
Multiscale Simulations of Materials and
Structures

Lecture 7.
Dislocation Dynamics

Vladislav A. Yastrebov

MINES ParisTech, PSL University, CNRS
Centre des Matériaux, Evry, France

@ Centre des Matériaux (virtually)
February 18, 2021

Creative Commons BY

Vladislav A. Yastrebov



Outline

1 Basics of dislocations

2 Notions in 2D

3 Extension to 3D

4 Burgers circuit

5 Dislocations motion

6 Stress field

7 Interaction of dislocations

8 DDD in 2&3D



Introduction

Notion of plasticity

Plasticity. . . irreversible change
of shape

In metals plasticity is the result
of motion of linear defects of the
crystal lattice: dislocations

In rocks, for example, the
plasticity is caused by slip at
microcracks

Adapted from Wikipedia
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Introduction

Notion of plasticity

Plasticity. . . irreversible change
of shape

In metals plasticity is the result
of motion of linear defects of the
crystal lattice: dislocations

In rocks, for example, the
plasticity is caused by slip at
microcracks

Objective:

Understand basics of
dislocation motion
(X for DMS students)

Convert this understanding into
a computational model:
Dislocation Dynamics

Adapted from Wikipedia

from

[1] Bulatov V.V., Cai W. Computer Simulations of

Dislocations, Oxford University Press, 2006.
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Basic concept

Dislocation is a line defect, a
curve in a volume

But the basics can be
understood in 2D. . .

Square lattice
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Basic concept

Dislocation is a line defect, a
curve in a volume

But the basics can be
understood in 2D. . .

Atoms arrangement
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Basic concept

Dislocation is a line defect, a
curve in a volume

But the basics can be
understood in 2D. . .

Insert a half atomic layer

(line in 2D, plane in 3D)
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Basic concept

Dislocation is a line defect, a
curve in a volume

But the basics can be
understood in 2D. . .

Obtain a dislocation defect
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Basic concept

Dislocation is a line defect, a
curve in a volume

But the basics can be
understood in 2D. . .

Another option: let’s shear this lattice
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Basic concept

Dislocation is a line defect, a
curve in a volume

But the basics can be
understood in 2D. . .

or rather push and pull along a particular plane
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Basic concept

Dislocation is a line defect, a
curve in a volume

But the basics can be
understood in 2D. . .

Shift (make a step on left side)
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Basic concept

Dislocation is a line defect, a
curve in a volume

But the basics can be
understood in 2D. . .

Of course the lattice deforms accordingly,

we can also imagine that we are far from free surfaces

(add transparent atoms)
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Basic concept

Dislocation is a line defect, a
curve in a volume

But the basics can be
understood in 2D. . .

Let’s shear more

or we might keep the same shear and wait until thermal

fluctuations of atoms make the dislocation to step one

step further
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Basic concept

Dislocation is a line defect, a
curve in a volume

But the basics can be
understood in 2D. . .

It has just make one more step

The configuration is equivalent as if we introduced a half

atomic layer
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Basic concept

Dislocation is a line defect, a
curve in a volume

But the basics can be
understood in 2D. . .

Another step
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Basic concept

Dislocation is a line defect, a
curve in a volume

But the basics can be
understood in 2D. . .

One more
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Basic concept

Dislocation is a line defect, a
curve in a volume

But the basics can be
understood in 2D. . .

One more, and there is no more dislocations... but if we

remove shear, an irreversible deformation remains in the

system
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Basic concept

Dislocation is a line defect, a
curve in a volume

But the basics can be
understood in 2D

Carpet fold analogy

One more, and there is no more dislocations... but if we

remove shear, an irreversible deformation remains in the

system
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Dislocation in 2D: Peierls potential

Basics can be understood in 2D

Concept of an array of potential
wells and energy barriers

Dislocation
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Dislocation in 2D: Peierls potential

Basics can be understood in 2D

Concept of an array of potential
wells and energy barriers

Dislocation in a stable equilibrium

V.A. Yastrebov 23/117



Dislocation in 2D: Peierls potential

Basics can be understood in 2D

Concept of an array of potential
wells and energy barriers

Peierls potential

Array of potential wells and energy barriers
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Dislocation in 2D: Peierls potential

Basics can be understood in 2D

Concept of an array of potential
wells and energy barriers

Peierls potential

Jump to the right well
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Dislocation in 2D: Peierls potential

Basics can be understood in 2D

Concept of an array of potential
wells and energy barriers

Peierls potential

Array of potential wells and energy barriers (Peierls

potential)

V.A. Yastrebov 26/117



Dislocation in 2D: Peierls potential

Basics can be understood in 2D

Concept of an array of potential
wells and energy barriers

Peierls potential

Jump to the left well
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Dislocation in 2D: Peierls potential

Basics can be understood in 2D

Concept of an array of potential
wells and energy barriers

Peierls potential

Thermally activated motion

Increasing temperature kBT increases the probability of

jump
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Dislocation in 2D: Peierls potential

Basics can be understood in 2D

Concept of an array of potential
wells and energy barriers

Peierls potential

Thermally activated motion

Increasing temperature kBT increases the probability of

jump
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Dislocation in 2D: Peierls potential

Basics can be understood in 2D

Concept of an array of potential
wells and energy barriers

Peierls potential

Thermally activated motion

Interaction with free surface

Near the free surface, an energetically faborable

direction of motion is towards the surface
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Dislocation in 2D: Peierls potential

Basics can be understood in 2D

Concept of an array of potential
wells and energy barriers

Peierls potential

Thermally activated motion

Interaction with free surface

Shear loading
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Dislocation in 2D: Peierls potential

Basics can be understood in 2D

Concept of an array of potential
wells and energy barriers

Peierls potential

Thermally activated motion

Interaction with free surface

Shear loading bias the potential and dictates the

favorable direction of motion
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Dislocation in 2D: Peierls potential

Basics can be understood in 2D

Concept of an array of potential
wells and energy barriers

Peierls potential

Thermally activated motion

Interaction with free surface

Peierls stress

Increasing applied shear stress may result in a complete

removing of the energy barrier (Peierls stress τP)
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Dislocation in 2D: stress effects

Basics can be understood in 2D

Applied stress affects
dislocation motion

Dislocation
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Dislocation in 2D: stress effects

Basics can be understood in 2D

Applied stress affects
dislocation motion

Rather insensitive to hydrostatic
pressure

Dislocation under hydrostatic pressure

Here tr(σ) > 0
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Basics can be understood in 2D

Applied stress affects
dislocation motion

Rather insensitive to hydrostatic
pressure

Dislocation under hydrostatic pressure

Here tr(σ) > 0
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Dislocation in 2D: stress effects

Basics can be understood in 2D

Applied stress affects
dislocation motion

Rather insensitive to hydrostatic
pressure

Sensitive to the stress deviator

Dislocation is sensitive to the deviatoric part of the stress

tensor s = σ − 1
3 tr(σ)I

τ = n · σ · t = n · s · t
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Dislocation in 2D: stress effects

Basics can be understood in 2D

Applied stress affects
dislocation motion

Rather insensitive to hydrostatic
pressure

Sensitive to the stress deviator

Dislocation itself induces
stresses

Perfect crystal
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Dislocation in 2D: stress effects

Basics can be understood in 2D

Applied stress affects
dislocation motion

Rather insensitive to hydrostatic
pressure

Sensitive to the stress deviator

Dislocation itself induces
stresses

Dislocation: crystal with an inserted layer of atoms

Tensile stress below y < 0 : σxx > 0
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Dislocation in 2D: stress effects

Basics can be understood in 2D

Applied stress affects
dislocation motion

Rather insensitive to hydrostatic
pressure

Sensitive to the stress deviator

Dislocation itself induces
stresses

Dislocation: crystal with a removed layer of atoms

Compressive stress above y > 0 : σxx < 0
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Dislocation in 2D: stress effects

Basics can be understood in 2D

Applied stress affects
dislocation motion

Rather insensitive to hydrostatic
pressure

Sensitive to the stress deviator

Dislocation itself induces
stresses

Interactions with neighbouring
defects: interstitial and vacancy
defects

Inclusion on the glide line
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Dislocation in 2D: stress effects

Basics can be understood in 2D

Applied stress affects
dislocation motion

Rather insensitive to hydrostatic
pressure

Sensitive to the stress deviator

Dislocation itself induces
stresses

Interactions with neighbouring
defects: interstitial and vacancy
defects

Interstitial defects migrate towards the zone of tensile

stress induced by the dislocation
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Dislocation in 2D: stress effects

Basics can be understood in 2D

Applied stress affects
dislocation motion

Rather insensitive to hydrostatic
pressure

Sensitive to the stress deviator

Dislocation itself induces
stresses

Interactions with neighbouring
defects: interstitial and vacancy
defects

Interstitial defects migrate towards the zone of tensile

stress induced by the dislocation

[1] Cottrell & Bilby. Dislocation theory of yielding and

strain ageing of iron. Proc Phys Soc A 62 (1949)
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Dislocation in 2D: stress effects

Basics can be understood in 2D

Applied stress affects
dislocation motion

Rather insensitive to hydrostatic
pressure

Sensitive to the stress deviator

Dislocation itself induces
stresses

Interactions with neighbouring
defects: interstitial and vacancy
defects

Interstitial defects migrate towards the zone of tensile

stress induced by the dislocation

[1] Cottrell & Bilby. Dislocation theory of yielding and

strain ageing of iron. Proc Phys Soc A 62 (1949)
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Dislocation in 2D: stress effects

Basics can be understood in 2D

Applied stress affects
dislocation motion

Rather insensitive to hydrostatic
pressure

Sensitive to the stress deviator

Dislocation itself induces
stresses

Interactions with neighbouring
defects: interstitial and vacancy
defects

Vacancy defects migrate towards the zone of

compressive stress induced by the dislocation
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Dislocation in 2D: stress effects

Basics can be understood in 2D

Applied stress affects
dislocation motion

Rather insensitive to hydrostatic
pressure

Sensitive to the stress deviator

Dislocation itself induces
stresses

Interactions with neighbouring
defects: interstitial and vacancy
defects

Interactions between
dislocations

Interaction of two “up” dislocations is repulsive
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Dislocation in 2D: stress effects

Basics can be understood in 2D

Applied stress affects
dislocation motion

Rather insensitive to hydrostatic
pressure

Sensitive to the stress deviator

Dislocation itself induces
stresses

Interactions with neighbouring
defects: interstitial and vacancy
defects

Interactions between
dislocations

Interaction of “up” and “down” dislocations is attractive

and leads to annihilation of both defects
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3D lattices

Basics can be understood in 2D

But the complete picture can be
drawn only in 3D

Crystallographic lattices in 3D:

• primitive cubic (pcc)
(very rare for pure metals, Po)

• body-centered (bcc)
(common, Fe, Cr, W, Nb)

• face-centered cubic (fcc)
(common, Al, Cu, Au, Ag)

• hexagonal close packed (hcp)
(common, Be, Mg, Zn, Ti)

+ and 10 other bravais lattices.

Slip planes n = (ijk) (often the most
densely packed)

slip systems d = [prs] (often the most
densely packed)
(n · d = ip + jr + ks = 0)
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3D lattices
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But the complete picture can be
drawn only in 3D

Crystallographic lattices in 3D:

• primitive cubic (pcc)
(very rare for pure metals, Po)

• body-centered (bcc)
(common, Fe, Cr, W, Nb)
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• hexagonal close packed (hcp)
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3D lattices

Basics can be understood in 2D

But the complete picture can be
drawn only in 3D

Crystallographic lattices in 3D:

• primitive cubic (pcc)
(very rare for pure metals, Po)

• body-centered (bcc)
(common, Fe, Cr, W, Nb)

• face-centered cubic (fcc)
(common, Al, Cu, Au, Ag)

• hexagonal close packed (hcp)
(common, Be, Mg, Zn, Ti)

+ and 10 other bravais lattices.

Slip planes n = (ijk) (often the most
densely packed)

slip systems d = [prs] (often the most
densely packed)
(n · d = ip + jr + ks = 0)
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Box
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Introduce a cut along a densely
packed plane with normal n (e.g.

(111) in fcc)
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Introduce a cut along a densely
packed plane with normal n (e.g.

(111) in fcc)

V.A. Yastrebov 56/117



3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Cut’s edge is the dislocation line,
introduce an orientation ξ
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Shift the cut by a vector b along
the plane orthogonally to the
dislocation line and glue sides

Edge dislocation
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Cut in the box
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Shift the cut by a vector b along
the plane parallel to the

dislocation line and glue sides
Screw dislocation
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Semi-circular cut in the box
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Shift the cut by a vector b and
obtain a complex dislocation
combining screw and edge

dislocations

V.A. Yastrebov 62/117



3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Shift the cut by a vector b and
obtain a complex dislocation
combining screw and edge

dislocations
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Edge dislocation
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Make a contour around
(right-hand rule la règle de la main

droite)
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Make a contour around
(right-hand rule la règle de la main
droite), compute the net Burgers

vector
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Change the contour
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Make a contour around a
dislocation-free zone b = 0
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Screw dislocation
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Draw a contour:
4 down, 5 left, 4 up, 3 right
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

Draw a contour:
4 down, 5 left, 4 up, 3+2 right
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3D dislocations

Slip plane n

Oriented dislocation line ξ

Burgers vector b
can be expressed in terms of minimal
distance between atoms in the slip
system

Dislocation types:
- edge (coin): b · ξ = 0
- screw (vis): b × ξ = 0, ∀n
- mixed

Burgers circuit
provides the total Burgers vector within
a contour
Attention: bΓ = 0 does not imply that
there is no dislocations

The Burgers vector is collinear
with the dislocation line

b ‖ ξ
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Burgers curcuit example

Example from the Monday lecture on Molecular dynamics
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Burgers curcuit example

Example from the Monday lecture on Molecular dynamics

Basal hcp (0001) or fcc slip plane (111)
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Burgers curcuit example

Example from the Monday lecture on Molecular dynamics

Contour 1: b = 0
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Burgers curcuit example

Example from the Monday lecture on Molecular dynamics

Contour 2: b = a√
2
[1̄10]
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Forces on dislocations

A uniform stress σ shears a single
crystal

Force on the top f =

∫

σ · ndA = σnwl

Work of this force on shearing the
crystal by amount b = e1|b|:
W = f · b = wlσn · b
At the same time dislocation of length
w moves the distance l

The “virtual” force f acting on the
dislocation makes the same work:
wlf e1 =W = wlσn · b so

f = (σn · b)e1

More generally (valid for edge and
screw dislocations)

f = (σ · b) × ξ

(Peach-Koehler force)
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Forces on dislocations

Example: Frank-Read source in (111)
plane with b ∼ [01̄1], e.g. b = a

2
√

2
(e3 − e1)

The box with this dislocation is under a
unixial tension σ = σe3 ⊗ e3

Let’s compute the Peach-Koehler force as

f = (σ · b) × ξ

Where σ · b = σ a

2
√

2
e3

At A: ξ = dl√
2

(e1 − e3), df = σ
a

4
e2dl

at B: ξ = dl√
2

(2e2 − e1 − e3), df = −σ a

4
(e1 + e2)dl

at C: ξ = dl√
2

(e3 − e1), df = −σ a

4
e2dl

Note: line tension and self-interaction are not
considered
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Forces on dislocations

Apart from the external load,
dislocation has a line tension [J/m]

Elastic energy per unit length stored
around a dislocation (screw or edge)

E = αµb2, α ≈ 0.5 − 1

Line tension acting along the
dislocation line is

T = αµb2

Then for a curved dislocation of radius
R:

Tdφ = τbdl = τbRdφ

For equilibrium (to keep this
dislocation curved)

τ = αµb/R
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Dislocation motion

Recall the 2D case

But dislocations are not point defect
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Dislocation motion

Recall the 2D case

But dislocations are not point defect

When the resolved shear τ is smaller
than the Peierls stress τP, thermally
activated motion propagate via
kinks
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Dislocation motion

Recall the 2D case

But dislocations are not point defect

When the resolved shear τ is smaller
than the Peierls stress τP, thermally
activated motion propagate via
kinks

When τ > τP, dislocations glide in
“viscous drag” regime, where
dislocation velocity is proportional
to the force as well as the lattice
friction

vdis ∼ f PK, f fr ∼ −g(T)vdis

Friction force f fr comes from thermal
vibrations of the lattice (phonons)

In FCC: often viscous drag regime

In BCC: viscous drag for edge and
kinks-mechanism for screw

Velocity wrt the applied shear stress
Adapted from

P. Haasen. Physical Metallurgy, Cambridge
University Press (1996)
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Dislocation motion II

Note that the Peach-Koehler force is
not necessarily in the slip plane
f PK · n , 0

Glide vs climb

For edge dislocations:
glide conserves the number of atoms,
climb requires removing or adding
lines of atoms (via, e.g. vacancies)

Edge dislocations rather glide than
climb at low temperature

Very anisotropic motion

Screw dislocation does not stick to a
unique glide plane as b ‖ ξ
Change of plane by screw
dislocations results in cross-slip

Climb of screw dislocations requires addition
or removal of atoms
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Dislocation motion II

Note that the Peach-Koehler force is
not necessarily in the slip plane
f PK · n , 0

Glide vs climb

For edge dislocations:
glide conserves the number of atoms,
climb requires removing or adding
lines of atoms (via, e.g. vacancies)

Edge dislocations rather glide than
climb at low temperature

Very anisotropic motion

Screw dislocation does not stick to a
unique glide plane as b ‖ ξ
Change of plane by screw
dislocations results in cross-slip

Screw dislocation may change the plane
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Dislocation motion II

Note that the Peach-Koehler force is
not necessarily in the slip plane
f PK · n , 0

Glide vs climb

For edge dislocations:
glide conserves the number of atoms,
climb requires removing or adding
lines of atoms (via, e.g. vacancies)

Edge dislocations rather glide than
climb at low temperature

Very anisotropic motion

Screw dislocation does not stick to a
unique glide plane as b ‖ ξ
Change of plane by screw
dislocations results in cross-slip

Cross-slip (imagine the remaining dislocation
line)
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Dislocation-induced stress field

Volterra dislocation
[1]

Screw dislocation

σxz = −
µb

2π

y

(x2 + y2)

σyz =
µb

2π

x

(x2 + y2)

Edge dislocation

σxx = −
µb

2π(1 − ν)
y(3x2 + y2)

(x2 + y2)2

σyy =
µb

2π(1 − ν)
y(x2 − y2)

(x2 + y2)2

σxy =
µb

2π(1 − ν)
x(x2 − y2)

(x2 + y2)2

σzz = ν(σxx + σyy)
[1] Volterra V. Sur l’équilibre des corps élastiques multiplement connexes. Annal. Sci. de l’Ecole Norm. Supér. 24 (1907).
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Dislocation-induced stress field

Volterra dislocation
[1]

Elastic energy per unit length for an edge and screw dislocation

Ee =
µb2

4π(1 − ν) ln(R/r), Es =
µb2

4π
ln(R/r)

For a mixed dislocation (edge b sin(θ), screw b cos(θ))

E(θ) =
µb2(1 − ν cos2(θ))

4π(1 − ν) ln(R/r) ≈ αµb2, α ≈ 0.5 − 1

[1] Volterra V. Sur l’équilibre des corps élastiques multiplement connexes. Annal. Sci. de l’Ecole Norm. Supér. 24 (1907).
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Dislocation-induced stress field

Theoretical stress field
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Dislocation-induced stress field

Comparison with the finite element solution
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Interaction between dislocations

Interaction between two edge dislocations on the same line

Dislocations of the same sign repeal because:
- when close E ≈ µ(2b)2

- when far E ≈ 2µ(b)2

Dislocations of opprosite sign attract because:
- when close E ≈ µ(b − b)2 = 0
- when far E ≈ 2µ(b)2
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Interaction between dislocations

Interaction between two edge dislocations on parallel lines

Interaction energy is the work done by the stress field induced by 1 on
displacing 2:

Einter =

∫ ∞

x

(σxybx + σyyby + σyzbz)dx = −
∫ ∞

y

(σxxbx + σxyby + σxzbz)dx

The resulting forces for two parallel dislocation of the same sign
b1

x = b2
x = b:

fx = −
∂Einter

∂x
=

µb2

2π(1 − ν)
x(x2 − y2)

(x2 + y2)2

fy = −
∂Einter

∂y
=

µb2

2π(1 − ν)
y(3x2 − y2)

(x2 + y2)2
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Interaction between dislocations

Interaction between two edge dislocations on parallel lines
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Interaction between dislocations

Interaction between two edge dislocations on parallel lines
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Interaction between dislocations

Interaction between two edge dislocations on parallel lines
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Interaction between dislocations

Interaction between two edge dislocations on parallel lines
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Interaction between dislocations

Interaction between two edge dislocations on parallel lines
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Interaction between dislocations

Interaction between two edge dislocations on parallel lines

from Marc Fivel (SiMap, INP Grenoble), www.numodis.fr/tridis
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Dislocations interact with the environment

Free surface σ · n = 0

To ensure zero stress vector,
introduce an “image dislocation” of
the opposite sign at the same
distance from the surface:

(σreal + σimag) · n = 0

Dislocations of opposite sign on the
same line attract each other

Note: an additional energy is needed
to brake the oxide film

Rigid wall u = 0, repulsion

Rigid inclusions do not let
dislocations glide quietly

Image dislocation in air : )



Dislocations interact with the environment

Free surface σ · n = 0

To ensure zero stress vector,
introduce an “image dislocation” of
the opposite sign at the same
distance from the surface:

(σreal + σimag) · n = 0

Dislocations of opposite sign on the
same line attract each other

Note: an additional energy is needed
to brake the oxide film

Rigid wall u = 0, repulsion

Rigid inclusions do not let
dislocations glide quietly

Interaction with a particle in
dispersion-strengthened alloy

Orowan mechanism
Hirsch P.B., Humphreys F.J. Physics of Strength

and Plasticity, Ed. A.S. Argon, MIT Press (1969)



Dislocations interact with the environment

Free surface σ · n = 0

To ensure zero stress vector,
introduce an “image dislocation” of
the opposite sign at the same
distance from the surface:

(σreal + σimag) · n = 0

Dislocations of opposite sign on the
same line attract each other

Note: an additional energy is needed
to brake the oxide film

Rigid wall u = 0, repulsion

Rigid inclusions do not let
dislocations glide quietly

Interaction with a particle in
dispersion-strengthened alloy

Hirsch mechanism (with cross slip)
Hirsch P.B., Humphreys F.J. Physics of Strength
and Plasticity, Ed. A.S. Argon, MIT Press (1969)



Dislocations interact with the environment

Free surface σ · n = 0

To ensure zero stress vector,
introduce an “image dislocation” of
the opposite sign at the same
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Note: an additional energy is needed
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Rigid wall u = 0, repulsion

Rigid inclusions do not let
dislocations glide quietly

Interaction with a particle in
dispersion-strengthened alloy

Hirsch mechanism (with cross slip)
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Dislocations interact with the environment

Free surface σ · n = 0

To ensure zero stress vector,
introduce an “image dislocation” of
the opposite sign at the same
distance from the surface:

(σreal + σimag) · n = 0

Dislocations of opposite sign on the
same line attract each other

Note: an additional energy is needed
to brake the oxide film

Rigid wall u = 0, repulsion

Rigid inclusions do not let
dislocations glide quietly

Interaction with a particle in
dispersion-strengthened alloy

Hirsch mechanism (with cross slip)
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and Plasticity, Ed. A.S. Argon, MIT Press (1969)



Dislocations interact with the environment

Free surface σ · n = 0

To ensure zero stress vector,
introduce an “image dislocation” of
the opposite sign at the same
distance from the surface:

(σreal + σimag) · n = 0

Dislocations of opposite sign on the
same line attract each other

Note: an additional energy is needed
to brake the oxide film

Rigid wall u = 0, repulsion

Rigid inclusions do not let
dislocations glide quietly

from Marc Fivel (SiMap, INP Grenoble),
www.numodis.fr/tridis

www.numodis.fr/tridis


Origin of dislocations

In virgin well-annealed crystal
ρ ≈ 1010 m−2

At early stages of deformation:
single set of parallel slip planes is
active

At large deformation: ρ ≈ 1015 m−2,
different slip systems are activated

At lattice defects and due to stress
concentrators

At grain boundaries

Frank-Read sources (double and
single ended)

From the free surface

Geometrically necessary dislocations
to accommodate indenter’s form

Single-ended Frank-Read source
from D. Hull, D.J. Bacon, Introduction to

Dislocations, Elsevier (2011)

Double-ended Frank-Read source in silicon
crystal

from Dash, Dislocation and Mechanical
Properties of Crystals, Wiley (1957)
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Origin of dislocations

In virgin well-annealed crystal
ρ ≈ 1010 m−2

At early stages of deformation:
single set of parallel slip planes is
active

At large deformation: ρ ≈ 1015 m−2,
different slip systems are activated

At lattice defects and due to stress
concentrators

At grain boundaries

Frank-Read sources (double and
single ended)

From the free surface

Geometrically necessary dislocations
to accommodate indenter’s form

DD simulation of double ended Frank-Read
source in a cube-shaped box with rigid walls
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Origin of dislocations

In virgin well-annealed crystal
ρ ≈ 1010 m−2

At early stages of deformation:
single set of parallel slip planes is
active

At large deformation: ρ ≈ 1015 m−2,
different slip systems are activated

At lattice defects and due to stress
concentrators

At grain boundaries

Frank-Read sources (double and
single ended)

From the free surface

Geometrically necessary dislocations
to accommodate indenter’s form

Size effect in nano-indentation due to
geometrically necessary dislocations

[1] Nix, Gao. J Mech Phys Solids (1998)
[2] Swadener, George, Pharr. J Mech Phys

Solids (2002)
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Simulation of dislocations in 2D

2D DD
[1]

Inifinite straight and parallel
dislocations

No line tension

No topological changes and intersections

Ingredients

Only edge dislocations (points)
randomly distributed on discrete slip
lines

Randomly distributed sources with
stress and distance threshold:
|f | > fnuc : generates ±b dislocations at
distance: ln = µb/[2π(1 − ν)fnuc]

On slip lines, randomly distributed
obstacles with strength f i

obs

R. Van der Giessen, A. Needleman. Discrete dislocation plasticity: a simple planar model. Model Sim Mater Sci Eng

(1995)
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Simulation of dislocations in 2D

2D DD
[1]

Inifinite straight and parallel
dislocations

No line tension

No topological changes and intersections

Ingredients

Only edge dislocations (points)
randomly distributed on discrete slip
lines

Randomly distributed sources with
stress and distance threshold:
|f | > fnuc : generates ±b dislocations at
distance: ln = µb/[2π(1 − ν)fnuc]

On slip lines, randomly distributed
obstacles with strength f i

obs

R. Van der Giessen, A. Needleman. Discrete dislocation plasticity: a simple planar model. Model Sim Mater Sci Eng

(1995)
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Simulation of dislocations in 2D

Algorithm

Impose an external stress field σext(x, y)

Find Peach-Koehler force on each source from external stress f ext
i and

from dislocations f d
i

If |f ext
i + f d

i | ≥ fnuc: create ±b dislocations

Compute forces on all dislocations

f j = −
∑

∇xEint(xi, xj) + f ext
i

Assume linear relation between velocity and PK force:

f j = Bẋj

Integrate in time Euler-trapezoid method:

xE
j
(t + ∆t) = xj(t) +

1
B

f j(x(t))

xj(t + ∆t) = xj(t) +
1

2B

[

f j(x(t)) + f j(x
E(t + ∆t))

]
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Find Peach-Koehler force on each source from external stress f ext
i and
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Simulation of dislocations in 3D

3D DD
[1]

Splines or edge/screw segments

Glide and climb

Arbitrary morphology of
dislocations

Topological changes and
intersections

Enhanced interaction with the
material and boundaries

Ingredients

Frank-Read sources

Free-surface

Grain boundaries

Possible coupling with the FEM
method and with MD both in 2D
and 3D

Bulatov V.V., Cai W. Computer Simulations of Dislocations, Oxford University Press, 2006.
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Simulation of dislocations in 3D

Algorithm

Impose/compute via FEM a stress field σext(x, y)

Use shape functions for positions and velocities:

r(ξ, t) = Ni(ξ)ri(t) v(ξ, t) = Ni(ξ)vi(t)

Find Peach-Koehler force on each node from external stress f ext
i and

from all dislocation segments f d
i = −

∫

Dj ∇xEinterdΓ

Assume over-damped dynamics, drag force is a linear (in simplest case)
function of velocity:

f
drag

j
= −B · vj

Drag force cannot oppose everywhere the PK force, so it is satisfied in a
weak sense:
∫

D
Ni(−B · vjNj + f PK)dl = 0

Giving the linear system of equations:
∑

Bij · vj = f i, Bij =
∫

D
−BNiNjdl

Integrate in time Euler-trapezoid method:

xE
j
(t + ∆t) = xj(t) + vj(t)∆t

xj(t + ∆t) = xj(t) +
1
2
(vj(t) + vE

j
(t + ∆t))∆t
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Simulation of dislocations in 3D

Animations
www.numodis.fr/

optidis.gforge.inria.fr/videos/video.html
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Merci de votre attention !
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