢ hexagonal close packed (hcp) °
(common, Be, Mg, Zn, Ti)
+ and 10 other bravais lattices. Iin[io1]

m Slip planes 1 = (ijk) (often the most
densely packed)

basal
(0001)~fee(111)
prismatic (Ti, Zr)

m slip systems d = [prs] (often the most (0170)[1000]

densely packed)
(n-d=ip+jr+ks=0)
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3D dislocations

m Slip plane n
m Oriented dislocation line §

m Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

m Dislocation types:
-edge (coin): b-5=0
-screw (vis): bx&=0, VYn
- mixed

m Burgers circuit Box
provides the total Burgers vector within
a contour
Attention: by = 0 does not imply that
there is no dislocations
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3D dislocations

m Slip plane n
m Oriented dislocation line §

m Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

m Dislocation types:
-edge (coin): b-£=0
-screw (vis): bx&=0, VYn

- mixed
m Burgers circuit Introduce a cut along a densely
provides the total Burgers vector within packed plane with normal # (e.g.
a contour (111) in fcc)

Attention: by = 0 does not imply that
there is no dislocations

5/117
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3D dislocations

m Slip plane n
m Oriented dislocation line §

m Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

m Dislocation types:
-edge (coin): b-£=0
-screw (vis): bx&=0, VYn

- mixed
m Burgers circuit Introduce a cut along a densely
provides the total Burgers vector within packed plane with normal # (e.g.
a contour (111) in fcc)

Attention: by = 0 does not imply that
there is no dislocations
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3D dislocations

m Slip plane n
m Oriented dislocation line §

m Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

m Dislocation types:
-edge (coin): b-£=0
-screw (vis): bx&=0, VYn

- mixed
m Burgers circuit Cut’s edge is the dislocation line,
provides the total Burgers vector within introduce an orientation &
a contour

Attention: by = 0 does not imply that
there is no dislocations
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3D dislocations

m Slip plane n
m Oriented dislocation line §

m Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

m Dislocation types:
-edge (coin): b-£=0
-screw (vis): bx&=0, Yn

- mixed
m Burgers circuit Shift the cut by a vector b along
provides the total Burgers vector within ~ the plane orthogonally to the
a contour dislocation line and glue sides
Attention: by = 0 does not imply that Edge dislocation

there is no dislocations
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3D dislocations

m Slip plane n
m Oriented dislocation line §

m Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

m Dislocation types:
-edge (coin): b-£=0
-screw (vis): bx&=0, VYn
- mixed

m Burgers circuit Cut in the box
provides the total Burgers vector within
a contour
Attention: by = 0 does not imply that
there is no dislocations
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3D dislocations

m Slip plane n
m Oriented dislocation line §

m Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

m Dislocation types:
-edge (coin): b-£=0
-screw (vis): bx&=0, VYn

- mixed
m Burgers circuit Shift the cut by a vector b along
provides the total Burgers vector within the plane parallel to the
a contour dislocation line and glue sides
Attention: by = 0 does not imply that Screw dislocation

there is no dislocations
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3D dislocations

m Slip plane n
m Oriented dislocation line §

m Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

m Dislocation types:
-edge (coin): b-£=0
-screw (vis): bx&=0, VYn
- mixed

m Burgers circuit Semi-circular cut in the box
provides the total Burgers vector within
a contour
Attention: by = 0 does not imply that
there is no dislocations
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3D dislocations

m Slip plane n
m Oriented dislocation line §

m Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

m Dislocation types:
-edge (coin): b-£=0
-screw (vis): bx&=0, VYn

- mixed
m Burgers circuit Shift the cut by a vector b and
provides the total Burgers vector within ~ obtain a complex dislocation
a contour combining screw and edge
Attention: br = 0 does not imply that dislocations

there is no dislocations
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3D dislocations

m Slip plane n

m Oriented dislocation line §

m Burgers vector b e &
can be expressed in terms of minimal eger.
. ; . b
distance between atoms in the slip 3 2.
system § ’%

m Dislocation Wpes: £ 4 \b b +
-edge (coin): b-£=0 po— —
-screw (vis): bx&=0, Yn
- mixed

m Burgers circuit Shift the cut by a vector b and

provides the total Burgers vector within ~ obtain a complex dislocation
a contour combining screw and edge
Attention: by = 0 does not imply that dislocations

there is no dislocations
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3D dislocations

m Slip plane n © 0 06 0 06 06 0 0o

m Oriented dislocation line & © 060006 090900

m Burgers vector b LA I _:z e e

can be expressed in terms of minimal
distance between atoms in the slip
system

m Dislocation types:
-edge (coin): b-£=0
-screw (vis): bx&=0, Yn
- mixed

Edge dislocation

m Burgers circuit
provides the total Burgers vector within
a contour
Attention: by = 0 does not imply that
there is no dislocations
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3D dislocations

m Slip plane n © 0 0 0 06 06 0 0o

m Oriented dislocation line § o
m Burgers vector b PR ¢
can be expressed in terms of minimal @ o e

® o

distance between atoms in the slip
system
@0 00 0 0 0 o

m Dislocation types: 1 down, 3 right, 3 up, 3 left, 2 down

-edge (coin): b-&£=0
edge ( . ) s Make a contour around
-screw (vis): bx&=0, Yn . N o
. (right-hand rule Ia regle de la main
- mixed .
droite)

m Burgers circuit
provides the total Burgers vector within

a contour
Attention: by = 0 does not imply that

there is no dislocations
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3D dislocations

m Slip plane n © 0 0 0 06 06 0 0o

m Oriented dislocation line §

m Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

@ 6 6 6 o o o0 o

m Dislocation types: 1 down, 3 right, 3 up, 3 left, 2 down
-edge (coin): b-£=0
-screw (vis): bx&=0, Yn

Make a contour around
(right-hand rule Ia regle de la main

- mixed droite), compute the net Burgers
m Burgers circuit vector
provides the total Burgers vector within
a contour

Attention: by = 0 does not imply that
there is no dislocations
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3D dislocations

Start Finish

m Slip plane n g
m Oriented dislocation line § o
m Burgers vector b .
can be expressed in terms of minimal °
distance between atoms in the slip °
system
(]
| Dislocation types: 5 down, 5 right, 5 up, 5 left
-edge (coin): b-£=0
. Ch, th t
-screw (vis): bx&=0, Yn ange the contour
- mixed

m Burgers circuit
provides the total Burgers vector within
a contour
Attention: by = 0 does not imply that
there is no dislocations
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3D dislocations

m Slip plane n
m Oriented dislocation line § © 000
()

m Burgers vector b 3 g... ®
can be expressed in terms of minimal ®© o o0 oo
distance between atoms in the slip © 0 0 o

t
system © 0o 0o
m Dislocation types: 5 down, 3 right, 5 up, 3 left
-edge (c(om )) lb f :700 v Make a contour around a
- sc?ew vis): bx&=0, " dislocation-free zone b = 0
- mixed

m Burgers circuit
provides the total Burgers vector within

a contour
Attention: by = 0 does not imply that

there is no dislocations
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3D dislocations

m Slip plane n
m Oriented dislocation line §

m Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

m Dislocation types:
-edge (coin): b-£=0
-screw (vis): bx&=0, Yn
- mixed Screw dislocation

m Burgers circuit
provides the total Burgers vector within
a contour
Attention: by = 0 does not imply that
there is no dislocations
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3D dislocations

m Slip plane n
m Oriented dislocation line §

m Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

m Dislocation types:
-edge (coin): b-£=0
-screw (vis): bx&=0, Yn
- mixed Draw a contour:

4 down, 5 left, 4 up, 3 right

m Burgers circuit
provides the total Burgers vector within
a contour
Attention: by = 0 does not imply that
there is no dislocations
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3D dislocations

m Slip plane n
m Oriented dislocation line §

m Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

m Dislocation types:
-edge (coin): b-£=0
-screw (vis): bx&=0, Yn
- mixed Draw a contour:

4 down, 5 left, 4 up, 3+2 right

m Burgers circuit
provides the total Burgers vector within
a contour
Attention: by = 0 does not imply that
there is no dislocations
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3D dislocations

m Slip plane n
m Oriented dislocation line §

m Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

m Dislocation types:
-edge (coin): b-£=0
-screw (vis): bx&=0, Yn
- mixed The Burgers vector is collinear
with the dislocation line

bllé

m Burgers circuit
provides the total Burgers vector within
a contour
Attention: by = 0 does not imply that
there is no dislocations
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Burgers curcuit example

Example from the Monday lecture on Molecular dynamics
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Burgers curcuit example

Example from the Monday lecture on Molecular dynamics

0000000000000 0000000000000
.o.o.o.o.o.o.o.o.o XXYYY) 0000000
o00000O0CO ............... .?........Q...
000000000 0000000 000000

000000000000V OOO
000000000 %&

Basal hcp (0001) or fec slip plane (111)
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Burgers curcuit example

Example from the Monday lecture on Molecular dynamics

Contour1: b =0
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Burgers curcuit example

Example from the Monday lecture on Molecular dynamics

Contour 2: b = \‘—;5[110]
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Burgers curcuit example

Example from the Monday lecture on Molecular dynamics

Contour 2: b = \‘—;5[110]
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Burgers curcuit example

Example from the Monday lecture on Molecular dynamics

ooooo0\00000000000000000000

....0...\.....QQ.............

Contour 2: b = \‘—;5[110]
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Forces on dislocations

m A uniform stress o shears a single
crystal

m Force on the top f = f o - ndA = o,wl

m Work of this force on shearing the
crystal by amount b = e4[b|:

W=f-b=wlo,-b
m At the same time dislocation of length
w moves the distance /

m The “virtual” force f acting on the
dislocation makes the same work:
wilfe; = W = wlo, - b so _

f=(0on-blex
m More generally (valid for edge and
screw dislocations)

f=(0b)x& “ ~o
(Peach-Koehler force)
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Forces on dislocations

m Example: Frank-Read source in (111) awy
plane with b ~ [011], e.g. b = (5(03 —e1)
2v2 010)|
B The box with this dislocation is under a
unixial tension ¢ = 0e3 ® e3
m Let’s compute the Peach-Koehler force as
f=(-b)x¢&
[121]
b= 2_eq
m Whereo-b 05159 \
sz Al =
m AtA: G = \6(61 63), df (74226” o
A
a -
atB: & = %(2@2 —e1—e3),|df = 7(7:1(61 + ep)dl g
a1y (q10y
atC: &= L(es —ey), | df = —0>erdl
: A , 1%
= c B A
(I;z; (i10)
Note: line tension and self-interaction are not
considered
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Forces on dislocations

m Example: Frank-Read source in (111)
plane with b ~ [011],e.g. b = ﬁ(ﬁ —e1)

m The box with this dislocation is under a
unixial tension ¢ = 0e3 ® e3

m Let’s compute the Peach-Koehler force as

f=(0-b)xE

m Whereo b =0-"=¢3
2\/2 ol

n AtAIE= (e —es) dfzngezdl

a ~
1 (e +edl 2

(1D (110)

atB: & = %(262 —e1—e3),|df =—0

atC:&=Lies—er),|df = —(7%02:}1/

= c nl AN
(112) (110
Note: line tension and self-interaction are not
considered
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Forces on dislocations

m Apart from the external load,
dislocation has a line tension [J/m]

m Elastic energy per unit length stored
around a dislocation (screw or edge)

E=aub?, a~05-1

m Line tension acting along the y ,
dislocation line is R/

m Then for a curved dislocation of radius
R:

\\\\ d@ //

Td¢ = tbdl = tbRd¢p

m For equilibrium (to keep this
dislocation curved)

T=aub/R
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Dislocation motion

m Recall the 2D case

° o
m But dislocations are not point defect ) @ @ @ ® ® ® @
)

energy

Potential

Dislocation position
(system configuration)

=0 AN\ 2
AEV:‘/V AEHL'/«I
>0 \A\ANN/

T=1Tp

zero slope
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Dislocation motion

m Recall the 2D case

Energy, E

m But dislocations are not point defect

m When the resolved shear 7 is smaller
than the Peierls stress 7p, thermally
activated motion propagate via
kinks

Energy, E

Energy, E
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Dislocation motio

m Recall the 2D case

10— ————
m But dislocations are not point defect 1 Z§Z ou. 20 %/
m When the resolved shear 7 is smaller - " Al [ LiF (2)
than the Peierls stress 7p, thermally E 108 = |
activated motion propagate via 3 / e |
kinks < 10 Nac/ N / S PN
m When 7 > 7p, dislocations glide in g 07— {4 el |
“viscous drag” regime, where = 2 o /LZ P
dislocation velocity is proportional e jr{ NI i;ersi
to the force as well as the lattice 10-11 ! o I
friction 102 10" 10 10" 102 10°
Applied shear stress, MNm=2
Vi ~ fp[(/ fﬂ - T)vd1s Velocity wr[:jk;episg{fireocrlnshear stress

P. Haasen. Physical Metallurgy, Cambridge
University Press (1996)

m Friction force f, comes from thermal
vibrations of the lattice (phonons)

m In FCC: often viscous drag regime

m In BCC: viscous drag for edge and
kinks-mechanism for screw
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Dislocation motion II

e 0 0 ¢ o []
climb (difficult)

m Note that the Peach-Koehler force is
not necessarily in the slip plane

fox - n#0 o 0o O igma °

m Glide vs climb

m For edge dislocations:
glide conserves the number of atoms,
climb requires removing or adding
lines of atoms (via, e.g. vacancies)

m Edge dislocations rather glide than
climb at low temperature

m Very anisotropic motion

m Screw dislocation does not stick to a
unique glide planeas b || &

u Change of plane by screw Climb of screw dislocations requires addition
dislocations results in cross-slip or removal of atoms
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Dislocation motion II

m Note that the Peach-Koehler force is kx‘gl 7
not necessarily in the slip plane b\ ‘i];\
fr-n#0 %L#ﬂ

m Glide vs climb ‘:t \S‘JLWL

m For edge dislocations: i] o %
glide conserves the number of atoms, ——— _
climb requires removing or adding \j\‘\\&\\\m LII
lines of atoms (via, e.g. vacancies) — H

\ LJT — ‘L“fi
m Edge dislocations rather glide than Qﬁﬁ ﬁ’ /
climb at low temperature HLL T ‘[\j ﬁ :(\lL j

m Very anisotropic motion Screw dislocation may change the plane

m Screw dislocation does not stick to a
unique glide planeas b || &

m Change of plane by screw
dislocations results in cross-slip
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Dislocation motion II

m Note that the Peach-Koehler force is
not necessarily in the slip plane
fox - n#0

m Glide vs climb

m For edge dislocations:
glide conserves the number of atoms,

climb requires removing or adding
lines of atoms (via, e.g. vacancies)

m Edge dislocations rather glide than
climb at low temperature

m Very anisotropic motion

Cross-slip (imagine the remaining dislocation

m Screw dislocation does not stick to a line)
unique glide planeas b || &

m Change of plane by screw
dislocations results in cross-slip
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Dislocation-induced stress field

= Volterra dislocation'"

y
/‘/
D
m Screw dislocation m Edge dislocation
pb o y(3x +1%)
Op = —
xx 27(1 — v 2 22
G-tV T(l(b ll)(f’;*i}z/))
Xz 27Z (xz +y2) 01/1/ — [L /’2 iz
- ub ¥ > 2n(1 —v) (x% +y2)

_ub x(?-y)
Oy = 2n(1 —v) (x2 + y2)?

02z = V(0xx + 0yy)
[1] Volterra V. Sur I’équilibre des corps élastiques multiplement connexes. Annal. Sci. de I’Ecole Norm. Supér. 24 (1907).

" @)
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Dislocation-induced stress field

(1]

m Volterra dislocation

m Elastic energy per unit length for an edge and screw dislocation
s ub
T 4n(l-v) 4n

2

In(R/r), Es="— In(R/r)

m For a mixed dislocation (edge b sin(0), screw b cos(0))
_ pb*(1 - vcos*(0))

N~ aub?, ax~ 05—
E©) = I =) In(R/r) = aub~, a=05-1

[1] Volterra V. Sur 1’équilibre des corps élastiques multiplement connexes. Annal. Sci. de 1’'Ecole Norm. Supér. 24 (1907).
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Dislocation-induced stress field

Ox Tyy Ty

' -

Theoretical stress field
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Dislocation-induced stress field

Oz Tyy Ty

' -

XX yy Xy

a

Comparison with the finite element solution
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Interaction between dislocations

m Interaction between two edge dislocations on the same line

m Dislocations of the same sign repeal because:
- when close E ~ 1(2b)?
- when far E ~ 2(b)?

m Dislocations of opprosite sign attract because:
-whenclose E ~ (b —b)*> =0
- when far E ~ 2(b)>

1 ............................ dheccod boocoscossoosooss0ososss
2 L A S S S RS dHcooos
B I R e TTEEEREEE
2] | e
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Interaction between dislocations

m Interaction between two edge dislocations on parallel lines

m Interaction energy is the work done by the stress field induced by 1 on
displacing 2:

Einter = f (Oxyby + Oyyby + 0y2b)dx = — f (Oxxby + Ooyby + 0,2b,)dx
X v

m The resulting forces for two parallel dislocation of the same sign

bl =12 =b:
f= OEimer _ HO* x(* =1P)
T ox  2n(1-v) (¥ +y2)?
IEiner ub*  y(Bx* - y?)
J= Ty T —y @ pr
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Interaction between dislocations

m Interaction between two edge dislocations on parallel lines

Force, f,
)

-8d

-d 0

d 8d
Distance between dislocations, x

V.A. Yastrebov
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Interaction between dislocations

m Interaction between two edge dislocations on parallel lines

3 unstable equilibrium
‘: Ve L
£ o P
S stable equilibrium
-8d d 0 d 8d
Distance between dislocations, x

V.A. Yastrebov
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Interaction between dislocations

m Interaction between two edge dislocations on parallel lines

potential well, stable dipole

Force, f,
=
Y
\

-8d d 0 d 8d
Distance between dislocations, x
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Interaction between dislocations

m Interaction between two edge dislocations on parallel lines

Force, f,
)

-8d

-d 0

d

8d
Distance between dislocations, x

V.A. Yastrebov
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Interaction between dislocations

m Interaction between two edge dislocations on parallel lines

potential well, stable dipole

Force, f,
o]
¢
.

potential well, stable dipole

-8d -d 0 d 8d

Distance between dislocations, x
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Interaction between dislocations

m Interaction between two edge dislocations on parallel lines

from Marc Fivel (SiMap, INP Grenoble), www.numodis. fr/tridis
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Dislocations interact with the environment

Image edge Image screw
m Freesurfaceo-n =0 dislocation dislocation
m To ensure zero stress vector,
introduce an “image dislocation” of
the opposite sign at the same
distance from the surface:

real imag i
(0™ +0"™%)-n=0 -4 (s
m Dislocations of opposite sign on the B St
. dislocation dislocation
same line attract each other

Free surface

Image dislocation in air : )
m Note: an additional energy is needed
to brake the oxide film
m Rigid wall # = 0, repulsion

m Rigid inclusions do not let
dislocations glide quietly



Dislocations interact with the environment

m Freesurfaceo-n=0

Direction
m To ensure zero stress vector,
introduce an “image dislocation” of
the opposite sign at the same
distance from the surface:
(Grenl + Gimng) n=0

m Dislocations of opposite sign on the
same line attract each other

m Note: an additional energy is needed
to brake the oxide film

m Rigid wall # = 0, repulsion

m Rigid inclusions do not let
dislocations glide quietly

Ad

Interaction with a particle in
dispersion-strengthened alloy
Orowan mechanism
Hirsch P.B., Humphreys EJ. Physics of Strength
and Plasticity, Ed. A.S. Argon, MIT Press (1969)



Dislocations interact with the environment

m Freesurfaceo-n=0

m To ensure zero stress vector,
introduce an “image dislocation” of
the opposite sign at the same
distance from the surface:

(Grenl + Gimng) n=0

m Dislocations of opposite sign on the
same line attract each other

m Note: an additional energy is needed
to brake the oxide film

m Rigid wall # = 0, repulsion

m Rigid inclusions do not let
dislocations glide quietly

vees

Interaction with a particle in
dispersion-strengthened alloy
Hirsch mechanism (with cross slip)
Hirsch P.B., Humphreys EJ. Physics of Strength
and Plasticity, Ed. A.S. Argon, MIT Press (1969)



Dislocations interact with the environment

m Freesurfaceo-n=0

m To ensure zero stress vector,
introduce an “image dislocation” of
the opposite sign at the same
distance from the surface:

(Grenl + Gimng) n=0

m Dislocations of opposite sign on the
same line attract each other

m Note: an additional energy is needed
to brake the oxide film

m Rigid wall # = 0, repulsion

m Rigid inclusions do not let
dislocations glide quietly

ad 4/

Interaction with a particle in
dispersion-strengthened alloy
Hirsch mechanism (with cross slip)
Hirsch P.B., Humphreys EJ. Physics of Strength
and Plasticity, Ed. A.S. Argon, MIT Press (1969)



Dislocations interact with the environment

m Freesurfaceo-n=0

m To ensure zero stress vector,
introduce an “image dislocation” of
the opposite sign at the same
distance from the surface:

(Grenl + Gimng) n=0

m Dislocations of opposite sign on the
same line attract each other

m Note: an additional energy is needed
to brake the oxide film

m Rigid wall # = 0, repulsion

m Rigid inclusions do not let
dislocations glide quietly

CEES

Interaction with a particle in
dispersion-strengthened alloy
Hirsch mechanism (with cross slip)
Hirsch P.B., Humphreys EJ. Physics of Strength
and Plasticity, Ed. A.S. Argon, MIT Press (1969)



Dislocations interact with the environment

m Freesurfaceo-n=0

m To ensure zero stress vector,
introduce an “image dislocation” of
the opposite sign at the same
distance from the surface:

(Grml + Gimag) n=0

m Dislocations of opposite sign on the
same line attract each other

m Note: an additional energy is needed
to brake the oxide film

m Rigid wall # = 0, repulsion

m Rigid inclusions do not let
dislocations glide quietly

from Marc Fivel (SiMap, INP Grenoble),
www.numodis. fr/tridis


www.numodis.fr/tridis

Origin of dislocations

m In virgin well-annealed crystal
p ~ 1010 m—z

slip step. ‘

m At early stages of deformation:
single set of parallel slip planes is
active

m Atlarge deformation: p ~ 10 m~2, R N

different slip systems are activated Single-ended Frank-Read source

from D. Hull, D.J. Bacon, Introduction to
Dislocations, Elsevier (2011)

m At lattice defects and due to stress
concentrators
m At grain boundaries

m Frank-Read sources (double and
single ended)

m From the free surface

m Geometrically necessary dislocations s ¥

to accommodate indenter’s form Double-ended Frank-Read source in silicon
crystal
from Dash, Dislocation and Mechanical
Properties of Crystals, Wiley (1957)
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Origin of dislocations

m In virgin well-annealed crystal
p~ 1010 mfz

m At early stages of deformation:
single set of parallel slip planes is
active

m Atlarge deformation: p ~ 10" m 2,
different slip systems are activated

m At lattice defects and due to stress
concentrators

m At grain boundaries

m Frank-Read sources (double and
single ended)

m From the free surface
m Geometrically necessary dislocations

: ’
to accommodate indenter’s form DD simulation of double ended Frank-Read

source in a cube-shaped box with rigid walls
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Origin of dislocations

m In virgin well-annealed crystal
p~ 10]0 mfz

m At early stages of deformation:
single set of parallel slip planes is
active

iy

Plastic zone *t'f§

m Atlarge deformation: p ~ 10" m 2,
different slip systems are activated

m At lattice defects and due to stress
concentrators

m At grain boundaries

m Frank-Read sources (double and Plastic
single ended) saturation > Hardness

m From the free surface

H*H,* = 1+R,/R

m Geometrically necessary dislocations Size effect in nano-indentation due to
to accommodate indenter’s form geometrically necessary dislocations
[1] Nix, Gao. ] Mech Phys Solids (1998)
[2] Swadener, George, Pharr. ] Mech Phys
Solids (2002)
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Simulation of dislocations in 2D

2D DD

m Inifinite straight and parallel
dislocations

m No line tension

Boundary conditions

= No topological changes and intersections
Ingredients

m Only edge dislocations (points)
randomly distributed on discrete slip
lines

Boundary conditions
Boundary conditions

m Randomly distributed sources with
stress and distance threshold:
[fl > fuuc :  generates +b dislocations at
distance: [, = ub/[27(1 = v)fuc]

m On slip lines, randomly distributed
obstacles with strength /',

Boundary conditions

R. Van der Giessen, A. Needleman. Discrete dislocation plasticity: a simple planar model. Model Sim Mater Sci Eng

(1995)
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Simulation of dislocations in 2D

2D DD

m Inifinite straight and parallel
dislocations

m No line tension

Boundary conditions

= No topological changes and intersections
Ingredients

m Only edge dislocations (points)
randomly distributed on discrete slip
lines

Boundary conditions
Boundary conditions

m Randomly distributed sources with
stress and distance threshold:
[fl > fuuc :  generates +b dislocations at
distance: [, = ub/[27(1 = v)fuc]

m On slip lines, randomly distributed
obstacles with strength /',

Boundary conditions

R. Van der Giessen, A. Needleman. Discrete dislocation plasticity: a simple planar model. Model Sim Mater Sci Eng

(1995)

V.A. Yastrebov 111/117



Simulation of dislocations in 2D

2D DD

m Inifinite straight and parallel
dislocations

m No line tension

Boundary conditions

m No topological changes and intersections
S

Ingredients

*. > Obstacle

m Only edge dislocations (points)
randomly distributed on discrete slip
lines

Boundary conditions
Boundary conditions

m Randomly distributed sources with
stress and distance threshold: 3
Ifl > fuue :  generates +b dislocations at LR
distance: [, = pb/[270(1 = v)fuc] ounduy conditon

m On slip lines, randomly distributed
obstacles with strength /',

R. Van der Giessen, A. Needleman. Discrete dislocation plasticity: a simple planar model. Model Sim Mater Sci Eng

(1995)
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Simulation of dislocations in 2D

Algorithm

m Impose an external stress field o*(x, i)

ext
i

m Find Peach-Koehler force on each source from external stress f;" and

from dislocations f/
m If [ff"r + f;i\ > fuuc: create +b dislocations
m Compute forces on all dislocations
fi ==X VaEilxi, ) + £
m Aséume linear relation between velocity and PK force:
f; =B
m Integrate in time Euler-trapezoid method:
x5 (E+ Af) = xi(8) + 5f,(x()

xi(t+ AL) = x;(0) + 35 [£,(x(1) + £, (¢t + AD)]
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Simulation of dislocations in 3D

3D DD
m Splines or edge/screw segments
m Glide and climb

m Arbitrary morphology of
dislocations

m Topological changes and
intersections

m Enhanced interaction with the
material and boundaries

Ingredients

m Frank-Read sources
m Free-surface
m Grain boundaries

m Possible coupling with the FEM
method and with MD both in 2D
and 3D

Bulatov V.V, Cai W. Computer Simulations of Dislocations, Oxford University Press, 2006.
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Simulation of dislocations in 3D

Algorithm
m Impose/compute via FEM a stress field o (x, 1)
m Use shape functions for positions and velocities:
(& 8) = Ni@)ri(t)  v(&, 1) = Ni(&)vi(t)
m Find Peach-Koehler force on each node from external stress " and
from all dislocation segments ff = - fD, V. Einterdl'

m Assume over-damped dynamics, drag force is a linear (in simplest case)
function of velocity:

fz]‘lmg - _B- U/'
m Drag force cannot oppose everywhere the PK force, so it is satisfied in a
weak sense:
[, Ni(=B - w;N; + f"¥)dl = 0
m Giving the linear system of equations:
YBj-vj=f, Bj= | -BNiNl
m Integrate in time Euler-trapezoid method:
xf(f + Af) = x;(t) + vj(HAt
xj(t+ At) = x;(t) + 1(v(t) + oF(t+ AD)AL
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Simulation of dislocations in 3D

Animations
www.numodis. fr/
optidis.gforge.inria.fr/videos/video.html
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