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m In nonlinear materials, first order differential
equations govern the change of history variables. 4
For example, in viscoelastic material model

&d &-Eg 0
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0=(E+Es)e+Eey |é4+—=—| 1T=n/E E
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€102
with Young’s moduli E, E., (Pa), total ¢ and viscous ¢,
strain, viscosity 1) (Pa-s), relaxation time 7 (s). o

©Formula 1
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m In nonlinear materials, first order differential
equations govern the change of history variables.
For example, in viscoelastic material model

. &€
0=(E+Es)e+Eey |&g+—=—|, 1=n/E
T T

o b .

Additive manufacturing, ©DMG MORI

with Young’s moduli E, E., (Pa), total ¢ and viscous ¢,
strain, viscosity 1) (Pa-s), relaxation time 7 (s).

m In non-stationary processes governed by parabolic
equations. For example, heat equation

aT ; : 7
‘DCPE =V. (kVT) 4 Friction welding

p - density, c, specific heat capacity at constant
pressure, k thermal conductivity.
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m In solid dynamics, hyperbolic PDE:

V-o+f=pii

SCALEZS

Lego-car crash simumation in LS-DYNA, ©DYNAMORE
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Variable separation

m Search solution in time:
(X, € Qx (0,T] > u(X, )

m Variable separation:

w(X,H =Y NiXu,(t)
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Variable separation

m Search solution in time:
(X, € Qx (0,T] > u(X, )

m Variable separation:

w(X,H =Y NiXu,(t)

m Results in 2nd order in time system of ODE:
[M][ii] + [Cl[a] + [K][u] = [F](t)

with mass matrix [M] € IR"*",
viscous damping matrix [C] € R™",
stiffness matrix [K] € R™",
unknown displacements [u] € IR".
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Variable separation

m Search solution in time:
(X, € Qx (0,T] > u(X, )

m Variable separation:

w(X,H =Y NiXu,(t)

m Results in 2nd order in time system of ODE:
[M][ii] + [Cl[a] + [K][u] = [F](t)

with mass matrix [M] € IR"*",
viscous damping matrix [C] € R™",
stiffness matrix [K] € R™",
unknown displacements [u] € IR".

m Or in 1st order in time system of ODE:

[CI[T] + [KI[T] = [QI(t)
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First order differential equations



First order ODE

m Consider a linear first order system of ODE
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First order ODE

m Consider a linear first order system of ODE

[4]=f(qLt), teT=[0TICR, [g€R"
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First order ODE

m Consider a linear first order system of ODE

[4]=f(qLt), teT=[0TICR, [g€R"

m With initial conditions:
[9](t = 0) = [q0]
we get a Cauchy problem.
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First order ODE

m Consider a linear first order system of ODE

[4]=f(qLt), teT=[0TICR, [g€R"

m With initial conditions:
[9](t = 0) = [q0]
we get a Cauchy problem.
m Cauchy-Lipschitz (or Picard-Lindel6f) theorem:

(1) If function f : R" x T~ — R" is continuous in t: f(e,t) € C'(T)
(2) and is Lipschitz continuous in [q],

7

K > 0s.t. Vte T, Vgl [q) € R": || fIq); ) - f(Lq); )| < K||l9] - [q)
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First order ODE

m Consider a linear first order system of ODE

[4]=f(qLt), teT=[0TICR, [g€R"

m With initial conditions:
[9](t = 0) = [q0]
we get a Cauchy problem.
m Cauchy-Lipschitz (or Picard-Lindel6f) theorem:

(1) If function f : R" x T~ — R" is continuous in t: f(e,t) € C'(T)
(2) and is Lipschitz continuous in [q],

7

K > 0s.t. Vte T, Vgl [q) € R": || fIq); ) - f(Lq); )| < K||l9] - [q)

then V|qo0] € R", a unique solution [q(t)] for Cauchy problem exists.
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Discretization

m Split time interval into uniform increments Af = t;.1 — t;

. At — . time, ¢t
T i- """"""" T >
0 tzf l >i+1 T
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Discretization

m Split time interval into uniform increments Af = t;.1 — t;

. At — . time, ¢t
T i- """"""" T >
0 tzf l >i+1 T

m Taylor expansion:
1
[q + AD] = [qD] + [gD]AL + E[ii(t)]Atz + o(A#?)

with Bachmann-Landau or asymptotic notations: y = o(x) if y/x %0
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m Taylor expansion:
1
[q + AD] = [qD] + [gD]AL + E[ii(t)]Atz + o(A#?)

with Bachmann-Landau or asymptotic notations: y = o(x) if y/x %0
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Discretization

m Split time interval into uniform increments Af = t;.1 — t;

. At — . time, ¢t
T i- """"""" T >
0 tzf l >i+1 T

m Taylor expansion:
1
[q + AD] = [qD] + [gD]AL + E[ii(t)]Atz + o(A#?)

with Bachmann-Landau or asymptotic notations: y = o(x) if y/x %0
m So we search discrete values: [g]r = [q(t1)]
m An integration method is consistent iff

li [q]/m - [q]k
m —————

At50 Af = 14(@)]
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Integration in time

m We know that

fe+1

[gleer = [qh + f (g1t
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Integration in time

m We know that

41 te+1

(g1t = [l + f [q1dt = [q]c + f f(lqls )t

te i
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Integration in time

m We know that

41 te+1

(gl = [l + f L1t = gl + f gl bt

te f

m Why not to use known integration methods?

[4] :
7 t+1
— f Flq); tyat
| ; f L L -
tk_>tk+1 time, t
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Integration in time

m We know that

41 te+1

(gl = [l + f L1t = gl + f gl bt

te f

m Why not to use known integration methods?

[4] :
7 t+1
— f Flq); tyat
| ; f L L -
tk_>tk+1 time, t

m Because the value of the integrand in unknown

te+1
ff([q]; Hdt =?
te
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Finite difference

: } j ] 1 >
/ b1 L bt time, t
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Finite difference

m Consider left and right Taylor expansions:

1
[9(tk + AD] = [gles1 = [q]k + [GleAt + 5[21']/<At2 +0(AF)

[q(t = AD] = [gli1 = [g]c — [g1eAt + %[iﬂkAtz - o(AP)
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Finite difference

m Consider left and right Taylor expansions:

[9(tc + AD] = [glee1 = [q]k + [g1cAL + %[iﬂsz +0(AF)

(gt = AD] = lql-1 = [k~ [ + S G1AR ~ o(AP)

m The finite differences are then:

? k+1 — . 1 .
iy = I s Lo
? k — — . 1 .
it = Dt g+ oan
m And the central difference:
[‘7];/,1 _ [q]kJr] - [q]k—l _ [q]k + O(At)

2At
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Finite difference 11

m In first order approximation:

[q]k _ [q]/wlA; [q]k 4 O(At)
[i]]k _ [‘J]k _qu]k—l +O(AY)
il = [q]kuzgt[q]kq +O(AP)

m Note that notation o(Af) was changed to O(At), where y = O(x) means that
0< lirr(} ly/x| < co.
X
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Mean value theorem

@1 ..

-,
’ H

[q]k+l

>
e 1 bt time, t

Th: If [g] € C'([t, tr.1]) then ¢ € [#, t11] such that

[9)k+1 — [9)k = [ (txs1 — £)
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Mean value theorem

- } >
et Lt time, t
Th: If [g] € C'([t, tr.1]) then ¢ € [#, t11] such that
[qlke1 — [9) = [gE) ]t — ) & 14l — gk = [g()]

At

NB: Théoreme des accroissements finis, Théoreme de Lagrange
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Integration methods

m First order ODE:

’[i]kﬂ
(41 =f(ql;t), teT =[0,TICR, [gleR" a1, p

/o

[q]

41,

1-0

time, t

L
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Integration methods

m First order ODE: [41,

’[E]kﬂ
(41 =f(ql;t), teT =[0,TICR, [gleR" g1, p
/ 0 1-0

m Time points: [q] time, ¢t
>

te, ter: = to = (1= O) + Otgyq =t + OAL te 1o L
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Integration methods

m First order ODE: [41,

’[E]kﬂ
(41 =f(ql;t), teT =[0,TICR, [gleR" g1, p
/ 0 1-0

m Time points: [q] time, ¢t
>

te, ter: = to = (1= O) + Otgyq =t + OAL te 1o L

m Approximation:

[q]k+1 - [q]k

A ~ f([q(to)]; to)

V.A. Yastrebov Finite Element Method: integration 13/35



Integration methods

m First order ODE: [41,

’[E]kﬂ
(41 =f(ql;t), teT =[0,TICR, [gleR" g1, p
/ 0 1-0

m Time points: [q] time, ¢t
>
te, ter: = to = (1= O) + Otgyq =t + OAL te 1o L
Methods:
= Approximation: m 0 = 0: Explicit (forward) Euler
m O = 1: Implicit (backward) Euler
[q]/ﬁ-lA; [q]k zf([q(tg)],' to) * 0 = 0.5: Crank-Nicolson method
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Explicit integration

m Since 0 = 0, the derivative is found at fy = f; [q],.,

- la],=fllqlet)
9] time, ¢

=t biert
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Explicit integration

m Since 0 = 0, the derivative is found at ty = f; (9],
m Approximation:

9]+ — [9]k

At = f([q(#)]; tr) + O(AY)

- la],=fllqlet)
9] time, ¢

t=ty Lt
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Explicit integration

m Since 0 = 0, the derivative is found at ty = #; [q],.,
m Approximation:

w — ([T t) + O(AD _
[q],
m Prediction: [9],=flqlute)
[qleer = [ + At F[q(T; ) + o(AR) a1 time, ¢

=t biert
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Explicit integration for system of equations

m For system of equations: 9],

[CIl4] + [K][q] = [F®]

4], =gl
9] time, ¢

=t biert
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Explicit integration for system of equations

m For system of equations: 9],

[CIl4] + [K][q] = [F®]

m Canonical form:

’ [d1,=ATqlt)

(4] time, t
: >
t=ty biest
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Explicit integration for system of equations

m For system of equations: 9],

[CIl4] + [K][q] = [F®]

m Canonical form:

[q]k
[4] = [CI7" ([F®] - [K][q]) - [g1,=fqlt)
[4] time, ¢
m If [C]is diagonal [C] = diagfc!,¢?,- -+, "}, then 3 >
using explicit integration b=ty Lisn

(gl = g + % (IF()] — [Klql)

V.A. Yastrebov Finite Element Method: integration 15/35



Implicit integration

m Since 0 = 1, the derivative is found at ty = ;1

--"

*lq);.,

time, t

te L=ty
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Implicit integration

m Since 0 = 1, the derivative is found at ty = ;1 ‘

m Approximation: ;
[qlkn — [qlk 9151

At = f([qlk+1; tes1) + O(AL)

time, t

te L=ty
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Implicit integration

m Since 0 = 1, the derivative is found at fy = f;,; [‘ﬂkn:f([q] rontins)
m Approximation: :

[q]k+1 - [q]k

At = f([qlk+1; tes1) + O(AL)

m Prediction:

[qlkn1 = [qlk + At f([glis; tr) + 0(AL)
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Implicit integration for system of equations

m For system of equations:

[CIl4] + [K][q] = [F®]
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Implicit integration for system of equations

m For system of equations:

[CIl4] + [K][q] = [F®]

m Finite difference:

[C1([q)ks1 — [q1k) = At ([F(tsn)] — [K[glier) +0(A) e teo=ty

V.A. Yastrebov Finite Element Method: integration 17/35



Implicit integration for system of equations

m For system of equations:

[CIl4] + [K][q] = [F®]

m Finite difference:

[C1 (gl ~ [g10) = At ([Flixad)] = [Kllglnn) +o(AD) 1y b=ty
m Linear system of equations to be solved:

(IC1 + AHK])[qlker = [ClIglk + At [F(tisn)]
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Crank-Nicolson integration

m Since 0 = 0.5, the derivative is found at

V.A. Yastrebov

to =t + 0.5At = i’/\,+]/2

Finite Element Method: integration

[41,=fTq)ets) ‘
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Crank-Nicolson integration

m Since 0 = 0.5, the derivative is found at

V.A. Yastrebov

to =t + 0.5At = i’/\,+]/2

Approximation:

[q]k+1 -
At

7l = f([glk+1/2; tes2) + O(AF)

Finite Element Method: integration

[41,=fTq)ets) ‘

[q]k+1

L4] time, ¢

b to b
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Crank-Nicolson integration

m Since 0 = 0.5, the derivative is found at
tg =t + 0.5At = i’/\,+]/2

m Approximation:

w = flalksaya; tinj2) + O(AF)

m Prediction:

[qlk1 = [g)k + At F([qlks1y2; tes1/2) + 0(AF)

Fglrs/2; tee12) = %(f([‘ﬂkﬂ} tiv1) + f([q]k; fk))
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Crank-Nicolson integration

m Since 0 = 0.5, the derivative is found at [41,=fTq)ets)
to =t + 0.5At = i’/\,+]/2 B

m Approximation:

[9]k+1 — [9]k

A = f([qks1/2; tes12) + O(AL?)

m Prediction:

[qlks1 = [qlc + At f([qks1/2; tra1y2) + 0(AF)
Fglrs/2; tee12) = (f([q]k+1/f/<+1 )+ fqlx fk)

m Finally: [q].1 = [g]c (f( qlest; ) + ()i ) + o(AP)
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Crank-Nicolson integration for system of equations

m For system of equations:

[CIl4] + [K][q] = [F®]

V.A. Yastrebov

Finite Element Method: integration

[41,=fTq)ets) ‘

[q]k+1

L4] time, ¢

b to b

19/35



Crank-Nicolson integration for system of equations

m For system of equations: [41,=fTq)ets)

[CIl4] + [K][q] = [F®]

m Finite difference:

C1([qlken ~ [ale) = 5 (IFlkoa +F— K] ([qleon + [g]0)) +o(aP) 3 ’ : >
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Crank-Nicolson integration for system of equations

m For system of equations: [41,=fTq)ets)

[CIl4] + [K][q] = [F®]

m Finite difference:

C1([qlken ~ [ale) = 5 (IFlkoa +F— K] ([qleon + [g]0)) +o(aP) 3 : : >
m Linear system of equations to be solved:

At At

A
(€1 + 51K1) gleas = (€1 - S1KT) g+ 5 ((F + [Flear)
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Example: 1D heat equation

m PDE
T(x,t) = aAT(x,t), x€[0,2], te€]0,c0)

m Initial conditions
T(x,0)=0

Boundary conditions:
m Left edge x = 0: increase temperature T(0,t) = Tot/tg
= Right edge x = 2: zero flux g = 2 , =0
Mesh: N, =40, h = 0.05 (Lu.)

Parameter: a = 0.01 (Lu.?/t.u.)

@t
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Example: 1D heat equation

v
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Example: 1D heat equation
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Example: 1D heat equation

tu

v
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Example: 1D heat equation
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Example: 1D heat equation
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Example: 1D heat equation

tu

b g @—0—0—0—0—0—0—0—0—0—0—0—0—0—0—@
ty [ *o—o—o—o—o—o—o—o—o—o—o—o—o—o—o—o
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Example: integration results

Time step At=5.000, t=0.00

30
—— Reference
—8— Explicit
25 4 m  Implicit
¥ Crank-Nicolson
20
~
g
2
C 154
9]
Q
£
O
i
101
5 4
0 u u 7 y T ¥ ¥
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position, x
At =0.10 t.u.
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Example: integration results

Time step At=5.000, t=0.00

30
—— Reference
—8— Explicit
25 4 m  Implicit
¥ Crank-Nicolson
20
~
g
2
C 154
9]
Q
£
O
i
101
5 4
0 u u 7 y T ¥ ¥
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
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Stability criterion

m For 0 > 0 the integration is unconditionally

[1] Courant, R; Friedrichs, K.; Lewy, H. (1928), Uber die partiellen Differenzengleichungen der mathematischen Physik (in German), Mathematische Annalen 100 (1): 32-74
[2] Courant, R, Friedrichs, K. and Lewy, H., 1967. On the partial difference equations of mathematical physics. IBM journal of Research and Development, 11(2), pp.215-234.
NB: Richard Courant was a doctoral student and assistant of David Hilbert.
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Stability criterion

m For 0 > 0 the integration is unconditionally

m Courant-Friedrichs-Lewy!?! or CFL condition
the signal should not propagate more than one element in one time step:

for0 <1/2: for stability At. = Ch?

[1] Courant, R; Friedrichs, K.; Lewy, H. (1928), Uber die partiellen Differenzengleichungen der mathematischen Physik (in German), Mathematische Annalen 100 (1): 32-74
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NB: Richard Courant was a doctoral student and assistant of David Hilbert.
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Stability criterion

m For 0 > 0 the integration is unconditionally

m Courant-Friedrichs-Lewy!?! or CFL condition
the signal should not propagate more than one element in one time step:

for0 <1/2: for stability At. = Ch?

m Coefficient C depends on the maximal eigen value of [CIK]
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Stability criterion

m For 0 > 0 the integration is unconditionally

m Courant-Friedrichs-Lewy!?! or CFL condition
the signal should not propagate more than one element in one time step:

for0 <1/2: for stability At. = Ch?

m Coefficient C depends on the maximal eigen value of [CIK]
m Estimating the maximal eigen value by the smallest element in the system

h?

At <Aty = ——r
= 8a(1/2 - 0)

[1] Courant, R; Friedrichs, K.; Lewy, H. (1928), Uber die partiellen Differenzengleichungen der mathematischen Physik (in German), Mathematische Annalen 100 (1): 32-74
[2] Courant, R, Friedrichs, K. and Lewy, H., 1967. On the partial difference equations of mathematical physics. IBM journal of Research and Development, 11(2), pp.215-234.
NB: Richard Courant was a doctoral student and assistant of David Hilbert.
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Stability criterion

m For 0 > 0 the integration is unconditionally

m Courant-Friedrichs-Lewy!?! or CFL condition
the signal should not propagate more than one element in one time step:

for0 <1/2: for stability At. = Ch?

m Coefficient C depends on the maximal eigen value of [CIK]
m Estimating the maximal eigen value by the smallest element in the system

h?

At <Aty = ——r
= 8a(1/2 - 0)

m The smallest element of the mesh will control the critical time step
one more reason to be careful with your mesh (or with your integrator)
[1] Courant, R; Friedrichs, K.; Lewy, H. (1928), Uber die partiellen Differenzengleichungen der mathematischen Physik (in German), Mathematische Annalen 100 (1): 32-74
[2] Courant, R, Friedrichs, K. and Lewy, H., 1967. On the partial difference equations of mathematical physics. IBM journal of Research and Development, 11(2), pp.215-234.
NB: Richard Courant was a doctoral student and assistant of David Hilbert.
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Second order differential equations



Solid dynamics: explicit integrators

m Discretized equations:
[M][it] + [C][z] + [K][u] = [F](£)
with mass matrix [M] € R™",
viscous damping matrix [C] € R,
stiffness matrix [K] € R™",
unknown displacements [u] € IR".
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Solid dynamics: explicit integrators

m Discretized equations:
[M][it] + [C][z] + [K][u] = [F](£)
with mass matrix [M] € R™",
viscous damping matrix [C] € R,
stiffness matrix [K] € R™",
unknown displacements [u] € IR".
m For explicit integrators a similar CFL condition exist: the signal propagating at speed
¢ = +/E/p should not propagate more than the smallest element min{/:}, resulting in

At < At, = min{h} \/g

m For damping matrix [C], Rayleigh damping is often employed:
[C] = u[M] + A[K]
so the damping is frequency dependent in the following way

Amplitude ~ exp(—<t) &(w) = % (% + /\m)
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Solid dynamics: implicit integrators

m Discretized equations:
[M][ii] + [K][u] = [FI(t)

m Quite often only “low mode” response is of interest
m So implicit (unconditionally stable) integrators are of interest
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Solid dynamics: implicit integrators

m Discretized equations:
[M][ii] + [K][u] = [FI(t)

m Quite often only “low mode” response is of interest
m So implicit (unconditionally stable) integrators are of interest
m Need to control the dissipation of high modes with a parameter other than time step.

m This dissipation should not strongly affect lower modes.
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HHT integrator

Hilber-Hughes-Taylor implicit integrator!'!
m Discretized equations and initial conditions:

[M][it] + [K][u] = [FI(®), [ulo = [uo], [itlo = [wo]
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HHT integrator

Hilber-Hughes-Taylor implicit integrator!'!
m Discretized equations and initial conditions:

[M][it] + [K][u] = [FI(®), [ulo = [uo], [itlo = [wo]

m Integrator with three parameters «, 3, y:
[M][it]e1 + (1 + a)[K][uler1 — alK][ulx = [Fli
[l = [l + Atlali + A [(1/2 = B)it]x + Blitlk+1]
[itleor = [itl + At [(1 = P + Pliilic |

m Where initial accelerations are initiated as

[it]o = [M]™" ([Flo - [K][u]o)

[1] Hilber, HM., Hughes, TJ.R. and Taylor, R.L. (1977) “Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics”, Earthquake Engineering and
Structural Dynamics 5:283-292
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Newmark ¢ HHT

s HHT
[M][it]ir1 + (1 + a)[K][ulir1 — a[K][ulk = [Fli
[lisr = [l + At[atl + AP [(1/2 = B)liil + Bliilir]
[itlesr = [iele + At [(1 = P + Pliilic |
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Newmark ¢ HHT

m HHT
[M][ﬁ]kﬂ + (] + a)[K][u]kH - Q[K][u]k = [F]k+1
[ules1 = [l + Atlile + AP [(1/2 = Btk + Blitlir]
[itlesr = [iele + At [(1 = P + Pliilic |

m Setting o = 0 results in a family of Newmark integrators (the most common in FEM)

[M][ﬁ]kﬂ + [K][u]k+1 = [F]k+1
[ulee1 = [ule + Atlale + AP [(1/2 = Btk + Blitlir]
[itlesr = [iele + At [(1 = P + Pliilic |
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Newmark ¢ HHT

= HHT

[M][ﬁ]kﬂ + (] + a)[K][u]kH - Q[K][u]k = [F]k+1
[ules1 = [l + Atlile + AP [(1/2 = Btk + Blitlir]
[itlesr = [iele + At [(1 = P + Pliilic |

m Setting o = 0 results in a family of Newmark integrators (the most common in FEM)

[M][ﬁ]kﬂ + [K][u]k+1 = [F]k+1
[ulee1 = [ule + Atlale + AP [(1/2 = Btk + Blitlir]
[itlesr = [iele + At [(1 = P + Pliilic |

m If y = 1/2 — no numerical dissipation
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Newmark ¢ HHT

s HHT
[M][it]ir1 + (1 + a)[K][ulir1 — a[K][ulk = [Fli
[lisr = [l + At[atl + AP [(1/2 = B)liil + Bliilir]
[itlesr = [iele + At [(1 = P + Pliilic |

m Setting o = 0 results in a family of Newmark integrators (the most common in FEM)

[M][ﬁ]/ﬁ—l + [K][u]k+1 = [F]k+1
[ulee1 = [ule + Atlale + AP [(1/2 = Btk + Blitlir]
[itlesr = [iele + At [(1 = P + Pliilic |

m If y = 1/2 — no numerical dissipation
m If y > 1/2 — some numerical dissipation
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Newmark ¢ HHT

m HHT
[M][ﬁ]kﬂ + (] + a)[K][u]kH - Q[K][u]k = [F]k+1
[ules1 = [l + Atlile + AP [(1/2 = Btk + Blitlir]
[itlesr = [iele + At [(1 = P + Pliilic |

m Setting o = 0 results in a family of Newmark integrators (the most common in FEM)

[M][it]e1 + [K][u]k+1 = [Flen
[lear = [l + Al + A [(1/2 = Bl + Blitlsa]
[itlesr = [iele + At [(1 = P + Pliilic |

m If y = 1/2 — no numerical dissipation

m If y > 1/2 — some numerical dissipation
m I B> (y+1/2)/4
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Analysis I

m Consider a single DOF u(t) : 11,1y, . ..
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m Introduce a vector
[X] = {u, Ati, A}
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Analysis I

m Consider a single DOF u(t) : 11,1y, . ..

m Introduce a vector
[X] = {u, Ati, A}

m In absence of forcing F = 0, we get
[XTn+1 = [A][X]x

where [A] is the amplification matrix determining stability and accuracy.
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Analysis I

m Consider a single DOF u(t) : 11,1y, . ..

m Introduce a vector
[X] = {u, Ati, A}

m In absence of forcing F = 0, we get
[XTn+1 = [A][X]x

where [A] is the amplification matrix determining stability and accuracy.

Eigenvectors of the matrix can be found as:
det([A] = A[I]) = A° = 241742 + ApA — A3 =0

where A; = tr([A]), A =sum of principal minors, Az = det([A])
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Analysis I

m Consider a single DOF u(t) : 11,1y, . ..

m Introduce a vector
[X] = {u, Ati, A}

m In absence of forcing F = 0, we get
[XTn+1 = [A][X]x

where [A] is the amplification matrix determining stability and accuracy.

Eigenvectors of the matrix can be found as:
det([A] = A[I]) = A° = 241742 + ApA — A3 =0

where A; = tr([A]), A =sum of principal minors, Az = det([A])

Spectral radius
p = max{A;}
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Analysis 11

m By repetitive use of [X],.1 = [A][X], and eliminating Ati, A2l

Upy1 — 2A11, + Ajlly _A3un—2 =0
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Analysis 11

m By repetitive use of [X],.1 = [A][X], and eliminating Ati, A2l

Upy1 — 2A11, + Ajlly _A3un—2 =0

m Explicit form of the amplification matrix:

| [1+ape? 1 1/2-8
[Al= 5| 72 1-(+a)y-pQ* 1-y-1+a)l/2y-pO2
-2 —(1+a)Q? ~(1+a)1/2-p)Q?
where
D=1+(1+a)pQ?
Q = wAt
w = VK/M
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Analysis III

m By fixing a we can select a sub-family of HHT integrators with

B=01-a)3/4, y=1/2-a
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Analysis III

m By fixing a we can select a sub-family of HHT integrators with

B=01-a)3/4, y=1/2-a

m Then invariants of the amplification matrix:

A1 =1-0%/2D) + A3/2
Ay =1+2A;
Az = a(1 + a)*Q?/(4D)

where D becomes D = 1 + (1 + a)(1 — a)>Q?/4

V.A. Yastrebov Finite Element Method: integration 31/35



Analysis III

m By fixing a we can select a sub-family of HHT integrators with

B=01-a)3/4, y=1/2-a

m Then invariants of the amplification matrix:

A1 =1-0%/2D) + A3/2
Ay =1+2A;
Az = a(1 + a)*Q?/(4D)

where D becomes D = 1 + (1 + a)(1 — a)’Q?/4
m So eigenvalues could be found from:

(A=A3)(A =12 +Q*A?/D=0
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Analysis IV

m In the limit QO — oo

[@-®)(1-a)’A-a +a?|(A-1)?+4A2 =0
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Analysis IV

m In the limit QO — oo

[@-®)(1-a)’A-a +a?|(A-1)?+4A2 =0
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Figure 1. Eigenvalues of the amplification matrix in the limit A#/T - o vs &

Figure from[1]

= HHT integrator is stable if —-1/2 < a <0

[1] Hilber, HM., Hughes, TJ.R. and Taylor, R.L. (1977) “Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics”, Earthquake Engineering and
Structural Dynamics 5:283-292
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Comparison

(1) Trapezoidalrule a =0, =0.25,y = 0.5

(2) Trapezoidal rule with damping & = 0.1, =0.25,y = 0.5
(3) Newmark with y damping a = 0, = 0.3025,y = 0.6

(4) HHT & = 0.1, = 0.3025,y = 0.6

TRAPEZOIDAL RULE (@0, 8+0.25,7+0.5)
1. /
TRAPEZOIDAL RULE WITH a-DISSIPATION
(as0.,8:0.25,y+0.5)
0.9
NEW ALGORITHM (@ ==0.1, /80,3025,y = 0.6)
P
0.8 NEWMARK METHOD (a=0,3+0.3025,7+0.6)
{ 1 | |
(X4
o? 0! ' 10 i0* 10*
! AvT
Spectral radii pl!!
T=2n/w

[1] Hilber, HM., Hughes, TJ.R. and Taylor, R.L. (1977) “Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics”, Earthquake Engineering and
Structural Dynamics 5:283-292
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Comparison

1) Trapezoidalrulea = 0,5 =0.25,y = 0.5
2) Trapezoidal rule with damping & = 0.1, = 0.25, = 0.5
3) Newmark with y damping a = 0, f = 0.3025,y = 0.6

(
(
(
(4) HHT a = —0.1,8 = 0.3025, = 0.6

o.07 T T T
008 -
NEWMARK METHOD
(@+0,B+0.3028,y+0.6)
0.08{— -
TRAPEZOBAL RULE WITH a-0ISSIFATIN
+0.1,8+0.28,y+0.8
g ooi Brozs.ye =
0.031— -
c.oz\— =
NEW ALGORITHM
(a=-0l,8+0.3025,y = 0.6)
0.0~ ~
TRAPEZOIDAL RULE
/(a-o,ﬁ-o.za.po.s)
L 1 I
or (X3 0.5 0.4 ©5

avt
Damping factorl!! & : 1, ~ exp(—Edty)
T= ZT(/(U

[1] Hilber, HM., Hughes, TJ.R. and Taylor, R.L. (1977) “Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics”, Earthquake Engineering and
Structural Dynamics 5:283-292
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Examples
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Merci de votre attention !
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