Optimization Under Constraints: A Contact Problem

Vladislav A. Yastrebov

MINES Paris - PSL, CNRS Centre des Matériaux, Evry, France

Semaine d'ES PSL @ MINES Paris November 29, 2023

Creative Commons BY Vladislav A. Yastrebov

Outline

Introduction

- Basics of Contact and Friction
- Towards a weak form
- Optimization methods
- Resolution algorithm
- Examples

Introduction

1 Assembled parts, e.g. engines

Aircraft's engine GP 7200 www.safran-group.com

[1] M. W. R. Savage J. Eng. Gas Turb. Power, 134:012501 (2012)

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts

High speed train TGV www.sncf.com

Wilde/ANSYS wildeanalysis.co.uk

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings

Bearings www.skf.com

[1] F. Massi, J. Rocchi, A. Culla, Y. Berthier Mech. Syst. Signal Pr., 24:1068-1080 (2010)

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- **3** Gears and bearings

Helical gear www.tpg.com.tw

www.mscsoftware.com

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems

Assembled breaking system www.brembo.com

www.mechanicalengineeringblog.com

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact

Tire-road contact www.michelin.com

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming

Deep drawing www.thomasnet.com

[1] G. Rousselier, F. Barlat, J. W. Yoon Int. J. Plasticity, 25:2383-2409 (2009)

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests

Crash-test www.porsche.com

[1] O. Klyavin, A. Michailov, A. Borovkov www.fea.ru

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests
- 8 Biomechanics

J. A. Weiss, University of Utah Musculoskeletal Research Laboratories

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests
- 8 Biomechanics
- 9 Granular materials

Sand dunes www.en.wikipedia.org

E. Azema et al, LMGC90

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests
- 8 Biomechanics
- 9 Granular materials
- 10 Electric contacts

Damage at electric contact zone www.taicaan.com

www.comsol.com

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests
- 8 Biomechanics
- 9 Granular materials
- 10 Electric contacts
- 11 Tectonic motions

San-Andreas fault, by M. Rightmire www.sciencedude.ocregister.com

[1] J.D. Garaud, L. Fleitout, G. Cailletaud Colloque CSMA (2009)

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests
- 8 Biomechanics
- 9 Granular materials
- 10 Electric contacts
- 11 Tectonic motions
- Deep drilling

Drill Bit tool RobitRocktools; extraction of geothermal energy (SINTEF, NTNU)

[1] T. Saksala, Int. J. Numer. Anal. Meth. Geomech. (2012)

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests
- 8 Biomechanics
- 9 Granular materials
- 10 Electric contacts
- 11 Tectonic motions
- Deep drilling
- Impact and fragmentation

Impact crater, Arizona www.MrEclipse.com et maps.google.com

Rock type, time = 103.002 s

Simulation of formation of Copernicus crater Yue Z., Johnson B. C., et al. Projectile remnants in central peaks of lunar impact craters. Nature Geo 6 (2013)

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests
- 8 Biomechanics
- 9 Granular materials
- 10 Electric contacts
- 11 Tectonic motions
- 12 Deep drilling
- Impact and fragmentation
- 14 etc.

Impact crater, Arizona www.MrEclipse.com et maps.google.com

Rock type, time = 103.002 s

Simulation of formation of Copernicus crater Yue Z., Johnson B. C., et al. Projectile remnants in central peaks of lunar impact craters. Nature Geo 6 (2013)

Physical and mathematical complexity

- Contact interface is hard to observe in situ
- Many things happen in the interface
- Strong thermo-mechanical or fluid-solid coupling in sliding
- Mathematical formulation is also non-trivial, hard to handle analytically
- Robust and accurate computational framework is needed

Basics of Contact and Friction

Balance of momentum

 $\begin{cases} \nabla \cdot \underline{\sigma} + \underline{f}_{v} = 0 & \text{in } \Omega_{1,2} \\ \underline{\sigma} \cdot \underline{n} = \underline{t}_{0} & \text{on } \Gamma_{f} \\ \underline{u} = \underline{u}_{0} & \text{on } \Gamma_{u} \\ \mathbf{?} & \text{on } \Gamma_{c} \end{cases}$

- 1 No penetration
- 2 No adhesion
- 3 No shear transfer

Balance of momentum

 $\begin{cases} \nabla \cdot \underline{\sigma} + \underline{f}_{v} = 0 & \text{in } \Omega_{1,2} \\ \underline{\sigma} \cdot \underline{n} = \underline{t}_{0} & \text{on } \Gamma_{f} \\ \underline{u} = \underline{u}_{0} & \text{on } \Gamma_{u} \\ \mathbf{?} & \text{on } \Gamma_{c} \end{cases}$

- 1 No penetration
- 2 No adhesion
- 3 No shear transfer

Balance of momentum

 $\begin{cases} \nabla \cdot \underline{\sigma} + \underline{f}_{v} = 0 & \text{in } \Omega_{1,2} \\ \underline{\sigma} \cdot \underline{n} = \underline{t}_{0} & \text{on } \Gamma_{f} \\ \underline{u} = \underline{u}_{0} & \text{on } \Gamma_{u} \\ \mathbf{?} & \text{on } \Gamma_{c} \end{cases}$

- 1 No penetration
- 2 No adhesion
- 3 No shear transfer

Balance of momentum

 $\begin{cases} \nabla \cdot \underline{\sigma} + \underline{f}_{v} = 0 & \text{in } \Omega_{1,2} \\ \underline{\sigma} \cdot \underline{n} = \underline{t}_{0} & \text{on } \Gamma_{f} \\ \underline{u} = \underline{u}_{0} & \text{on } \Gamma_{u} \\ \mathbf{?} & \text{on } \Gamma_{c} \end{cases}$

- 1 No penetration
- 2 No adhesion
- 3 No shear transfer

Balance of momentum

 $\begin{cases} \nabla \cdot \underline{\sigma} + f_{v} = 0 & \text{in } \Omega_{1,2} \\ \underline{\sigma} \cdot \underline{n} = \underline{t}_{0} & \text{on } \Gamma_{f} \\ \underline{u} = \underline{u}_{0} & \text{on } \Gamma_{u} \\ \mathbf{?} & \text{on } \Gamma_{c} \end{cases}$

- 1 No penetration
- 2 No adhesion
- 3 No shear transfer

Gap function

■ Gap function *g*

- gap = penetration
- asymmetric function
- defined for
 - separation g > 0
 - contact g = 0
 - penetration g < 0
- governs normal contact

Master and slave split

Gap function is determined for all slave points with respect to the master surface

Gap between a slave point and a master surface

Gap function

Gap function *g*

- gap = penetration
- asymmetric function
- defined for
 - separation g > 0
 - contact g = 0
 - penetration g < 0
- governs normal contact

Master and slave split

Gap function is determined for all slave points with respect to the master surface

Normal gap

 $g_n = \underline{n} \cdot \left[\underline{r}_s - \underline{\rho}(\xi_\pi)\right],$ <u>*n*</u> is a unit normal vector, <u>*r*</u>_s slave point, <u>*ρ*(\xi_\pi)</u> projection point at master surface

Gap between a slave point and a master surface

Definition of the normal gap

Consider existence and uniqueness

Frictionless or normal contact conditions

 $\sigma_n^* = (\underline{\underline{\sigma}} \cdot \underline{\underline{n}}) \cdot \underline{\underline{n}} = \underline{\underline{\sigma}} : (\underline{\underline{n}} \otimes \underline{\underline{n}})$ $\underline{\sigma}_t^{**} = \underline{\underline{\sigma}} \cdot \underline{\underline{n}} - \sigma_n \underline{\underline{n}} = \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot (\underline{\underline{\underline{I}}} - \underline{\underline{n}} \otimes \underline{\underline{n}})$

Frictionless or normal contact conditions

No penetration

Always non-negative gap

 $g \geq 0$

No adhesion

Always non-positive contact pressure

 $\sigma_n^* \leq 0$

Complementary condition

Either zero gap and non-zero pressure, or non-zero gap and zero pressure

 $g \sigma_n = 0$

No shear transfer (*automatically*)

$$\underline{\sigma}_t^{**} = 0$$

 $\sigma_n^* = (\underline{\underline{\sigma}} \cdot \underline{\underline{n}}) \cdot \underline{\underline{n}} = \underline{\underline{\sigma}} : (\underline{\underline{n}} \otimes \underline{\underline{n}})$ $\underline{\sigma}_t^{**} = \underline{\underline{\sigma}} \cdot \underline{\underline{n}} - \sigma_n \underline{\underline{n}} = \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot (\underline{\underline{\underline{I}}} - \underline{\underline{n}} \otimes \underline{\underline{n}})$

Improved scheme explaining normal contact conditions

Frictionless or normal contact conditions

In **mechanics**:

Normal contact conditions = Frictionless contact conditions = Hertz_^[1]-Signorini,^[2]-Moreau^[3] conditions also known in **optimization theory** as Karush^[4]-Kuhn^[5]-Tucker,^[6] conditions

Improved scheme explaining normal contact conditions

$$g \ge 0, \qquad \sigma_n \le 0, \qquad g\sigma_n = 0$$

¹Heinrich Rudolf Hertz (1857–1894) a German physicist who first formulated and solved the frictionless contact problem between elastic ellipsoidal bodies.

 2 Antonio Signorini (1888–1963) an Italian mathematical physicist who gave a general and rigorous mathematical formulation of contact constraints.

⁴William Karush (1917–1997), ⁵Harold William Kuhn (1925-2014) American mathematicians,

⁶Albert William Tucker (1905–1995) a Canadian mathematician.

³Jean Jacques Moreau (1923-2014) a French mathematician who formulated a non-convex optimization problem based on these conditions and introduced pseudo-potentials in contact mechanics.

Recall:

- Convective coordinate in parent space $\xi_i \in (-1; 1)$
- Mapping to real space

$$\underline{\underline{\rho}}(\xi_1,\xi_2,t) = \sum_{i=1}^8 N^i(\xi_1,\xi_2)\underline{\underline{\rho}}^i(t)$$

Recall:

- Convective coordinate in parent space $\xi_i \in (-1; 1)$
- Mapping to real space

$$\underline{\underline{\rho}}(\xi_1,\xi_2,t) = \sum_{i=1}^8 N^i(\xi_1,\xi_2)\underline{\underline{\rho}}^i(t)$$

- Tangential slip velocity <u>v</u>_t must take into account:
 - only tangential component
 - relative rigid body motion
 - master's deformation

$$\underline{v}_t = \frac{\partial \underline{\rho}}{\partial \xi_1} \dot{\xi}_1 + \frac{\partial \underline{\rho}}{\partial \xi_2} \dot{\xi}_2$$

Recall:

- Convective coordinate in parent space $\xi_i \in (-1; 1)$
- Mapping to real space

$$\underline{\underline{\rho}}(\xi_1,\xi_2,t) = \sum_{i=1}^8 N^i(\xi_1,\xi_2)\underline{\underline{\rho}}^i(t)$$

- Tangential slip velocity <u>v</u>_t must take into account:
 - only tangential component
 - relative rigid body motion
 - master's deformation

$$\underline{v}_t = \frac{\partial \underline{\rho}}{\partial \xi_1} \dot{\xi}_1 + \frac{\partial \underline{\rho}}{\partial \xi_2} \dot{\xi}_2$$

Recall:

- Convective coordinate in parent space $\xi_i \in (-1; 1)$
- Mapping to real space

$$\underline{\rho}(\xi_1,\xi_2,t) = \sum_{i=1}^8 N^i(\xi_1,\xi_2)\underline{\rho}^i(t)$$

- Tangential slip velocity <u>v</u>_t must take into account:
 - only tangential component
 - relative rigid body motion
 - master's deformation

$$\underline{v}_t = \frac{\partial \underline{\rho}}{\partial \xi_1} \dot{\xi}_1 + \frac{\partial \underline{\rho}}{\partial \xi_2} \dot{\xi}_2$$

Recall:

- Convective coordinate in parent space $\xi_i \in (-1; 1)$
- Mapping to real space

$$\underline{\underline{\rho}}(\xi_1,\xi_2,t) = \sum_{i=1}^8 N^i(\xi_1,\xi_2)\underline{\underline{\rho}}^i(t)$$

- Tangential slip velocity <u>v</u>_t must take into account:
 - only tangential component
 - relative rigid body motion
 - master's deformation

$$\underline{v}_t = \frac{\partial \underline{\rho}}{\partial \xi_1} \dot{\xi}_1 + \frac{\partial \underline{\rho}}{\partial \xi_2} \dot{\xi}_2$$

where $\partial \rho / \partial \xi_i$ are the tangent vectors of the local basis and ξ_i are the convective coordinates.

celative slip between a slave point and deformable master surface

Recall:

- Convective coordinate in parent space $\xi_i \in (-1; 1)$
- Mapping to real space

$$\underline{\rho}(\xi_1,\xi_2,t) = \sum_{i=1}^8 N^i(\xi_1,\xi_2)\underline{\rho}^i(t)$$

- Tangential slip velocity <u>v</u>_t must take into account:
 - only tangential component
 - relative rigid body motion
 - master's deformation

$$\underline{v}_t = \frac{\partial \underline{\rho}}{\partial \xi_1} \dot{\xi}_1 + \frac{\partial \underline{\rho}}{\partial \xi_2} \dot{\xi}_2$$

Relative sliding

Recall:

- Convective coordinate in parent space $\xi_i \in (-1; 1)$
- Mapping to real space

$$\underline{\rho}(\xi_1,\xi_2,t) = \sum_{i=1}^8 N^i(\xi_1,\xi_2)\underline{\rho}^i(t)$$

- Tangential slip velocity <u>v</u>_t must take into account:
 - only tangential component
 - relative rigid body motion
 - master's deformation

$$\underline{v}_t = \frac{\partial \underline{\rho}}{\partial \xi_1} \dot{\xi}_1 + \frac{\partial \underline{\rho}}{\partial \xi_2} \dot{\xi}_2$$

where $\partial \rho / \partial \xi_i$ are the tangent vectors of the local basis and ξ_i are the convective coordinates.

Relative sliding: example

Consider a one-dimensional example:

P is a projection of *A* on segment *BC*. $x_P = \xi x_C + (1 - \xi) x_B$ (1)

Velocity of the projection point

$$\dot{x}_{P} = \underbrace{\xi \dot{x}_{C} + (1 - \xi) \dot{x}_{B}}_{\frac{\partial x_{P}}{\partial t}} + \underbrace{(x_{C} - x_{B}) \dot{\xi}}_{\frac{\partial x_{P}}{\partial \xi} \dot{\xi}}$$

Substract the velocity of point x_P for fixed ξ

 $v_t = \dot{x}_P - \frac{\partial x_P}{\partial t} = (x_C - x_B)\dot{\xi} = \frac{\partial x}{\partial \xi}\dot{\xi}$

Compute tangential slip increment

 $\Delta g_t^{n+1} = \left. \frac{\partial x}{\partial \xi} \right|_{\xi^n} \left(\xi^{n+1} - \xi^n \right)$

Relative sliding: example

Consider a one-dimensional example:

P is a projection of *A* on segment *BC*. $x_P = \xi x_C + (1 - \xi) x_B$ (1)

Velocity of the projection point

$$\dot{x}_{P} = \underbrace{\xi \dot{x}_{C} + (1 - \xi) \dot{x}_{B}}_{\frac{\partial x_{P}}{\partial t}} + \underbrace{(x_{C} - x_{B}) \dot{\xi}}_{\frac{\partial x_{P}}{\partial \xi} \dot{\xi}}$$

Substract the velocity of point x_P for fixed ξ

 $v_t = \dot{x}_P - \frac{\partial x_P}{\partial t} = (x_C - x_B)\dot{\xi} = \frac{\partial x}{\partial \xi}\dot{\xi}$

Compute tangential slip increment $\Delta g_t^{n+1} = \left. \frac{\partial x}{\partial \xi} \right|_{s_n} \left(\xi^{n+1} - \xi^n \right)$

Fisherman's analogy: observing sea flow around the boat. Lie derivative: the change of a vector field along the change of another vector field

Amontons-Coulomb's friction

$\mu \sigma_n $
0

 $\begin{array}{cc} 0 & \mathbf{\sigma}_n \\ \text{Scheme explaining frictional contact} \\ \text{conditions} \end{array}$

 \underline{v}_t

Amontons-Coulomb's friction

- **No contact** *g* > 0, *σ*^{*n*} = 0
- Stick |<u>v</u>_t| = 0 Inside slip surface/Coulomb's cone

 $f = |\underline{\sigma}_t| - \mu |\sigma_n| < 0$

■ Slip |<u>v</u>_t| > 0 On slip surface/Coulomb's cone

 $f = |\underline{\sigma}_t| - \mu |\sigma_n| = 0$

• **Complementary condition** One is zero another one is not or vice versa

 $|\underline{\boldsymbol{v}}_t| \left(|\underline{\boldsymbol{\sigma}}_t| - \boldsymbol{\mu} |\boldsymbol{\sigma}_n| \right) = 0$

Direction of friction Shear and sliding are collinear

 $\underline{v}_t \parallel \underline{\sigma}_t$

Amontons-Coulomb's friction

- **No contact** *g* > 0, *σ*^{*n*} = 0
- Stick |<u>v</u>_t| = 0 Inside slip surface/Coulomb's cone

 $f = |\underline{\sigma}_t| - \mu |\sigma_n| < 0$

■ Slip |<u>v</u>_t| > 0 On slip surface/Coulomb's cone

 $f = |\underline{\sigma}_t| - \mu |\sigma_n| = 0$

• **Complementary condition** One is zero another one is not or vice versa

 $|\underline{\boldsymbol{v}}_t| \left(|\underline{\boldsymbol{\sigma}}_t| - \boldsymbol{\mu} |\boldsymbol{\sigma}_n| \right) = 0$

Direction of friction Shear and sliding are collinear

 $\underline{v}_t \parallel \underline{\sigma}_t$

Scheme of 2D frictional contact

Scheme of 3D frictional contact

$$|\underline{\underline{v}}_t| \ge 0, \quad |\underline{\underline{\sigma}}_t| - \mu |\sigma_n| \le 0, \quad |\underline{\underline{v}}_t| \left(|\underline{\underline{\sigma}}_t| - \mu |\sigma_n| \right) = 0, \quad \frac{\underline{\underline{\sigma}}_t}{|\underline{\underline{\sigma}}_t|} = -\frac{\underline{\underline{v}}_t}{|\underline{\underline{v}}_t|}$$

More friction laws

• μ_s static and μ_k kinetic coefficients of friction.

Towards a weak form

• Balance of momentum and boundary conditions

 $\nabla \cdot \underline{\underline{\sigma}} + \underline{f}_v = 0 \text{ in } \Omega = \Omega_1 \cup \Omega_2 + B.C.$

Two solids in contact

• Balance of momentum and boundary conditions

 $\nabla \cdot \underline{\underline{\sigma}} + f_v = 0$ in $\Omega = \Omega_1 \cup \Omega_2 + B.C.$

• Balance of virtual works

$$\int_{\partial\Omega} \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\underline{u}} \, d\Gamma + \int_{\Omega} \left[\underline{\underline{f}}_{\underline{v}} \cdot \delta \underline{\underline{u}} - \underline{\underline{\sigma}} \cdot \cdot \delta \nabla \underline{\underline{u}} \right] \, d\Omega = 0$$

Two solids in contact

• Balance of momentum and boundary conditions

 $\nabla \cdot \underline{\underline{\sigma}} + f_v = 0$ in $\Omega = \Omega_1 \cup \Omega_2 + B.C.$

• Balance of virtual works

$$\int_{\partial\Omega} \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\underline{u}} \, d\Gamma =$$

$$\int_{\overline{\Gamma}_{c}^{1}} \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\underline{\rho}} \, d\overline{\Gamma}_{c}^{1} + \int_{\overline{\Gamma}_{c}^{2}} \underline{\underline{\nu}} \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\underline{r}} \, d\overline{\Gamma}_{c}^{2} + \int_{\Gamma_{f}} \underline{\underline{\sigma}}_{0} \cdot \delta \underline{\underline{u}} \, d\Gamma_{f}$$

• Balance of momentum and boundary conditions

 $\nabla \cdot \underline{\underline{\sigma}} + f_v = 0$ in $\Omega = \Omega_1 \cup \Omega_2 + B.C.$

• Balance of virtual works

$$\int\limits_{\partial\Omega} \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\underline{u}} \, d\Gamma =$$

$$\int_{\overline{\Gamma}_c^1} \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot \underline{\delta \underline{\rho}} \, d\overline{\Gamma}_c^1 + \int_{\overline{\Gamma}_c^2} \underline{\underline{\nu}} \cdot \underline{\underline{\sigma}} \cdot \underline{\delta \underline{r}} \, d\overline{\Gamma}_c^2 =$$

$$= \int_{\overline{\Gamma}_{c}^{1}} \underline{n} \cdot \underline{\underline{\sigma}} \cdot \delta(\underline{\rho} - \underline{\underline{r}}) \, d\overline{\Gamma}_{c}^{1} = \int_{\overline{\Gamma}_{c}^{1}} \left(\sigma_{n} \delta g_{n} + g_{t}^{T} \delta \xi \right) \, d\overline{\Gamma}_{c}$$

• Balance of momentum and boundary conditions

 $\nabla \cdot \underline{\sigma} + f_v = 0$ in $\Omega = \Omega_1 \cup \Omega_2 + B.C.$

Balance of virtual works

=

$$\int\limits_{\partial\Omega} \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\underline{u}} \, d\Gamma =$$

$$\int_{\overline{\Gamma}_{c}^{1}} \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot \underline{\delta \underline{\rho}} d\overline{\Gamma}_{c}^{1} + \int_{\overline{\Gamma}_{c}^{2}} \underline{\underline{\nu}} \cdot \underline{\underline{\sigma}} \cdot \underline{\delta \underline{r}} d\overline{\Gamma}_{c}^{2} =$$

$$\int_{\overline{\Gamma}_{1}} \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot \underline{\delta} \underline{\underline{\rho}} \, d\overline{\Gamma}_{c}^{1} + \int_{\overline{\Gamma}_{2}} \underline{\underline{\nu}} \cdot \underline{\underline{\sigma}} \cdot \underline{\delta} \underline{\underline{r}} \, d\overline{\Gamma}_{c}^{2} =$$

$$\int_{\frac{1}{2}} \underline{\underline{m}} \cdot \underline{\underline{\sigma}} \cdot \delta(\underline{\underline{\rho}} - \underline{\underline{r}}) d\overline{\Gamma}_{c}^{1} = \int_{\overline{\Gamma}_{c}^{1}} \left(\sigma_{n} \delta g_{n} + \underline{\sigma}_{t}^{T} \delta \underline{\xi} \right) d\overline{\Gamma}_{c}^{1}$$

$$\underline{g} \cdot \underline{g} \cdot \delta(\underline{\rho} - \underline{r}) d\overline{\Gamma}_{c}^{1} = \int_{\overline{\Gamma}_{c}^{1}} \left(\sigma_{n} \delta g_{n} + \underline{\sigma}_{t}^{T} \delta \underline{\xi} \right) d\overline{\Gamma}_{c}^{1}$$

$$\int_{\Omega} \underline{g} \cdot \delta \nabla \underline{u} d\Omega + \left[\int_{\overline{\Gamma}_{c}^{1}} \left(\sigma_{n} \delta g_{n} + \underline{\sigma}_{t}^{T} \delta \underline{\xi} \right) d\overline{\Gamma}_{c}^{1} \right] = \int_{\Gamma_{f}} \underline{\sigma}_{0} \cdot \delta \underline{u} d\Gamma + \int_{\Omega} \underline{f}_{v} \cdot \delta \underline{u} d\Omega$$

$$= \int_{\Gamma_{f}} \underline{\sigma}_{0} \cdot \delta \underline{u} d\Gamma + \int_{\Omega} \underline{f}_{v} \cdot \delta \underline{u} d\Omega$$

 Ω^1

 Γ_c^1 п

 Γ_c^2

 Γ_{μ}

 Ω^2

Â

Contact term

• Balance of momentum and boundary conditions

• Balance of virtual works

• Functional space

 $\delta \underline{u}, \underline{u} \in \mathbb{H}^1(\Omega)$ Hilbert space of the first order (function and its first derivate is square integrable) and \underline{u} satisfy boundary conditions

• Balance of virtual works

 $\delta \underline{u}, \underline{u} \in \mathbb{H}^1(\Omega)$ Hilbert space of the first order (function and its first derivate is square integrable) and \underline{u} satisfy

boundary conditions and **contact conditions**, so we do optimization on a subset of $\mathbb{H}^1(\Omega)$.

- Optimization problem for $F : \mathbb{V} \to \mathbb{R}$
- Find $u \in \mathbb{V}$ s.t. $\forall v \in \mathbb{V} : F(u) \le F(v)$
- If $F \in C^1$ is convex then such minimizer u is a stationary point $F'|_u = 0$

- Optimization problem for $F : \mathbb{V} \to \mathbb{R}$
- Find $u \in \mathbb{V}$ s.t. $\forall v \in \mathbb{V} : F(u) \leq F(v)$
- If $F \in C^1$ is convex then such minimizer *u* is a stationary point $F'|_u = 0$
- However, finding minimizer of *F* on a subset $\mathbb{K} \subset \mathbb{V}$ changes the story

- Optimization problem for $F : \mathbb{V} \to \mathbb{R}$
- Find $u \in \mathbb{V}$ s.t. $\forall v \in \mathbb{V} : F(u) \leq F(v)$
- If $F \in C^1$ is convex then such minimizer u is a stationary point $F'|_u = 0$
- However, finding minimizer of *F* on a subset $\mathbb{K} \subset \mathbb{V}$ changes the story
- If \mathbb{K} is convex, then if $u \in \mathbb{K}$ is a minimizer, $\forall v \in \mathbb{K}, \theta \in [0, 1]$: $F(u) \leq F(u + \theta(v u))$

- Optimization problem for $F : \mathbb{V} \to \mathbb{R}$
- Find $u \in \mathbb{V}$ s.t. $\forall v \in \mathbb{V} : F(u) \leq F(v)$
- If $F \in C^1$ is convex then such minimizer u is a stationary point $F'|_u = 0$
- However, finding minimizer of *F* on a subset $\mathbb{K} \subset \mathbb{V}$ changes the story
- If \mathbb{K} is convex, then if $u \in \mathbb{K}$ is a minimizer, $\forall v \in \mathbb{K}, \theta \in [0, 1]$: $F(u) \leq F(u + \theta(v u))$
- In the limit

 $\lim_{\theta \to 0} \frac{F(u + \theta(v - u)) - F(u)}{\theta} \ge 0$

- Optimization problem for $F : \mathbb{V} \to \mathbb{R}$
- Find $u \in \mathbb{V}$ s.t. $\forall v \in \mathbb{V} : F(u) \leq F(v)$
- If $F \in C^1$ is convex then such minimizer u is a stationary point $F'|_u = 0$
- However, finding minimizer of *F* on a subset $\mathbb{K} \subset \mathbb{V}$ changes the story
- If \mathbb{K} is convex, then if $u \in \mathbb{K}$ is a minimizer, $\forall v \in \mathbb{K}, \theta \in [0, 1]$: $F(u) \leq F(u + \theta(v u))$
- In the limit

$$\lim_{\theta \to 0} \frac{F(u + \theta(v - u)) - F(u)}{\theta} = F'(u)(v - u) \ge 0$$

- Optimization problem for $F : \mathbb{V} \to \mathbb{R}$
- Find $u \in \mathbb{V}$ s.t. $\forall v \in \mathbb{V} : F(u) \leq F(v)$
- If $F \in C^1$ is convex then such minimizer u is a stationary point $F'|_u = 0$
- However, finding minimizer of *F* on a subset $\mathbb{K} \subset \mathbb{V}$ changes the story
- If \mathbb{K} is convex, then if $u \in \mathbb{K}$ is a minimizer, $\forall v \in \mathbb{K}, \theta \in [0, 1]$: $F(u) \leq F(u + \theta(v u))$
- In the limit

$$\lim_{\theta \to 0} \frac{F(u + \theta(v - u)) - F(u)}{\theta} = F'(u)(v - u) \ge 0$$

• Variational inequality for minimizer $u \in \mathbb{K} \subset \mathbb{V}$:

 $F'(u)(v-u) \ge 0, \quad \forall v \in \mathbb{K}$

Example of variational inequality

Minimize F(x) for $x \in \mathbb{K} \subset \mathbb{R}$, then the minimizer u satisfies

 $F'(u)(v-u)\geq 0, \quad \forall v\in \mathbb{K}$

Variational inequality and a simplification

• Constrained minimization problem (variational inequality)^[1,2]

$$\begin{split} \int_{\Omega} \underbrace{\underline{\sigma}}_{\Omega} & \cdot \delta \nabla \underline{u} \, d\Omega + \int_{\overline{\Gamma}_{c}^{1}} \underbrace{\sigma}_{t}^{T} \delta \underbrace{\xi}_{\Sigma} \, d\overline{\Gamma}_{c}^{T} \geq \int_{\Gamma_{f}} \underbrace{\underline{\sigma}}_{0} \cdot \delta \underline{u} \, d\Gamma + \int_{\Omega} \underbrace{f_{v}}_{U} \cdot \delta \underline{u} \, d\Omega, \quad \underline{u} \in \mathbb{L}, \delta \underline{u} \in \mathbb{K} \\ & \mathbb{L} = \left\{ \underbrace{\underline{u}}_{0} \in \mathbb{H}^{1}(\Omega) \mid \underbrace{\underline{u}}_{0} = \underline{u}_{0} \text{ on } \Gamma_{u}, \ g_{n}(\underline{u}) \geq 0 \text{ on } \Gamma_{c} \right\} \\ & \mathbb{K} = \left\{ \underbrace{\delta \underline{u}}_{0} \in \mathbb{H}^{1}(\Omega) \mid \underbrace{\delta \underline{u}}_{0} = 0 \text{ on } \Gamma_{u}, \ g_{n}(\delta \underline{u}) \geq 0 \text{ on } \Gamma_{c} \right\} \end{split}$$

Duvaut, G. and Lions, J.L., 1972. Les inéquations en mécanique et en physique. Dunod, Paris, 1972
 Duvant, G. and Lions, J.L., 1976. Inequalities in mechanics and physics, Springer

Variational inequality and a simplification

• Constrained minimization problem (variational inequality)^[1,2]

$$\begin{split} \int_{\Omega} \underbrace{\underline{\sigma}}_{\Omega} & \cdot \delta \nabla \underline{u} \, d\Omega + \int_{\overline{\Gamma}_{c}^{1}} \underbrace{\sigma}_{t}^{T} \delta \underbrace{\xi}_{\Sigma} \, d\overline{\Gamma}_{c}^{T} \geq \int_{\Gamma_{f}} \underbrace{\underline{\sigma}}_{0} \cdot \delta \underline{u} \, d\Gamma + \int_{\Omega} \underbrace{f_{v}}_{U} \cdot \delta \underline{u} \, d\Omega, \quad \underline{u} \in \mathbb{L}, \delta \underline{u} \in \mathbb{K} \\ & \mathbb{L} = \left\{ \underbrace{\underline{u}}_{0} \in \mathbb{H}^{1}(\Omega) \mid \underbrace{\underline{u}}_{0} = \underline{u}_{0} \text{ on } \Gamma_{u}, \ g_{n}(\underline{u}) \geq 0 \text{ on } \Gamma_{c} \right\} \\ & \mathbb{K} = \left\{ \underbrace{\delta \underline{u}}_{0} \in \mathbb{H}^{1}(\Omega) \mid \underbrace{\delta \underline{u}}_{0} = 0 \text{ on } \Gamma_{u}, \ g_{n}(\delta \underline{u}) \geq 0 \text{ on } \Gamma_{c} \right\} \end{split}$$

• Use optimization theory to convert to

$$\int_{\Omega} \underline{\underline{\sigma}} \cdot \cdot \delta \nabla \underline{\underline{u}} \, d\Omega + \int_{\Gamma_c^1} \underbrace{\mathbf{C}(\sigma_n, \sigma_t, g_n, \underline{\xi}, \delta \underline{\underline{u}})}_{\text{Contact term}^*} d\Gamma_c^1 = \int_{\Gamma_f} \underline{\underline{\sigma}}_0 \cdot \delta \underline{\underline{u}} \, d\Gamma + \int_{\Omega} \underline{\underline{f}}_v \cdot \delta \underline{\underline{u}} \, d\Omega,$$

Unconstrained functional sub-spaces $\mathbb{L} = \left\{ \underline{u} \in \mathbb{H}^{1}(\Omega) \mid \underline{u} = \underline{u}_{0} \text{ on } \Gamma_{u} \right\}$ $\mathbb{K} = \left\{ \delta \underline{u} \in \mathbb{H}^{1}(\Omega) \mid \delta \underline{u} = 0 \text{ on } \Gamma_{u} \right\}$

Contact term^{*} is defined on the *potential contact zone* Γ_c^1 .

Duvaut, G. and Lions, J.L., 1972. Les inéquations en mécanique et en physique. Dunod, Paris, 1972
 Duvant, G. and Lions, J.L., 1976. Inequalities in mechanics and physics, Springer

Functional to be minimized $F(\mathbf{x})$ under constraint $g(\mathbf{x}) \ge 0$

- Penalty method
- Lagrange multipliers method
- Augmented Lagrangian method

Functional to be minimized $F(\mathbf{x})$ under constraint $g(\mathbf{x}) \ge 0$

Penalty method

New functional

 $F_{p}(\mathbf{x}) = F(\mathbf{x}) + \boxed{\epsilon \langle -g(\mathbf{x}) \rangle^{2}} = F(\mathbf{x}) + \begin{cases} 0, & \text{if } g(\mathbf{x}) \ge 0 & non-contact \\ \epsilon g^{2}(\mathbf{x}), & \text{if } g(\mathbf{x}) < 0 & contact \end{cases}$

where ϵ is the penalty parameter.

• Stationary point must satisfy

 $\nabla F_p(\mathbf{x}) = \nabla F(\mathbf{x}) + 2\epsilon \langle -g(\mathbf{x}) \rangle \nabla g(\mathbf{x}) = 0$

- Solution **tends** to the precise solution as $\epsilon \to \infty$
- Lagrange multipliers method
- Augmented Lagrangian method

Macaulay brackets $\langle x \rangle = \begin{cases} x, & \text{if } x \ge 0 \\ 0, & \text{otherwise} \end{cases}$

Functional to be minimized $F(\mathbf{x})$ under constraint $g(\mathbf{x}) \ge 0$

- Penalty method $F_p(\mathbf{x}) = F(\mathbf{x}) + \epsilon \langle -g(\mathbf{x}) \rangle^2$
- Lagrange multipliers method
 - New functional called Lagrangian

 $\mathcal{L}(\mathbf{x},\lambda) = F(\mathbf{x}) + \lambda g(\mathbf{x})$

• Saddle point problem

$$\min_{x} \max_{\lambda} \{\mathcal{L}(\mathbf{x}, \lambda)\} \longrightarrow \mathbf{x}^* \longleftarrow \min_{g(\mathbf{x}) \ge 0} \{F(\mathbf{x})\}$$

Stationary point

$$\nabla_{\mathbf{x},\lambda}\mathcal{L} = \begin{bmatrix} \nabla_{\mathbf{x}} F(\mathbf{x}) + \lambda \nabla_{\mathbf{x}} g(\mathbf{x}) \\ g(\mathbf{x}) \end{bmatrix} = 0 \text{ need to verify } \lambda \leq 0$$

Augmented Lagrangian method

Macaulay brackets $\langle x \rangle = \begin{cases} x, & \text{if } x \ge 0\\ 0, & \text{otherwise} \end{cases}$

Functional to be minimized $F(\mathbf{x})$ under constraint $g(\mathbf{x}) \ge 0$

- Penalty method $F_p(\mathbf{x}) = F(\mathbf{x}) + \epsilon \langle -g(\mathbf{x}) \rangle^2$
- **Lagrange multipliers method** $\mathcal{L}(\mathbf{x}, \lambda) = F(\mathbf{x}) + \lambda g(\mathbf{x})$
- Augmented Lagrangian method

[Hestnes 1969], [Powell 1969], [Glowinski & Le Tallec 1989], [Alart & Curnier 1991], [Simo & Laursen 1992]

• New functional, augmented Lagrangian

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) + \epsilon g^{2}(\mathbf{x}), & \text{if } \lambda + 2\epsilon g(\mathbf{x}) \leq 0, \text{ contact} \\ -\frac{1}{4\epsilon}\lambda^{2}, & \text{if } \lambda + 2\epsilon g(\mathbf{x}) > 0, \text{ non-contact} \end{cases}$$

Stationary point

$$\nabla_{\mathbf{x},\lambda}\mathcal{L}_{a} = \begin{cases} \begin{bmatrix} \nabla_{\mathbf{x}}F(\mathbf{x}) + \lambda \nabla_{\mathbf{x}}g(\mathbf{x}) + 2\epsilon g(\mathbf{x}) \nabla g(\mathbf{x}) \\ g(\mathbf{x}) \end{bmatrix} = 0, & \text{if contact} \\ \begin{bmatrix} \nabla_{\mathbf{x}}F(\mathbf{x}) \\ -\frac{\lambda}{\epsilon} \end{bmatrix} = 0, & \text{if non-contact} \end{cases}$$

Macaulay brackets $\langle x \rangle = \begin{cases} x, & \text{if } x \ge 0 \\ 0, & \text{otherwise} \end{cases}$ Uzawa algorithm

Optimization methods: example

Optimization methods: example

$$F(x) = x^2 + 2x + 1$$
, $g(x) = x \ge 0$, $x^* = 0$

$$F(x) = x^2 + 2x + 1, \quad g(x) = x \ge 0, \quad x^* = 0$$

$$F(x) = x^2 + 2x + 1, \quad g(x) = x \ge 0, \quad x^* = 0$$

$$F(x) = x^2 + 2x + 1, \quad g(x) = x \ge 0, \quad x^* = 0$$

$$F(x) = x^2 + 2x + 1, \quad g(x) = x \ge 0, \quad x^* = 0$$

Penalty method: example

$$F(x) = x^{2} + 2x + 1, \quad g(x) = x \ge 0, \quad x^{*} = 0$$

Penalty method

$$F_p(x) = F(x) + \epsilon \langle -g(x) \rangle^2$$

Advantages ©

- simple physical interpretation
- simple implementation
- no additional degrees of freedom
- "mathematically" smooth functional

Drawbacks 🙁

- practically non-smooth functional
- solution is not exact:
 - too small penalty → large penetration
 - too large penalty → ill-conditioning of the tangent matrix
- user has to choose penalty ε properly or automatically and/or adapt during convergence

Lagrange multipliers method: example

$$F(x) = x^2 + 2x + 1, \ g(x) = x \ge 0, \ x^* = 0$$

Lagrange multipliers method

$$\mathcal{L}(x,\lambda) = F(x) + \boxed{\lambda g(x)} \rightarrow \text{Saddle point} \rightarrow \min_{x} \max_{\lambda} \mathcal{L}(x,\lambda)$$

Need to check that $\lambda \leq 0$

Lagrange multipliers method: example

$$F(x) = x^2 + 2x + 1, \ g(x) = x \ge 0, \ x^* = 0$$

Lagrange multipliers method

$$\mathcal{L}(x,\lambda) = F(x) + \left\lfloor \lambda g(x) \right\rfloor \rightarrow \text{Saddle point} \rightarrow \min_{x} \max_{\lambda} \mathcal{L}(x,\lambda)$$

Need to check that $\lambda \leq 0$

Advantages ©

- exact solution
- no adjustable parameters

Drawbacks 🙁

- Lagrangian is not smooth
- additional degrees of freedom
- not fully unconstrained: $\lambda \leq 0$

$$F(x) = x^{2} + 2x + 1, \quad g(x) = x \ge 0, \quad x^{*} = 0$$

Augmented Lagrangian method

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) \\ -\frac{1}{4\epsilon}\lambda^{2}, \end{cases} & \text{if } \lambda + 2\epsilon g(\mathbf{x}) \leq 0, \text{ contact} \\ \text{if } \lambda + 2\epsilon g(\mathbf{x}) > 0, \text{ non-contact} \end{cases}$$

Yellow line separates contact and non-contact regions

$$F(x) = x^{2} + 2x + 1, \quad g(x) = x \ge 0, \quad x^{*} = 0$$

Augmented Lagrangian method

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) \\ -\frac{1}{4\epsilon}\lambda^{2}, \end{cases} & \text{if } \lambda + 2\epsilon g(\mathbf{x}) \leq 0, \text{ contact} \\ \text{if } \lambda + 2\epsilon g(\mathbf{x}) > 0, \text{ non-contact} \end{cases}$$

Yellow line separates contact and non-contact regions

$$F(x) = x^{2} + 2x + 1, \quad g(x) = x \ge 0, \quad x^{*} = 0$$

Augmented Lagrangian method

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) + \epsilon g^{2}(\mathbf{x}), & \text{if } \lambda + 2\epsilon g(\mathbf{x}) \leq 0, \text{ contact} \\ -\frac{1}{4\epsilon}\lambda^{2}, & \text{if } \lambda + 2\epsilon g(\mathbf{x}) > 0, \text{ non-contact} \end{cases}$$

Yellow line separates contact and non-contact regions

$$F(x) = x^2 + 2x + 1, \quad g(x) = x \ge 0, \quad x^* = 0$$

Augmented Lagrangian method

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) + \varepsilon g^{2}(\mathbf{x}), & \text{if } \lambda + 2\varepsilon g(\mathbf{x}) \leq 0, \ contact \\ -\frac{1}{4\varepsilon}\lambda^{2}, & \text{if } \lambda + 2\varepsilon g(\mathbf{x}) > 0, \ non-contact \end{cases}$$

Advantages 🙂

- exact solution
- smoother functional (!)
- fully unconstrained

Drawbacks 🙁

- additional degrees of freedom
- quite sensitive to parameter ϵ
- need to adjust *e* during convergence

Augmented Lagrangian with Uzawa algorithm

Augmented Lagrangian method

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) \\ -\frac{1}{4\epsilon}\lambda^{2}, \end{cases}, & \text{if } \lambda + 2\epsilon g(\mathbf{x}) \leq 0, \text{ contact} \\ \text{if } \lambda + 2\epsilon g(\mathbf{x}) > 0, \text{ non-contact} \end{cases}$$

Fix $\lambda = \lambda_0$

$$\mathcal{L}_a(\mathbf{x},\lambda) = F(\mathbf{x}) + \lambda_0 g(\mathbf{x}) + \epsilon g^2(\mathbf{x}), \text{ if } \lambda_0 + 2\epsilon g(\mathbf{x}) \le 0$$

Converge with respect to *x*

Augmented Lagrangian with Uzawa algorithm

Augmented Lagrangian method

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) \\ -\frac{1}{4\epsilon}\lambda^{2}, \end{cases}, & \text{if } \lambda + 2\epsilon g(\mathbf{x}) \leq 0, \text{ contact} \\ \text{if } \lambda + 2\epsilon g(\mathbf{x}) > 0, \text{ non-contact} \end{cases}$$

Fix $\lambda = \lambda_0$

$$\mathcal{L}_a(\mathbf{x},\lambda) = F(\mathbf{x}) + [\lambda_0 + \epsilon g(\mathbf{x})] g(\mathbf{x}), \text{ if } \lambda_0 + 2\epsilon g(\mathbf{x}) \le 0$$

Converge with respect to *x* and update $\lambda_{i+1} = \lambda_i + \epsilon g(\mathbf{x})$

Augmented Lagrangian with Uzawa algorithm

Augmented Lagrangian method

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) \\ -\frac{1}{4\epsilon}\lambda^{2}, \end{cases}, & \text{if } \lambda + 2\epsilon g(\mathbf{x}) \leq 0, \text{ contact} \\ \text{if } \lambda + 2\epsilon g(\mathbf{x}) > 0, \text{ non-contact} \end{cases}$$

Fix $\lambda = \lambda_0$ Converge with respect to *x* and update $\lambda_{i+1} = \lambda_i + \epsilon g(\mathbf{x})$

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + [\lambda_{1} + \epsilon g(\mathbf{x})] g(\mathbf{x}), \text{ if } \lambda_{1} + 2\epsilon g(\mathbf{x}) \le 0$$

Application to contact problems: weak form

$$\int_{\Omega} \underline{\underline{\sigma}} \cdot \delta \nabla \underline{\underline{u}} \, d\Omega + \int_{\Gamma_c^1} \underbrace{\mathbb{C}}_{\text{Contact term}} d\Gamma_c^1 = \int_{\Gamma_f} \underline{\underline{\sigma}}_0 \cdot \delta \underline{\underline{u}} \, d\Gamma + \int_{\Omega} \underline{f}_v \cdot \delta \underline{\underline{u}} \, d\Omega,$$
$$\underline{\underline{u}} \in \mathbb{L}, \delta \underline{\underline{u}} \in \mathbb{K}, \qquad \mathbb{L} = \{ \underline{\underline{u}} \in \mathbb{H}^1(\Omega) \mid \underline{\underline{u}} = \underline{\underline{u}}_0 \text{ on } \Gamma_u \}, \quad \mathbb{K} = \{ \delta \underline{\underline{u}} \in \mathbb{H}^1(\Omega) \mid \delta \underline{\underline{u}} = 0 \text{ on } \Gamma_u \}$$
$$\blacksquare \text{ Penalty method}$$

Pressure:
$$\sigma_n = \epsilon g_n$$
, Shear: $\underline{\sigma}_t = \begin{cases} \epsilon \underline{g}_t, & \text{if stick } |\sigma_t| < \mu |\sigma_n | \\ \mu \epsilon g_n \delta \underline{g}_t / |\delta \underline{g}_t|, & \text{if slip } |\sigma_t| = \mu |\sigma_n | \end{cases}$

Contact term

 $C = C(g_n, \underline{g}_t, \delta g_n, \delta \underline{g}_t) = \sigma_n \delta g_n + \underline{\sigma}_t \cdot \delta \underline{g}_t$

Application to contact problems: weak form

$$\int_{\Omega} \underline{\underline{\sigma}} \cdot \delta \nabla \underline{\underline{u}} \, d\Omega + \int_{\Gamma_c^1} \underbrace{\mathbb{C}}_{\text{Contact term}} d\Gamma_c^1 = \int_{\Gamma_f} \underline{\underline{\sigma}}_0 \cdot \delta \underline{\underline{u}} \, d\Gamma + \int_{\Omega} \underline{\underline{f}}_v \cdot \delta \underline{\underline{u}} \, d\Omega,$$

 $\underline{u} \in \mathbb{L}, \delta \underline{u} \in \mathbb{K}, \qquad \mathbb{L} = \left\{ \underline{u} \in \mathbb{H}^1(\Omega) \mid \underline{u} = \underline{u}_0 \text{ on } \Gamma_u \right\}, \quad \mathbb{K} = \left\{ \delta \underline{u} \in \mathbb{H}^1(\Omega) \mid \delta \underline{u} = 0 \text{ on } \Gamma_u \right\}$

Augmented Lagrangian method

Contact term

$$C = C(g_n, \underline{g}_t, \lambda_n, \underline{\lambda}_t, \delta g_n, \delta \underline{g}_t, \delta \lambda_n, \delta \underline{\lambda}_t)$$

$$C = \begin{pmatrix} -\frac{1}{e} \left(\lambda_n \delta \lambda_n - \underline{\lambda}_t \cdot \delta \underline{\lambda}_t \right), & \text{if non-contact } \lambda_n + \epsilon g_n \ge 0 \\ \hat{\lambda}_n \delta g_n + g_n \delta \lambda_n + \underline{\lambda}_t \cdot \delta \underline{g}_t + \underline{g}_t \cdot \delta \underline{\lambda}_t, & \text{if stick } |\underline{\lambda}_t| \le \mu |\hat{\sigma}_n| \\ \hat{\lambda}_n \delta g_n + g_n \delta \lambda_n + \mu \hat{\sigma}_n - \mu \hat{\sigma}_n \frac{\underline{\lambda}_t}{|\underline{\lambda}_t|} \cdot \delta \underline{g}_t - \frac{1}{e} \left(\lambda_t + \mu \hat{\sigma}_n \frac{\underline{\lambda}_t}{|\underline{\lambda}_t|} \right) \cdot \delta \underline{\lambda}_t, & \text{if slip } |\underline{\lambda}_t| \ge \mu |\hat{\sigma}_n| \\ \text{where } \hat{\lambda}_n = \lambda_n + \epsilon g_n \text{ and } \underline{\lambda}_t = \underline{\lambda}_t + \epsilon \underline{g}_t. \end{cases}$$

Application to contact problems: linearization

Non-linear equation

$$R(\underline{u}, \underline{f}) = 0$$

- Contains $\delta g_n, \delta g_1$
- Use Newton-Raphson method
- Initial state at step *i*

$$R(\underline{u}^i, \underline{f}^i) = 0$$

• Should be also satisfied at step i + 1

$$R(\underline{u}^{i+1}, \underline{f}^{i+1}) = R(\underline{u}^i + \delta \underline{u}, \underline{f}^{i+1}) = 0$$

Linearize

$$R(\underline{u}^{i} + \delta \underline{u}, \underline{f}^{i+1}) = R(\underline{u}^{i}, \underline{f}^{i+1}) + \frac{\partial R(\underline{u})}{\partial \underline{u}} \delta \underline{u} = 0$$

• Finally

$$\delta \underline{u} = - \underbrace{\left[\frac{\partial R(\underline{u})}{\partial \underline{u}}\right]^{-1}}_{\text{contains } \Delta \delta g_{n}, \Delta \delta g_{i}} R(\underline{u}^{i})$$

• NB: Contact problem does not satisfy conditions of Kantorovich theorem on the convergence of Newton's method.

Variation of geometrical quantities

Normal gap

• First variation enters in the residual vector:

 $\delta g_n = \underline{n} \cdot (\delta \underline{r}_s - \delta \underline{\rho})$

Second variation enters in the tangent matrix:

$$\Delta \delta g_n = -\underline{\boldsymbol{n}} \cdot \left(\delta \frac{\partial \underline{\boldsymbol{\rho}}}{\partial \underline{\xi}}^T \Delta \underline{\xi} + \Delta \frac{\partial \underline{\boldsymbol{\rho}}}{\partial \underline{\xi}}^T \delta \underline{\xi} \right) - \Delta \underline{\xi}^T \underbrace{\mathbb{H}}_{\approx} \delta \underline{\xi} + g_n \left(\Delta \underline{\xi}^T \underbrace{\mathbb{H}}_{\approx} + \underline{\boldsymbol{n}} \cdot \Delta \frac{\partial \underline{\boldsymbol{\rho}}}{\partial \underline{\xi}}^T \right) \underbrace{\bar{A}}_{\approx} \left(\underline{\boldsymbol{n}} \cdot \delta \frac{\partial \underline{\boldsymbol{\rho}}}{\partial \underline{\xi}} + \underbrace{\mathbb{H}}_{\approx} \delta \underline{\xi} \right)$$

Variation of geometrical quantities

Convective coordinate of the projection

• First variation enters in the residual vector:

$$\delta_{\sim}^{\xi} = \left[\underbrace{\mathbf{A}}_{\approx} - g_n \underbrace{\mathbf{H}}_{\approx} \right]^{-1} \left(\frac{\partial \underline{\rho}}{\partial_{\sim}^{\xi}} \cdot (\delta \underline{\mathbf{r}}_s - \delta \underline{\rho}) + g_n \underline{\mathbf{n}} \cdot \delta \frac{\partial \underline{\rho}}{\partial_{\sim}^{\xi}} \right)$$

Second variation enters in the tangent matrix:

$$\begin{split} \Delta \delta \xi &= (g_n \underbrace{\mathbb{H}} - \underbrace{\mathbb{A}}_{\approx})^{-1} \left\{ \frac{\partial \underline{\rho}}{\partial \underline{\xi}} \cdot \left(\delta \frac{\partial \underline{\rho}}{\partial \underline{\xi}}^T \Delta \xi + \Delta \frac{\partial \underline{\rho}}{\partial \underline{\xi}}^T \delta \underline{\xi} \right) + \Delta \xi^T \left(\frac{\partial \underline{\rho}}{\partial \underline{\xi}} \cdot \frac{\partial^2 \underline{\rho}}{\partial \underline{\xi}^2} \right) \delta \underline{\xi} - \\ &- g_n \underline{\mu} \cdot \left(\delta \frac{\partial \underline{\rho}}{\partial \underline{\xi}^2} \Delta \underline{\xi} + \Delta \frac{\partial^2 \underline{\rho}}{\partial \underline{\xi}^2} \delta \underline{\xi} \right) - g_n \Delta \underline{\xi}^T \left(\underline{\mu} \cdot \frac{\partial^2 \underline{\rho}}{\partial \underline{\xi}^3} \right) \delta \underline{\xi} + \\ &+ \left[g_n \left(\delta \frac{\partial \underline{\rho}}{\partial \underline{\xi}} + \frac{\partial^2 \underline{\rho}}{\partial \underline{\xi}^2} \delta \underline{\xi} \right) \cdot \frac{\partial \underline{\rho}}{\partial \underline{\xi}}^T \underbrace{\mathbb{A}}_{\approx} - \delta g_n \underbrace{\mathbb{E}}_{n} \right] \left(\underline{\mu} \cdot \Delta \frac{\partial \underline{\rho}}{\partial \underline{\xi}} + \underbrace{\mathbb{H}}_{\approx} \Delta \underline{\xi} \right) + \\ &+ \left[g_n \left(\Delta \frac{\partial \underline{\rho}}{\partial \underline{\xi}} + \frac{\partial^2 \underline{\rho}}{\partial \underline{\xi}^2} \Delta \underline{\xi} \right) \cdot \frac{\partial \underline{\rho}}{\partial \underline{\xi}}^T \underbrace{\mathbb{A}}_{\approx} - \Delta g_n \underbrace{\mathbb{E}}_{\approx} \right] \left(\underline{\mu} \cdot \delta \frac{\partial \underline{\rho}}{\partial \underline{\xi}} + \underbrace{\mathbb{H}}_{\approx} \delta \underline{\xi} \right) \right\} \end{split}$$

Example

- Use penalty method to enforce Dirichlet BC
- Use penalty method to enforce contact constraints
- First, detect contact elements
- Second, construct updated residual vector and tangent matrix

- Strong mesh refinement is required
 - especially at **unknown edges** of contact zones

Typical mesh for fretting analysis [L. Sun, H. Proudhon, G. Cailletaud, 2011] 2D ~ 30 000 DoFs, 3D ~ 5 000 000 DoFs

- Strong mesh refinement is required
 - especially at unknown edges of contact zones

Infinite contact pressure and/or its derivative

- Strong mesh refinement is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems

Infinite looping

Initial guess $R(x_0, f_0) = 0$

- Strong mesh refinement is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems

Infinite looping

Too rapid change in boundary conditions $R(x_0, f_1) \neq 0$

- Strong mesh refinement is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems

Infinite looping

Iterations of Newton-Raphson method
$$R(x_0, f_1) + \frac{\partial R}{\partial x}\Big|_{x_0} \delta x = 0 \rightarrow \delta x = -\frac{\partial R}{\partial x}\Big|_{x_0}^{-1} R(x_0, f_1) \rightarrow x^1 = x_0 + \delta x$$

- Strong mesh refinement is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems

Infinite looping

Iterations of Newton-Raphson method $R(x^1, f_1) + \frac{\partial R}{\partial x}\Big|_{x^1} \delta x = 0 \rightarrow \delta x = -\frac{\partial R}{\partial x}\Big|_{x^1}^{-1} R(x^1, f_1) \rightarrow x^2 = x^1 + \delta x$

- Strong mesh refinement is required
 - especially at **unknown edges** of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems

Infinite looping

Infinite looping

- Strong mesh refinement is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems Convergence to a "false" solution

Initial guess $R(x_0, f_0) = 0$

- Strong mesh refinement is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems Convergence to a "false" solution

Too rapid change in boundary conditions $R(x_0, f_1) \neq 0$

- Strong mesh refinement is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems Convergence to a "false" solution

Iterations of Newton-Raphson method
$$R(x_0, f_1) + \frac{\partial R}{\partial x}\Big|_{x_0} \delta x = 0 \rightarrow \delta x = -\frac{\partial R}{\partial x}\Big|_{x_0}^{-1} R(x_0, f_1) \rightarrow x^1 = x_0 + \delta x$$

- Strong mesh refinement is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems

Convergence to a "false" solution

Iterations of Newton-Raphson method $R(x^1, f_1) + \frac{\partial R}{\partial x}\Big|_{x^1} \delta x = 0 \rightarrow \delta x = -\frac{\partial R}{\partial x}\Big|_{x^1}^{-1} R(x^1, f_1) \rightarrow x^2 = x^1 + \delta x$

- Strong mesh refinement is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems Convergence to a "false" solution

■ Infinite looping, e.g.

- Change of the contact state (contact/non-contact, stick/slip)
- Interplay between stiffness, friction and augmented Lagrangian coefficients^[1]
- Combination of non-linearities (e.g., plasticity+contact)

- Simulation of a deep drawing problem
- Finite strain plasticity + frictional contact

- Simulation of a deep drawing problem
- Finite strain plasticity + frictional contact

- Simulation of a deep drawing problem
- Finite strain plasticity + frictional contact

- Simulation of a deep drawing problem
- Finite strain plasticity + frictional contact

Cylinder-plane frictional contact

■ Non-conservative problem, history of loading is crucial

Cylinder-plane frictional contact

Non-conservative problem, history of loading is crucial

Press in 100 increments, $u_z \sim t^2$

Cylinder-plane frictional contact

■ Non-conservative problem, history of loading is crucial

Shift in 100 increments, $u_z \sim t$
Cylinder-plane frictional contact

Non-conservative problem, history of loading is crucial

Before sticking, every point of the contact interface has to pass through the slip zone. It is impossible when loaded too fast.

Warning friction!

- For dissimilar materials, the *friction matters* even in normal contact
- The problem is thus path-dependent, the B.C. should be changed slowly

Warning friction!

[1] A.G. Shvarts, PhD thesis, MINES ParisTech (2019)

Shallow ironing test

- Deformable-on-deformable frictional sliding
- Results obtained by different groups^{1,2,3,4,5,6} differ significantly
- Local and global friction coefficients may differ

[1] Fischer K. A., Wriggers P., "Mortar based frictional contact formulation for higher order interpolations using the moving friction cone", Computer Methods in Applied Mechanics and Engineering, vol. 195, p. 5020-5036, 2006.

[2] Hartmann S., Oliver J., Cante J. C., Weyler R., Hernández J. A., "A contact domain method for large deformation frictional contact problems. Part 2: Numerical aspects", Computer Methods in Applied Mechanics and Engineering, vol. 198, p. 2607-2631, 2009.

[3] Yastrebov V. A., "Computational contact mechanics: geometry, detection and numerical techniques", Thèse CdM & Onera, 2011.

[4] Kudawoo A. D., "Problèmes industriels de grande dimension en mécanique numérique du contact : performance, fiabilité et robustesse", Thèse @ LMA & LAMSID, 2012.

[5] Poulios K., Renard Y., "A non-symmetric integral approximation of large sliding frictional contact problems of deformable bodies based on ray-tracing", soumis, 2014.

[6] Zhou Lei's blog, http://kt2008plus.blogspot.de

Shallow ironing test

- No agreement between authors
- Dif. authors used dif. meshes (quadrilateral lin./sq., triangular lin.)
- Dif. authors used either finite or infinitesimal strain formulation

Shallow ironing test

- No agreement between authors
- Dif. authors used dif. meshes (quadrilateral lin./sq., triangular lin.)
- Dif. authors used either finite or infinitesimal strain formulation

Reading

- It's just a tip of the "Computational Contact Mechanics" iceberg
- Contact discretization and integration
- Smoothing techniques
- Energy conservative methods for dynamics

Infinitesimal deformation / infinitesimal sliding

Reading

- It's just a tip of the "Computational Contact Mechanics" iceberg
- Contact discretization and integration
- Smoothing techniques
- Energy conservative methods for dynamics

 $\mathcal{L}_a(x,\lambda)$

Merci de votre attention!