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Continuum Solid Mechanics:
a Brief Review



m Scalars: 4, «
m Vectors: a,A  (for a selected basis they are equivalent to a;, ;)
m Second order tensors: A, g (... A, 04)

m Scalar, vector, tensor products:  a-n, T, X7, €® e,

m Double contraction: ¢ : ¢~ 0j¢;



m Scalars: 4, «

m Vectors: a,A  (for a selected basis they are equivalent to a;, ;)

m Second order tensors: Ao (... A, 04)

m Scalar, vector, tensor products:  a-n, T, X7, €® e,
m Double contraction: ¢ : ¢~ 0j¢;

. oo du
m Gradient operator: Va,Vu, Va=-—, Vu=-—

0X
for the Cartesian coordinates: Vu ~ du;/dX; = u;;

m Divergence operator: Vo

for the Cartesian coordiantes: V-a



Deformable medium

m Deformation in time ¢
m Reference configuration at f = f), X and current configuration at f = #;, x(X, f)
m Lagrangian description, follow material points X = x(t = )

m Displacement vectoris u = x — X

X1 space
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Deformable medium

m Deformation in time ¢
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Deformation tensor

dx 0 (K + E) du

T £ ti dientF= — = ———~ =1+ -—=1+H
B Iransformation gradien L X ()X L LT

m Cauchy-Green right tensor C=F" - F

1 ;1
m Green-Lagrange deformation tensor E = 3 (g - Q =H S+ EI;I T-H

m ForH; <1, E~H S and we obtain a tensor of small deformations

5= 1[0g +(()E) }:%(Vm(VE)T)

=t =3 ]ox o

fles}

Xl space

1y t time, ¢
Reference configuration Current configuration



Stress tensor and Hooke’s law

m Hooke’s law in uniaxial test:

EA L-L
F=ku & o0wA=-—u=EA 0
Lo Lo
m In general case stress and strain are related through a linear
operator (fourth-order elasticity tensor 4g):

IIS]
1]
i~
llg}
llew

= Inversely the strain can be found through a stiffness tensor “S:

193
TS
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Hooke’s law for isotropic solids: stress

m In the case of an isotropic material, Hooke’s law reduces to:

g= /\tr(£)£+ 2,u£,

with A, i being Lamé coefficients:

vE B E
A+vd-2v M7 20+

A=

with Young’s modulus E and Poisson’s ratio v.

m In the component form it reads:

ojj = /\(é'kk)b,'/' + 2[.!&,‘,‘

m In the matrix form:

011 O O3 AMr(g)/2u) + en £12 €13
o on  op|=2u €12 Atr(e)/2u) + €22 €23
013 023 033 13 €23 /\tr(g)/(Zy) + €33




Hooke’s law for isotropic solids: stress

m In the case of an isotropic material, Hooke’s law reduces to:

g= /\tr(£)£+ 2,u£,

with A, i being Lamé coefficients:

vE B E
A+vd-2v M7 20+

A=

with Young’s modulus E and Poisson’s ratio v.
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m In the matrix form:

1/tr(§)/(] —-2V)+én 12
}_ 2u

€13
012 02 0x3 €12 vir(e)/(1 = 2v) + ex €23
013 023 033 3 €3 vtr(e)/(1 —2v) + €33

&1

’7(711 012 ag13



Hooke’s law for isotropic solids: strain

m Strain as a function of stress:

1+v v
E=——0— =tr(o)l |
£=—f g~ phiol
m In the component form it reads:
1+v v
{','j = E J,‘j - EGkkO,‘,‘

m In the matrix form:

(1+v)or2 (1 +v)o2 - vir(g) (1+v)os

e € €1 (I +v)on —vir(g) 1+ v)o12 1 +v)os
€12 €22 €93 ==
. : (1+v)oi3 (1+v)oxs (1 +v)oss — vir(g)

€13 &3 £33



Hooke’s law for isotropic solids: strain

m Strain as a function of stress:

1+v v
E= o— =tr(o)L |
c=pe- puiel
m In the component form it reads:
1+v v
é‘,‘j = E J,‘j - Eokkb,‘,‘
= In the matrix form:
e € €1 1 (I +v)on —vir(g) 1+ v)o12 1 +v)os
€ E&n  En|= < (I +v)orz (1 +v)az - vir(g) (1 +v)oos
€13 &3 €33 (1+v)o13 (1+v)o2s (1+v)oss — vtr(g)
1 o= V(o2 + 033) 1+ v)o12 (1+v)o13
== (1+v)o12 o2 — V(011 + 033) (1+v)o3
1+ v)o3 (1 +v)ox 033 — V(011 + 022)




Equilibrium of an infinitesimal element

m Infinitesimal strain tensor is symmetric and satisfies the
.

compatibility conditions”:

Vx(Vxg)=0
B Stress tensor g should ensure equilibrium of any infinitesimal

element™:

Force balance: f n-0dS=0
s

Momentum balance: fz X(n-0)dS=0
s
| s

m Following the divergence theorem:

_fg-t:idS:fV-(:idV:O
S 14
Since the volume V' can be arbitrary chosen, then

everywhere in V.

*In the case of a simply-connected solid.
**In the absence of volumetric forces.

I
=
<

—>




Equilibrium of an infinitesimal element II

m Second Newton’s law:
. L1
mip=f = py—vjj l
m In presence of volumetric forces with density [ v the total f
force is given by: V
f= fdeVJrfg-gdS -~ / —
Lol 3= =
/ Vv

m Then using the second Newton’s law and the divergence T

theorem:

f(V-ngf/)dV: prdV
v - v

m Since it holds for an arbitrary V, then in every point of V:



Equilibrium of an infinitesimal element II

m Equilibrium (3 equations):

V-g+f, =pi l

m In component form (Cartesian coordinates)*: f"/r

gjjj + fvi = pil,

m Explicitly: T
00 yy aa.\'}/ d0y; B

ax dy = .

doy,  doy  doy; B

Tt e v, =
2 ez 00z

()[;TJ\L + ()g})_ + % +fV; = pl“[:

= Ui

* The following notation is used y;; = 57
J = ox



Deformable solid and boundary conditions

Notations:
m Consider a solid Q) with boundary J)
m Boundary is split into I', and I 0Q=T,U Iy

m AtT, displacements u(t, X) are prescribed
(Dirichlet boundary conditions [BC]):

g:goatl",,

m At [ tractions £, (, X) are prescribed (Neumann
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Deformable solid and boundary conditions

Notations:
m Consider a solid Q) with boundary J) L 0
m Boundary is split into I', and I 0Q=T,U Iy

m AtT, displacements u(t, X) are prescribed
(Dirichlet boundary conditions [BC]):

g:goatl",,

At I’y tractions £ (t, X) are prescribed (Neumann

BC): U
n=tatly

‘n=0at r?

[ISIIIS]

oQ

Remarks:
m on the same boundary both BCs can be prescribed if they are orthogonal one to each other, i.e. u, - £, =0
(ex.: friction);
= a relationship between these BCs can be prescribed (Robin BC): 1, = U — st,, (ex.: Winkler’s foundation).



Elastic and static problem set-up

m Equilibrium in the absence of inertial forces

V-g+[V:O (*)

m Consistutive relation:

lis}
1]
e
llg}
llem

m Strain tensor:

=5 (Vu+ (Vo))

N —

oQ

= Boundary conditions:

.. . m Problem:
u=uyatl, (Dirichlet or essential BC) find such field « in O that satisfies
o-n=tyatly (Neumann or natural BC) equilibrium Eq. (+) and boundary conditions.
g-n=0atl (f’ (Trivial Neumann BC)



From Strong to Weak Form



Equilibrium: from strong to weak form

m Equilibrium in absence of inertial forces

Veg+f, =0 ()

m Consistutive relation:

[is}
]
e
llg}
llem

m Strain tensor:

(Va+(Va)T)

N —

&=

m Boundary conditions (BC):
=uyatly

‘n=1;atly

[ISEIISENES

~g:0atr?




Equilibrium: from strong to weak form

m Strong form: V- g +]jv =0



Equilibrium: from strong to weak form

m Strong form: V- g +]jv =0
m Product with a virtual vector field v and integrate over a volume:

f(V-g)-de+ [ZV-QdV:O
Q

Q



Equilibrium: from strong to weak form

m Strong form: V- g +ij =0
m Product with a virtual vector field v and integrate over a volume:

f(V-g)-de+ f[v-gdvzo
Q

Q

® Since [V (g-2)dV = [(V-0)-0dV + [g: (Vo)dV
Q Q Q



Equilibrium: from strong to weak form

m Strong form: V- g +ij =0
m Product with a virtual vector field v and integrate over a volume:
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Q

Q

[ ] Sincer-(g‘g)dV:f(V~g)‘ng+fg:(Vg)dVande~(g~g)dV: fﬂ-(g-g)ds,weget:
Q Q Q Q 90



Equilibrium: from strong to weak form

m Strong form: V- g +ij =0
m Product with a virtual vector field v and integrate over a volume:

f(V-g)-de+ f[v-gdvzo
Q

Q

[ ] Sincer-(g‘g)dV:f(V~g)‘ng+fg:(Vg)dVande~(g~g)dV: fﬂ-(g-g)ds,weget:
Q Q Q Q 90

fﬂ~g~gd5—fg:(Vg)dV+f[v~de:0
Q Q

Q




Equilibrium: from strong to weak form

m Strong form: V- g +ij =

Product with a virtual vector field v and integrate over a volume:

f(V-G) vdV + [f c0dV =0

Q Q

[ ] Smcer (o‘ v)dV = f vdV+({o‘ Vy)dVand({V~(g~g)dV:a£ﬂ-(g-g)ds,weget:
fﬂ~g~gd5—fg:(Vg)dV+f[v~de:0
Q Q Q

m If we select virtual vector field v = ou as virtual displacements vanishing at I', (J;, n-og- oudS = 0)and

j[nhgds—jc:r:Ong+jfv<bde:O
Q

I Q

denote 0¢ = £(0u), we obtain:

m This variational formulation is called the principle of virtual work.



m Work of imposed surface tractions on virtual displacements = 1 #, - ou
= Work density of distributed volumetric forces = 1 f - ou

m Corresponding virtual density of elastic energy = 1 0:06¢
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= Work density of distributed volumetric forces = f - ou

m Corresponding virtual density of elastic energy = 1 0:06¢

m According to the principle of virtual work:

fg:bédV:f{u-(ﬁgd5+ffv-éydv

Q I 0



m Work of imposed surface tractions on virtual displacements = 1 #, - ou
= Work density of distributed volumetric forces = 1 f - ou
m Corresponding virtual density of elastic energy = 1 0:06¢
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m Work of imposed surface tractions on virtual displacements = 1 #, - ou
= Work density of distributed volumetric forces = 1 f - ou
m Corresponding virtual density of elastic energy = 1 0:06¢

m According to the principle of virtual work:

fg:éng:f{u-bgdSﬁ—ffv-éde

Q Iy Q
m Equivalently
a(u, 6u) = L(6u)

with bilinear form a(u, 6u) = f o(w) : VoudVv = fg 1 0edV
Q -



Work of imposed surface tractions on virtual displacements = 1 #, - ou
Work density of distributed volumetric forces = § - ou
Corresponding virtual density of elastic energy = 1 0:06¢

According to the principle of virtual work:

fg:éng:f{u-bgdSﬁ—ffv-éde

Q Iy Q
Equivalently
a(u, 6u) = L(6u)

with bilinear form a(u, 6u) = f o(w) : VoudVv = fg :0gdV
Q

The functional space of kinematically admissible displacements and inducing finite energy is

uelU= {geIH'(Q)| g:goonF,‘}

whereas virtual displacements also inducing finite energy and vanishing at Dirichlet boundary belong to
oueV={veHQ)|v=00nT,]

anda: UxV — Rand L:V — R, where H! is the Sobolev space.



Work of imposed surface tractions on virtual displacements = 1 #, - ou
Work density of distributed volumetric forces = § - ou
Corresponding virtual density of elastic energy = 1 0:06¢

According to the principle of virtual work:

fg:éng:f{u-bgdSﬁ—ffv-éde

Q Iy Q
Equivalently
a(u, 6u) = L(6u)

with bilinear form a(u, 6u) = f o(w) : VoudVv = fg :0gdV
Q

The functional space of kinematically admissible displacements and inducing finite energy is

uelU= {geIH'(Q)| g:goonF,‘}

whereas virtual displacements also inducing finite energy and vanishing at Dirichlet boundary belong to
oueV={veHQ)|v=00nT,]

anda: UxV — Rand L:V — R, where H! is the Sobolev space.

So we are in the framework of the Lax-Milgram theorem (continuity and coercivity could be easily shown).



Weak form II

m Bilinear form: a(u, 6u) = f o(u) : Voudv
Q
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Weak form II

m Bilinear form: a(u, 6u) = f o(u) : Voudv

Q
m Stress tensor: o(u) = C : £(u) and it is symmetric gT =
m NB:

1o

VA,Bst AT =

4 B=
where B® = (B + B")/2 is the symmetric part of B
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Weak form II

m Bilinear form: a(u, 6u) = f o(u) : Voudv
Q
m Stress tensor: o(u) = C:

£(u) and it is symmetrico " =
m NB:

1o

VA,Bst AT =

IS
IS
IS
ISy,

where B® = (B + B")/2 is the symmetric part of B
m Bilinear form takes form:

a(u, ou) = f £w) : C: g(duw)dV

Q



Weak form II

m Bilinear form: a(u, 6u) = f o(u) : Voudv
Q
m Stress tensor: o(u) = C:

£(u) and it is symmetrico " =
m NB:

1o

VA,Bst AT =

IS
IS
IS
ISy,

where B® = (B + B")/2 is the symmetric part of B
m Bilinear form takes form:

a(u, ou) = f £w) : C: g(duw)dV
Q
or
a(u, ou) = f%(Vg +(Vu)"): C: VoudV
O



Weak form III: isotropic elasticity

m For an isotropic material, the stress is: ¢ = Atr(g)l + 2
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m For an isotropic material, the stress is: ¢ = Atr(g)l + 2
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Weak form III: isotropic elasticity

m For an isotropic material, the stress is: ¢ = Atr(g)l + 2

m The bilinear form takes form:

ot00) = [ 005 gomav = [ (Mrew)L+ 2uw) : o)V =

Q Q
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Weak form III: isotropic elasticity

m For an isotropic material, the stress is: ¢ = Atr(g)l + 2

m The bilinear form takes form:

ot00) = [ 005 gomav = [ (Mrew)L+ 2uw) : o)V =

Q Q

= f/\tr(Vg)iz Vou + u(Vu + (Vu) ") : Voudv

Q

m Since tr(Vu) = V-uand I: V(0u) = V- (0u), we get:

a(u, bu) = f [A(V - )(V - 61) + (Ve + (Vw)T) - Vou| dV
Q




Finite Element Method



Main idea in a nutshell

= Find displacements only at certain locations #(f)
and interpolate in between

u(X, ) = Z Ni(X)u,(t)

m Virtual displacements are also interpolated in the
same way

ou(X) = Y| NiX)ou,

m Thus, we reduce the problem of dimension co to a
finite dimensional problem

m Weak formulation of equilibrium equations results
in a linear system of equations...




Main idea

m From continuous to discrete problem
m Split solid into finite elements
Q — Q' with Q" = ¥ Of
:

m All quantities are associated with this discretization:

u—u',o— g”,l“f- - T/f’, ty— [g,...

m Search for # only in a finite number of points (nodes)

m Interpolate in between (within elements)




Main idea

m From continuous to discrete problem

Split solid into finite elements
Q — Q' with Q" = ¥ Of
5

m All quantities are associated with this discretization:

E_)H/I/g_}g/llrf-—)r/;,to—)tg,..,

m Search for # only in a finite number of points (nodes)

Interpolate in between (within elements)

h

m Existence and uniqueness of the solution #

= When discretization-size tends to zero /1 — 0,

convergence to the solution of the continuum

problem: #/ — u

* -0 T



Shape functions

m Displacements are known at nodes: gi.’, i=1,4
= We need to know them inside the element

m Parametrize the inside with parameters
{&nel-1,1]

m Use interpolation or shape functions N;(&, 1)
for position X

X&) = LXIN(E, 1)
1

and displacement u:
u"(&n) = Lu!Ni(&,n)

m If the same functions are used, then the element is
called isoparametric

Physical space

m Remark: Find {, 1)} from X is not always
straigthforward
(may result in a system of non-linear equations)
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Physical space
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called isoparametric
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straigthforward
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Shape functions II

Parameteric spz Physical sp
Ru]es arameteric space ysical space

m Node 7 has coordinates {&;, 1);}
® Then N;(&j, 1)) = 0

m Partition of unity: y

"

YE s LN m) =1 St
i 5
Types -l <
m Linear shape functions o )
N ) n
% const @, _ 1 ®
= Non-linear shape functions ) —
- <
dN . N
ot ~/® eone
m Linear elements vs quadratic elements ® @
m Higher order elements ® o) ¢




Shape functions III

Example: bar element

m Linear shape functions: ® Quadratic shape functions:
L1 1.,
Ni(&) =70 -9) Ni(&) = 78— 1)
Naf€) = 31 +8) Na(§) = (1- &)
1, !
N3(&) = 561 +¢)

Linear
e
®
e
N
Te

Quadratic
©

.
.
.
.
d
.



Shape functions: vectors and matrices

. v y
= Displacement nodal vectors u; = e 17 + e, 1
m Array of nodal coordinates (size dim - 1)
—Ix T
[XT=1[x1, y1, X2, Y2, -+ X, Ynly,

m Array of nodal displacements (size dim - 1)

Yy
2

m Arrays of shape functions (size dim - 1)

[N‘(] = [Nlr 0, N2, 0, ... Ny, 0];1

[u] = [uf, u? uy,

1y
v, AN

u ni2n

u,

nr U

[Ny] =[0, Ny, 0, Np, ... O, Nn];,
Nty 0 N, 0 ... N, o]

M=y N 0 N, ... 0

" [2nxdim

m Then
x(& 1) = [No(&,pITIXD],  y(&n, 1) = [Ny (& ] [X D]

w'(En,H) = [Nx &I [u®)], 1/ n, 1) = [Ny ] [u®)]



Gradients and shape functions

m Need to evaluate gradients (spatial derivatives) like 57(

m But with shape functions f = f(&, 1)
df In
an dx

oFEn) _ o o¢

m Then === = 2: o«

m However, in general we do not have & = £(x, ) but rather x = x(&, 1))

m Let’s do it other way around

| &

S

2 0x
ox d&
0 ox

ot

J 9y
Ay I&
d dy
dy I

ox
0
Jx
7

%Yy
anllaoy dy

m Matrix [] | is called Jacobian operator/matrix and enables to obtain

0
pP
d
3

=

v Sl

NS



Jacobian operator/matrix

= Jacobian operator/matrix: )
o
m Using v = [N,]T[X], v = [Ny]"[X] we get:
: _[[Nx,élTlXJ [Ny, £]T[X]
[NeylT[X]  [Nyy]"[X]

’

JON JIN JN,
where [N, ¢| = aa]’ 0, a;,O, ST

.
, 0} etc.

m Then the inverse Jacobian is given by:
[Ny ]T[X] =[Nyl T[X]

“[NyITIX] [Nyl [X] |

1

1t =

>

with the determinant of the Jacobian matrix (or simply Jacobian):
A = det([J]) = [X]" (INye] Ny 1™ = [Ny,£][Ns]T) [X] # 0



Infinitesimal strain in 2D

1
= Strain tensor: £ = 3 (Vg + (VE)T) ()



Infinitesimal strain in 2D

1
= Strain tensor: £ = 3 (Vg + (VE)T) ()
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Infinitesimal strain in 2D

1
= Strain tensor: £ = 3 (Vg + (VE)T) ()

m Interpolated displacements: 1 = [Ny]"[u], ¥ =[N,]"[u]
m Displacement gradient:
oul ou'

Vu=—®e +—Qe
- dx Y oy 7V



Infinitesimal strain in 2D

1
= Strain tensor: £ = 3 (Vg + (VE)T) ()

m Interpolated displacements: 1 = [Ny]"[u], ¥ =[N,]"[u]

m Displacement gradient:

o' " ou* . out ouY .oy
Vi=—Qe +—=— Qe =——e Qe +——e 0+ —e/®e'+ —e/®¢
U= Ox Bt 5 0y = gpe8e g e ®er et 5 et



Infinitesimal strain in 2D

1
= Strain tensor: £ = 3 (Vg + (VE)T> ()

m Interpolated displacements: 1 = [Ny]"[u], ¥ =[N,]"[u]

m Displacement gradient:

ou" ou" o™ o out oY ooy
Vl: — Qe +—Q®e, = 79,\®g,\+7€3®g‘/+7g}/®€.\+ 7gl/®€}/
dx ~* dy TV ox dy ox dy
Ju*  JuY
Jx ox
(V)" ~ (9{ x y
= u ou

S Iy



Infinitesimal strain in 2D

1
= Strain tensor: £ = 3 (Vg + (VE)T> ()

m Interpolated displacements: 1 = [Ny]"[u], ¥ =[N,]"[u]
m Displacement gradient:
' o' ou* u* ouY oY
= = = = ¢ XL " Y4+ oY X oY Y
Vu = e ®e, + 9y ®e, = &xg ®e + 8}/@ ®e + axg ®e + Byg ®e
w o

.
dx ox | o1 |98 ||
(VE)T ~ our ow | = [J] i l

(T}/ Ty an



Infinitesimal strain in 2D

1
= Strain tensor: £ = 3 (Vg + (VE)T> ()

m Interpolated displacements: 1 = [Ny]"[u], ¥ =[N,]"[u]

m Displacement gradient:

ou" ou" owr . . oout . . ouY uY
2= = _ X @ oX X @ Y Y & X Y & oY

Vu e ®g“+¢9y ®e, o & ®g+8}/g ®g+axg ®g+9 e'®e
Ju*  JuY J . 0
- 7 —|r,x — T T

o~ |25 = o | Z ] 2o %

u ~ X ! - -

ou o 9 |w 9 [Ny [u]

(T}/ Ty an an



Infinitesimal strain in 2D

1
= Strain tensor: £ = 3 (Vg + (VE)T> ()

m Interpolated displacements: 1 = [Ny]"[u], ¥ =[N,]"[u]

m Displacement gradient:

ou" " owr . . oout . . ouY oy
- = - = — ¢ Xy e Y+ — oY X oY Y
Vu = e ®g“+¢9y ®e, 8x§ ®g+8}/g ®g+axg ®§+9yg ®e
Ju*  JuY d ) dJ
S el T B N [Nl T [Nyl
(VE) ~ ou~ oY = [J] a Y = [J] a T = T T
— | ¥ —_— [Ny] [u] [Nx,r;] [u] [Ny,r]] [u]

(T}/ Ty an an



Infinitesimal strain in 2D

1
= Strain tensor: £ = 3 (Vg + (VE)T> ()

m Interpolated displacements: 1 = [Ny]"[u], ¥ =[N,]"[u]

m Displacement gradient:

ou'" ou" owr . . oout . . ouY oy
- = - = — ¢ Xy e Y+ — oY X oY Y
Vu=— ®g\,+a}/®g/ o & ®9+3y9 ®e'+ e ®§+3y§ Qe
u*  oJuY d J
—_— —_ — 1,17 — T T T T
R N Bt L | B L | e
= |owr ow 9 || 2Ny T[] [Nyl T[] [Nyl [u]
dy  dy an an )

m Represent strain tensor as an array (Voigt notations):

.
£ = [E]= [f“" Eyys 7’»\‘!/] ;o Vxy = 2exy



Infinitesimal strain in 2D
1
)

m Strain tensor: &= 5 (Vg + (VE)T>
u =[Nyl [u], ¥ =[Ny]"[u]

m Interpolated displacements:

m Displacement gradient:
ou" ou" ou* . . oout . | uY oy
- = = — X X —__pr Y —__ oY X oY Y
Vu e ®g“+¢9y ®e, 8x§ ®g+8}/g ®g+axg ®§+9yg ®e
u*  oJuY d d
N e e I -7 |7 I 1% 2| M 149 1 17 I R M
(VE) ~ ou~ oY = [J] a = [J] a T = T
Z || —_— [Ny] [u] [Nx,r;] [u] [Nl/,r]]T[”]
an an )

m Represent strain tensor as an array (Voigt notations):

.
£ = [E]= [f“" Eyys 7’»\‘!/] ;o Vxy = 2exy

Ju* uy ouy N du*

m Then
[E] = [ ox’ dy’ Ix 9y

]T




Infinitesimal strain in 2D in matrix form

B ..continue. Jacobian matrix:

01! = 1 [ [Nyq]"[X] _UV}/,}.]T[X]J

A =[Nyl TIX]  [NuglTIX]



Infinitesimal strain in 2D in matrix form

B ..continue. Jacobian matrix:

01! = 1 [ [Ny 1T[X] —[Ny,&]T[X]J _ []u hz}

A[~INen"IX] - [NgelTIXT | 7 |J1 T2
m Then the strain components are

1
xx = (11 [Nwg] + J12lNag]) " 1] = 5 (INy] " [XTINs] = [Ny ] IXTNw 1) ]



Infinitesimal strain in 2D in matrix form

B ..continue. Jacobian matrix:

01! = 1 [ [Ny 1T[X] —[Ny,&]T[X]J _ []u hz}

A[~INen"IX] - [NgelTIXT | 7 |J1 T2
m Then the strain components are

1
xx = (11 [Nwgl + J12lNag]) " 1] = 5 (INy] " [XTIN ] = [Ny el T [XTNx]) " ] = [Ba] [



Infinitesimal strain in 2D in matrix form

B ..continue. Jacobian matrix:

01! = 1 [ [Ny 1T[X] —[Ny,&]T[X]J _ []u ]12}

A[~INen"IX] - [NgelTIXT | 7 |J1 T2
m Then the strain components are

1
xx = (11 [Nwgl + J12lNag]) " 1] = 5 (INy] " [XTIN ] = [Ny el T [XTNx]) " ] = [Ba] [

ew = (1[Nl + o lNyg) ] = £ (~[Nag T IX TNy 2] + N T IXTNy 1) [



Infinitesimal strain in 2D in matrix form

B ..continue. Jacobian matrix:

01! = 1 [ [Ny 1T[X] —[Ny,&]T[X]J _ []u ]12}

A[~INen"IX] - [NgelTIXT | 7 |J1 T2
m Then the strain components are

1
xx = (11 [Nwgl + J12lNag]) " 1] = 5 (INy] " [XTIN ] = [Ny el T [XTNx]) " ] = [Ba] [

ew = (a[Nye1 + o lNyg) ] = © (~[Nag T IXINy 2]+ DN XNy 1) [ = (BT[]



Infinitesimal strain in 2D in matrix form

B ..continue. Jacobian matrix:

01! = 1 [ [Ny, 17[X] —[Ny,&]T[X]J _ []u ]12}

A[~INen"IX] - [NgelTIXT | 7 |J1 T2
m Then the strain components are

e = (JINuzl + J12lNeg]) 111 = 5 (NI IXT[Ne] = Ny 2T IX TN ]) [ = (BT ]
ew = (a[Nye1 + o lNyg) ] = © (~[Nag T IXINy 2]+ DN XNy 1) [ = (BT[]

u*  JuY T
Vay = ((37 + W) = (]11[1\/;/,&] + J12[Ny,n] + 21 [Ny,e] +]Z2[N1,1[]) [u]



Infinitesimal strain in 2D in matrix form

B ..continue. Jacobian matrix:

01! = 1 [ [Ny, 17[X] —[Ny,&]T[X]J _ []u ]12}

A|=INgg]TIX]  INgelTIXT | " [/ 2
= Then the strain components are
e = (JINuzl + J12lNeg]) 111 = 5 (NI IXT[Ne] = Ny 2T IX TN ]) [ = (BT ]
ew = (a[Nye1 + o lNyg) ] = © (~[Nag T IXINy 2]+ DN XNy 1) [ = (BT[]
Yy = ((%/‘ + %) = (]ll[N}/,é] + J12[Ny,n] + 21 [Ny,e] +]z2[Nx,n])T[M]

1
Vxy = A ([Ny,r]]T[X][Ny,é] - [Ny,E]T[X][Ny,q] - [Nx,n]T[XHNY,é] + [NK,E]T[X][Nx,r)])T[u]



Infinitesimal strain in 2D in matrix form

B ..continue. Jacobian matrix:

pt=L [Nyl T[X] =[Nyl "IX]| _[Jin i
A *[Nx,q]T[X] [NXSJT[X] ]21 ]22

m Then the strain components are
1
xx = (11 [Nwgl + J12lNag]) " 1] = 5 (INy] " [XTIN ] = [Ny el T [XTNx]) " ] = [Ba] [
1
gy = (J1[Nyel + J2Ny]) " [0 = & (<N T " IXIING ] + [Nwe] XNy 1) (1] = [B] "]
o= (25 2 (N N N Negl)'
v =Ty * 3r ) = (nNusl + NialNya) + 21 [Nsg] + JalNogl) (1]

Vxy = ([Nu I]] [X1( yé] [Ny,S]T[X][Ny,q] - [Nx,n]T[XHNx,rS] + [NK,E]T[X][Nx,rI]) [u] = [33] [u]

m Then
[E], = [B]],

3x2n [u]z”

m With [B] = [[BﬂT, [B2]", [33]T]T



Infinitesimal strain in 2D: example

m Consider a linear triangular element with shape functions: Parameteric space
Ni=-1E+n), Na=11+8, N3=1+np o M
m Their derivatives are given by: I Y
Nig=-1/2, Npe=1/2, N3z=0 >
Nig==1/2, Noy=0, Noy=1/2 Physical space
A= }1((3(2 —x1)(ys —y1) — 2 — y1)(xs — x1))" (XZC;)”)
Guyn)
m Then
Exx = %\ l(lh Yy =) = (2 = y1) (3 - ”’}')J
ew = i [z = x1)08) = 1) = (3 = )0y — 1))
Voo = g (05 =y = ) = (2 =y = )+ (o = 20) 0 = 1) = (x5 = x0) 5 = )]

“Half of the area of the triangle.



Infinitesimal strain in 2D: example II

m Rectangular triangle x; = x3, y1 = y2, A = LyLy/4

. ; : e YV _ Y Y Yy x
m Case 1: pure tension/compression along OX iff Uy =1y, Uy =13, Uy = U]

Exiuj=0: éexn= ﬁ(}/3 —y)uy —u]) =6/Ly, €y =7yxy =0

Case 1
y
1©) ®
L
@
®
L

® ; @ X 5

Reference configuration Current configuration



Infinitesimal strain in 2D: example II

m Rectangular triangle x; = x3, y1 = y2, A = LyLy/4
m Case 1: pure tension/compression along OX iff Lz;/ = ll’;/, 11’1’2/ = ”}1/ , u‘; = LIZI
Exiuj=0: éexn= ﬁ(}/3 —y)uy —u]) =6/Ly, €y =7yxy =0

. ; H i x —gx Y _ Y oox _x
m Case 2: pure tension/compression along OY iff 15 = 7, 1, = 17, u3 = ]

A | N Y — s P _
Ex.: Uy = 01 ey =gx(x2— ll)(Ll3 - ”1) =0/Ly, ex=yxy =0

Case 1 Case 2
y
® ® 0 @
L.V
@
©) L, @) x O 5 ® @

Reference configuration Current configuration



Infinitesimal strain in 2D: example II

m Rectangular triangle x; = x3, y1 = y2, A = LyLy/4
v _
Uy = ‘1’ uy = uj

Ex.: ” =0: &= ﬁ(}/?» - }/l)(”; - ”"i) =0/Ly, Eyy = Vxy = 0

m Case 1: pure tension/compression along OX iff Lz =Y

v _
17t =

Ex.: ui/ =01 &y = Jlx(vz - \1)(Ll - Ll/) =0/Ly, ex=yxy =0

Y oox — . x
uy, Uy = u

m Case 2: pure tension/compression along OY iff uj = u] |

m Case 3: pure shear in XY iff uy = ”1’ 113 = u"l/
Ex.: 112 =0y, 113 =0y :
1 y y X x b}/ Ox ) )
vay = g5 (05 =y =) + (2 = x)(w5 — ) = LtL fv=ew=0

Case 1 Case 2 Case 3

Y 5
® x
® ® 5£ 1o
Ly
@
> s,
o . © x O = ® '

Reference configuration Current configuration



Stress tensor

m In linear elasticity, strain decomposition:

E=E& +E&E
= =el =th

m With thermal strain field:

g =a(T-Tyl
=th =



Stress tensor

m In linear elasticity, strain decomposition:

E=E& +E&E
= =el =th

m With thermal strain field:

£, =l = TOL=a(X) (TX) - To(X))L,

where « is the coefficient of thermal expansion (CTE), T and T are the current and reference temperature
fields, respectively.

m The stress is defined by the elastic strain:

c="C:(e-¢ )
= = = =th



Stress: 2D isotropic elasticity

m Remind isotropic stress/strain relationship:

vE

E
= Trna-am) Lt T

m Stress (in Voigt notations): ¢ = [S]=[ox, oy, owyl”
Y

lis)

m Inplane stress .. = 0, ¢, = 77 (€xx + €yy)

In plain strain .. = V(0 + 0yy), €22 = 0

m Stress/strain relationship: [S] = [D][E]



Stress: 2D isotropic elasticity

m Remind isotropic stress/strain relationship:

vE

E
= Trna-am) Lt T

m Stress (in Voigt notations): ¢ = [S]=[ox, oy, owyl”
Y

lis)

m Inplane stress .. = 0, ¢, = 77 (€xx + €yy)

In plain strain .. = V(0 + 0yy), €22 = 0

m Stress/strain relationship: [S] = [D][E]

Matrix [D] in plane strain ¢.. = ¢y = ¢,z = 0:

E 1-v % 0
[D]= ———| v 1-v 0
T+v)1-2v) 0 0 a-2v)/2*



Stress: 2D isotropic elasticity

m Remind isotropic stress/strain relationship:

vE

T+v)(1-2v)

IIS]

Stress (in Voigt notations): = [S] = [0,

o
In plane stress 0. = 0, €22 = ;55 (€xx + &yy)

In plain strain .. = V(0 + 0yy), €22 = 0

Stress/strain relationship: [S] = [D][E]

Matrix [D] in plane strain ¢.. = ¢y = ¢,z = 0:

E

Pl= G a-m

Matrix [D] in plane stress 0.. = 0.z = 0y = 0, tr(g)

E

D)= —

Ty,

£ £
1+v=

tr(e)L +

ayl"

0
0

(1- 2v>/2*}

v
1-v
0

1-2v

= (Exx + £yy):

0
0
1-w/2

“Factor 1/2 appears because [E] contains y,, and not ¢,,,.



Stress: general case

Voigt notations in 3D case
m Stress tensor: 0 — [S] = [041, Oy, 02z, Oxys Oyz, Oxz]”
m Strain tensor: £ — [E] = [exy, €yy, €22, Viyr Vizr Vazl"

m Hooke’s law: [S] = [D] [E]



Stress: general case

Voigt notations in 3D case
m Stress tensor: 0 — [S] = [041, Oy, 02z, Oxys Oyz, Oxz]”

m Strain tensor: £ [E] = [exx, €yys €22/ Vays Vyzsr Yzl

m Hooke’s law: [S] = [D] [E]

m Isotropic elasticity (two constants £, v):
1-v v v 0 0 0
v 1-v v 0 0 0
(D] = E v v 1-v 0 0 0
T 1+v)1-2v)| O 0 0 1-2v)/2 0 0
0 0 0 0 1-2v)/2 0
0 0 0 0 0 (1-2v)/2



Stress: general case

Voigt notations in 3D case
m Stress tensor: ¢ — [S] = [0xx, Oyy, 02z, Oxy, Oyz, Oxz]”
m Strain tensor: £ — [E] = [exy, €y, €22, Vay, Vyzr VazlT
m Hooke’s law: [S] = [D] [E]
m Isotropic elasticity (two constants £, v):

1-v v v 0 0 0
v 1-v v 0 0 0
(D] = E v v 1-v 0 0 0
T 1+v)1-2v)| O 0 0 1-2v)/2 0 0
0 0 0 0 1-2v)/2 0
0 0 0 0 0 (1-2v)/2

m Cubic elasticity (3 constants E, v, 11), in material axes, takes the form:

Cn Cin Cn2 0 0 0

Cp Cn Cn 0 0 0

|C2 Ci2 Cn 0 0 0
PI=1%" 0o 0 cu 0 o0

0 0 0 0 Cu 0
0 0 0 0 0 Cu



Stress: general case II

Voigt notations in 3D case
m Transversely isotropic elasticity (5 constants £y, £y, 1,2, [11), in material axes:

Ci Ci2 Ci3 0 0

C Cn Cis 0 0

Csz Ci Cun 0 0
0 0 0 Cyy 0
0 0 0 0 (oM
0 0 0 0 0 (C11 — C12)/2

SO OO

[D]; =



Stress: general case II

Voigt notations in 3D case
m Transversely isotropic elasticity (5 constants £y, £y, 1,2, [11), in material axes:

Cn Cn Cs O 0
C Cn Ci3 0 0
_ Ci3 Ci3 Css 0 0
Pli=1%" 0 0 cu 0
0 0 0 0 Cyy
0 0 0 0 0 (C11 —C12)/2

SO OO

m Orthotropic elasticity (9 constants Eyy, Eyy, Ezz, Vay, Viz, Vaz, fly, Uz, [lxz), in material axes:

Cn Cn Cs O 0

Clz Cp_z Cz} 0 0

Pli=1%" 0 0 cu 0
0 0 0 0 Css 0

0 0 0 0 0 Ces

o OO

[es]



Stress and reactions: element’s equilibrium II

m According to the principle of virtual work:

fg:bgd\/fff\/-(ﬁyd\/:fto-bgds
C 0

Q Iy



Stress and reactions: element’s equilibrium II

m According to the principle of virtual work:

[g:bgd\/fff\/-oﬂd\/:fto-bgds
C 0

Q Iy
m FElastic stress [ :4(:,’ : (gfgm) = [S] = [D]([E] - [E#])
m Straing ~ [E] = [B][4]
® Volumetric force density f ~ [fo] = [ LT

m Virtual displacement 6u ~ [N]"6[u]



Stress and reactions: element’s equilibrium II

m According to the principle of virtual work:

[g:bgd\/fff\/-oﬂd\/:fto-bgds

Q Q Iy
m Elastic stress o :4(:,’ : (gfgm) = [S] = [D]([E] - [E#])
m Straing ~ [E] = [B][4]
m Volumetric force density ]jp ~ ] = LS AL AT
m Virtual displacement 6u ~ [N]"6[u]

m The discretized form of the virtual work:

[ (D1 aE1~ (B olE) - N olul) @V = [ £,GOINGT ds ol

ol h
Q r{



Stress and reactions: element’s equilibrium II

m According to the principle of virtual work:

fg:bgd\/fff\/-Ogd\/:fto-bgds

Q Q Iy
m Elastic stress o :4(:,’ : (gfgm) = [S] = [D]([E] - [E#])
m Straing ~ [E] = [B][4]
m Volumetric force density [D ~ Tl = LA 2T
m Virtual displacement 6u ~ [N]"6[u]

m The discretized form of the virtual work:

[ (D1 aE1~ (B olE) - N olul) @V = [ £,GOINGT ds ol

ol rh
f

[u] [f[BJ [DI[B]" dV

Oh

Slul = [f]176[u]

o[u][f([ﬁ,JT[NfJT+[E,;,JT [D][B]") 4V

Y



Stress and reactions: element’s equilibrium II

m Balance of virtual work for a single element:

[u] { f (BI[D][B]" 4V

o

Slu] = [£]"6[u]

olu] - Lf([ﬂ 1" +[Eq]" [DI[B]") dV

W

m For arbitrary virtual displacements o[u]:

[1Br DiBIAv [u]+[ [ (- - B1DIEA) av|= 1)
= e
RS 3 )

m System of equations linking displacements and reactions:

SIGEIAE

ext




Assembly

m At every internal node the total force should be zero:
LUz =0

summation over all elements ¢ attached to this node.




Dirichlet boundary conditions

m From the weak form:

fg:bgd\/—fj_‘v-égdv:fgowbgds, forue U= {ueH (Q)u=u,onT,}
Q

Q I,

m Alternative (approximate) formulation with penalty (penalty factor €):

fg:éng—fj_fv-éng:fgoobgd5+fe(go—g)obyds,
Q

Q I, T,

forue U = {u € H(Q))
m Then

a(g,bg):fgzbgdv+feg-bgd5

Q Iy

L(ég):ffv-égdv+f£0-(3gd5+fego-bgds

Q I T,



Dirichlet boundary conditions

Dirichlet BC
m Use penalty method to enforce prescribed displacements: array [uo] = [0...0 1 0...0 1 0]

m Diagonal selection matrix [I°] with ones at prescribed degrees of freedom (DOFs):

i j
—_— —_—

0O .. 0 0 0 .. 0 0 0

O .. 0 0 0 .. 0 0 0
=0 ... 0 1 0 .. 0 0 0 )i

0 0 0 0 0O 0 0

o 0 0 .. 0 0 0
0 0 0 1 0

0o 0 o0 0O 0 0

m Then the system is changed to
(K] + € [°]) [u] = [fext] — [fint] + €luo]
where ¢ is the penalty coefficient such that € > max(Kj), and [I] is the identity matrix.

m Alternatively, (i) a direct DOF elimination or (ii) Lagrange multipliers could be used.



Neumann boundary conditions

m Surface traction £, at 'y

m Virtual work of surface traction over one element:

. o l ~ o
l"‘,‘

m Then
(i) = [l ar
1_;7




Discrete system of equations

m Balance of virtual work for the whole body:

[[B BldV
N

[K] [fort] ~[fint]

[u] = f [l NI dT +

f ([£ITINi" + [BI[D][E gu]) aV
Vv

System of equations linking displacements and reactions:

|[K] [14] = [fext] = [font]|

m Stiffness matrix [K]
m Vector of degrees of freedom (DOFs) [u]
Right hand term (vector of forces) [foxt] — [fint]



Evaluation of the integrals

m Weak form (recall):

[1Br D11l = [t N ar+| [ (117N + BIDNEW]) av
v Iy v
[K] [fu\‘[] *[finr]

b
m Exact integration: f f(x)dx = F(b) — F(a) (not always possible)
a

m Approximate integration (trapezoidal rule, Simpson’s rule)

b Ngp
m Gauss quadrature: f fx)dx =~ Y, wif(x;)
a i=1

m Gauss points x; and weights w; with i = 1, Ngp
m Integration is exact for polynomials of order 2Ngp — 1
m Tabulated data for x;, w; (1D, 2D, 3D integration)



Evaluation of the integrals: example

m Function f(x) = cos(rx?/2) . :
B Ngp = 1: error ~ 28.22 % — costz /2)
B Ngp = 2: error ~ 11.04 % — = sin(rz)
B Ngp =3: error ~ 1.14 % 1.0
B Ngp = 4: error ~ 0.14 %
B Ngp = 5: error ~ 0.01 %

m Function f(x) = x sin(mx)

Ngp = 1: error ~ 100.00 %
Ngp = 2: error ~ 76.05 % >08
Ngp = 3: error = 12.07 %
Ngp = 4: error =~ 0.80 %
Ngp = 5: error ~ 0.03 %




Evaluation of the integrals II

Ne
= Consider: f[BJ‘ [D][B]dV = Zf[B] [D][B]dV
=1y,

v

m Transpose to the parametric space or mapping (in 2D case):

1 1
f [B(&, 1" [DI[BE, pldV = f f [B(&, ] [D] [B(&, )] det([J]) ddn
) J.

-1 -1



Evaluation of the integrals II

Ne
= Consider: f[BJ‘ [D][B]dV = Zf[g]‘ [D][B]dV
=1y,

v

m Transpose to the parametric space or mapping (in 2D case):

1 1
f [B(&, 1" [DI[BE, pldV = f f [B(&, ] [D] [B(&, )] det([J]) ddn
) J.

-1 -1
= Finally:
Ne Ngp
(K] = f [BI" [DI[BIAV ~ Y )" B (Egpr )] DT B (Ep, mgp)] det(l J*(E g gp) Dty
e=1 GP=1

%



Evaluation of the integrals II

Ne
= Consider: f[BJ‘ [D][B]dV = Zf[g]‘ [D][B]dV
=1y,

v

m Transpose to the parametric space or mapping (in 2D case):

1 1
f [B(&, 1" [DI[BE, pldV = f f [B(&, ] [D] [B(&, )] det([J]) ddn
) J.

-1 -1
= Finally:
Ne Ngp
(K] = f [BI" [DI[BIAV ~ Y )" B (Egpr )] DT B (Ep, mgp)] det(l J*(E g gp) Dty
e=1 GP=1

%



Evaluation of the integrals III

Pyp-1)

m If N(&, 1) = Py is a polynomial of order p, then [J] = P-1y, [B] = oy

m Remark I: Gauss quadrature is exact for p = 1 and approximate if p > 1.

m Remark II: Stress and strains are exactly evaluated only in Gauss points, in all other points they are
extrapolated/interpolated

m Remark III: Underintegration may lead to zero-energy deformation modes (which have to be stabilized in
FE software)



Evaluation of the integrals: quadrilateral 2D element

m Shape functions: Parameteric space
Ni=31-&0-n), Np=3(1+&)(1-n) ® '71 ®
N3 = {1 +&(1+n), Ny=i(1-&1+n) 7 7

m Shape function derivatives:

Nig=-31-m), Npe=1(1-1) 1 L¢
N3ys=1(1+n), Nyz=-11+n)

Nig=-31-8, Npyy=-11+9 o e
N3y =310+8), Niy=11-9 Physical space

m Determinant of Jacobian (dA = det[] |d&dn):
det([J]) =

(@ =mee = x1) + @+ )3 = x0)(A + O3 = y2) + (1= O)ya — 1))~
= (=2 =y2) + (1 +Mys = y))(A + E) s = x2) + (1 = E)(xs — 11))]




Evaluation of the integrals: quadrilateral 2D element

m Shape functions: Parameteric space
Ni=31-&0-n), Np=3(1+&)(1-n) ® '71 ®
N3 = {1 +&(1+n), Ny=i(1-&1+n) 7 7

m Shape function derivatives:

Nig=-31-m), Npe=1(1-1) -1 L¢
N3ys=1(1+n), Nyz=-11+n)

Nig=-31-8, Npyy=-11+9 o e
N3y =310+8), Niy=11-9 Physical space

m Determinant of Jacobian (dA = det[] |d&dn):
det([J]) =

E(@=m = 21) + @+ s - 2)) (A + s = v2) + (1 = E)ya - y1))-
= (=2 =y2) + (1 +Mys = y))(A + E) s = x2) + (1 = E)(xs — 11))]

®m Warning: to ensure det([J ]) > 0 the element should remain convex




Problem: Find [u] such that | [K][u] = [f] |, i.e. [u] = [K]! [f]

m Iterative solvers
The solution is approached iteratively, does not require much memory, restrictions to matrix type, sensitive to matrix
conditioning, a preconditioner is often needed.

Gauss-Seidel method (GS)
Conjugate gradient method (CG)
Generalized minimum residual method (GMRES)

m Direct solvers
The solution is provided directly, no restrictions on matrix type, less sensitive to matrix conditioning, based on LU or
Cholesky decomposition

m Frontal
m Sparse direct
a ...



Convergence



Mesh and interpolation order convergence
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m For Sobolev spaces' u € W, s,p € IN and their norm: ||EHW*W = [f Z()(W T av
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I The solution is usually sought in physically meaningful Sobolev space W', i.e. Sobolev space H'.
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Mesh and interpolation order convergence

1/p
s % p
1 sp . ) - U ru
m For Sobolev spaces' u € W, s,p € IN and their norm: ||EHW*W = [f Z()(W T av
) a= - -
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m If there’s no re-entrant corners and boundary conditions are “gentle”, then displacements converge as :

-4l o

— — H < p+1
- < Cul
where 1, 1" are the true and approximate solutions, p is the interpolation order of shape functions N(&, 1)
and /1 is the element size.

I The solution is usually sought in physically meaningful Sobolev space W', i.e. Sobolev space H'.



Mesh and interpolation order convergence
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m If there’s no re-entrant corners and boundary conditions are “gentle”, then displacements converge as :
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where 1, 1" are the true and approximate solutions, p is the interpolation order of shape functions N(&, 1)
and /1 is the element size.

m And that stresses/strains converge as:
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I The solution is usually sought in physically meaningful Sobolev space W', i.e. Sobolev space H'.



Mesh and interpolation order convergence

1/p

S )C ) ,7
1 sp . ) - *u Fu
For Sobolev spaces' u € W, s,p € IN and their norm: ||EHW*W = [f Z()(W T av
Q a= - -

m For Sobolev space H':

[zl = Jf(u-u+[2Vu:Vu)dV: Jf(u-quVu:Vu)dV

Q Q

m If there’s no re-entrant corners and boundary conditions are “gentle”, then displacements converge as :

llu-u"| o
— — H L p+1
—_— H < WY

o = Cu

where 1, 1" are the true and approximate solutions, p is the interpolation order of shape functions N(&, 1)
and /: is the element size.
m And that stresses/strains converge as:
_qyh
")l

— — H <« _hP
i, < Col

Therefore, to obtain a converged solution we can either increase interpolation order p (p-refinement) or
decrease /i (h-refinement)

I The solution is usually sought in physically meaningful Sobolev space W', i.e. Sobolev space H'.



Tension of a rectangular sheet with a hole
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Tension of a rectangular sheet with a hole
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The symmetry is used to reduce the computational cost®



Triangular mesh with linear elements :
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Stress component, o, (Pa)



Triangular mesh with linear elements :
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Triangular mesh with linear elements :
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e FE results for linear elements

log(stress error), a.u.

— error=ah
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log(element size), a.u.



Tr1angular mesh with 11near elements (w1th contour plot stress fleld)

Stress component, o,, (Pa)



Triangular mesh with linear elements (comparison with quadratic elements):
h=8h, h=4h, h=2h,

Stress component, o,, (Pa)



Triangular mesh with linear elements (comparison with quadratic elements):
h=8h, h=4h, h=2h,

Stress component, o,, (Pa)



Comparison of triangular and quadrilateral meshes:
triangular quadrilateral
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Nonlinear FEM



Types of nonlinearity

m Material behavior (viscoelasticity,
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Post-buckling behavior with self-contact

6 T T T T T T T T
2
TN f Y
5/ |
5L ‘symmetry il
X4t . Symmetry C S
~
c
=
-~
]
O
5
2 fsi
o
‘I 1
accumulated plastic deformation
0% e————— e—— 2} 5%
O Il 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Displacement, mm



Twisting multi-strand wire
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Contact of a rough surface
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Multi-contact problem




Multi-contact problem




Multi-contact problem




Multi-contact problem




Polycristalline material




Coupled thin flow in contact interface

Normalized fluid flux
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Conclusion

m The linear Finite Element Method is widely used in mechanical engineering

m To get to a matrix formulation (linear system of equations)

[K][u] = [f]

we need to compute:

a matrix [B] at every Gauss point (GP)

a trivial matrix [D] (which changes from GP to GP only if we have heterogeneous solid)
a vector of external forces [f,.;] (Neumann boundary condition)

Dirichlet boundary conditions are imposed either using penalty method or matrix
rearrangement

m The system is solved using your preferable solver
(see Christophe Bovet’s (ONERA) lecture)
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