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Elements of tensor algebra



Vectors and tensors •

Tensor notations

Scalars ∈ R:
a, α,C

Component notations

Scalars ∈ R:
a, α,C
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Vectors and tensors •

Tensor notations

Scalars ∈ R:
a, α,C

Vectors ∈ Vdim:
a, τ

Component notations

Scalars ∈ R:
a, α,C

Vectors∗ ∈ Rdim:
ai, τj

with a = aiei and ai = ei
· a

∗Component notations require introducing a basis ei, i = 1 . . .dim and a dual basis ej such that

ej · e
i = δi

j, where δi
j = 0 if i , j and δi

j = 1 if i = j.
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Vectors and tensors •

Tensor notations

Scalars ∈ R:
a, α,C

Vectors ∈ Vdim:
a, τ

Second-order tensors ∈ T2
dim :

A
=
,σ
=

Component notations

Scalars ∈ R:
a, α,C

Vectors∗ ∈ Rdim:
ai, τj

with a = aiei and ai = ei
· a

Second-order tensors ∈ Rdim
×Rdim:

Aij, σkl

with A
=

= Aijei
⊗ ej and Aij = ei · A= · ej

∗Component notations require introducing a basis ei, i = 1 . . .dim and a dual basis ej such that

ej · e
i = δi

j, where δi
j = 0 if i , j and δi

j = 1 if i = j.
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Vectors and tensors •

Tensor notations

Scalars ∈ R:
a, α,C

Vectors ∈ Vdim:
a, τ

Second-order tensors ∈ T2
dim :

A
=
,σ
=

Forth-order tensors ∈ T4
dim:

4C
=

Component notations

Scalars ∈ R:
a, α,C

Vectors∗ ∈ Rdim:
ai, τj

with a = aiei and ai = ei
· a

Second-order tensors ∈ Rdim
×Rdim:

Aij, σkl

with A
=

= Aijei
⊗ ej and Aij = ei · A= · ej

Forth-order tensors
∈ Rdim

× · · · ×Rdim:
Cijkl

with 4C
=

= Cijklei
⊗ ej
⊗ ek
⊗ el and

Cijkl = el ·
(
ek ·

(
ej ·

(
ei ·

4C
=

)))
∗Component notations require introducing a basis ei, i = 1 . . .dim and a dual basis ej such that

ej · e
i = δi

j, where δi
j = 0 if i , j and δi

j = 1 if i = j.
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Tensor algebra •

Tensor notations

Transposition

C
=

= D
=
ᵀ
,
(
A
=
· B
=

)ᵀ
= B

=
ᵀ
· A
=
ᵀ

Symmetric tensor
A
=
ᵀ

= A
=

Antisymmetric∗ tensor
B
=
ᵀ

= −B
=

Tensor decomposition
C
=

= C
=

S + C
=

A with

C
=

S = 1
2

(
C
=

+ C
=
ᵀ)

, C
=

A = 1
2

(
C
=
− C

=
ᵀ)

Component notations

Transposition

Cij = Dji

Symmetric tensor
Aij = Aji

Antisymmetric tensor
Bij = −Bji

Tensor decomposition
Cij = CS

ij + CA
ij with

CS
ij = 1

2

(
Cij + Cji

)
, CA

ij = 1
2

(
Cij − Cji

)
Examples

Identity tensor (symmetric) I
=

= δijei ⊗ ej = ei ⊗ ei

Rotation tensor (asymmetric = symmetric(, 0) + antisymmetric(, 0)):

Q
=
∼

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

 =

cos(φ) 0 0
0 cos(φ) 0
0 0 1

 +

 0 sin(φ) 0
− sin(φ) 0 0

0 0 1


∗Antisymmetric ≡ skew-symmetric
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Tensor algebra: products •

Tensor notations

Mutliplication by a scalar
αA

=
= A

=
α

Scalar product∗

a · b = c

a · A
=

= b

A
=
· B
=

= C
=

Tensor contraction
A
=

: B
=

= c

A
=
· ·B

=
= d

Remark:
A
=

: B
=

= A
=

S : B
=

S + A
=

A : B
=

A and A
=

S : B
=

A = A
=

A : B
=

S = 0

A
=
· ·B

=
= A

=
S
· ·B

=
S + A

=
A
· ·B

=
A and A

=
S
· ·B

=
A = A

=
A
· ·B

=
S = 0

Component notations

Mutliplication by a scalar
αAij = Aijα

Scalar (dot) product∗∗

aibi = c

aiAij = bj

AijBjk = Ck
i

Tensor contraction
AijBij = c

AijBji = d

∗Scalar product ≡ dot product ≡ inner product.
∗∗We assume Einstein summation by repeating index, i.e. aiAij =

∑dim
i=1 aiAij.
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Tensor algebra: products II & invariants •

Tensor notations

Vector product∗

a × b = c

such that c · a = 0, c · b = 0

Component notations

Vector product∗

ci = εijkajbk

with εijk Levi-Civita symbol

εijk =


1, if (i, j, k) = (1, 2, 3) or (2, 3, 1) or (3, 1, 2)
−1, if (i, j, k) = (2, 1, 3) or (1, 3, 2) or (3, 2, 1)
0, otherwise.

Tensor product∗∗

a ⊗ b = C
=

A
=
⊗ B

=
= 4C

=

Invariants:
I1(A

=
) = tr(A

=
) = I

=
: A
=

I2(A
=

) =
1
2

[
tr(A

=
)2
− tr(A

=
2)
]

I3(A
=

) = det(A
=

)

Tensor product

aibj = Cij

AijBkl = Cijkl

Invariants:
I1(A

=
) = Aii = A11 + A22 + A33

I2(A
=

) = . . .

I3(A
=

) = . . .

∗Defined only for dim = 3, also called cross product.
∗∗Also called outer product.
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Tensor algebra: deviatoric & spherical parts •

Tensor notations

Spherical part of tensor A
=

Sp(A
=

) =
1
3

tr(A
=

)I
=

Deviatoric part of tensor A
=

Dv(A
=

) = A
=
−

1
3

tr(A
=

)I
=

Component notations

Spherical part of tensor A
=

Sp(A
=

) =
1
3

(Akk)δij

Deviatoric part of tensor A
=

Dv(A
=

) = Aij −
1
3

(Akk)δij

Tensor decomposition

A
=

= Sp(A
=

) + Dv(A
=

)

Remark: for an antisymmetric tensor B
=

A

Sp(B
=

A) = 0 ⇒ B
=

A = Dv(B
=

A)
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Tensor algebra: principal values •

Principal values of a linear operator A
=

:

A
=
· u = λu ⇔

(
A
=
− λ I

=

)
· u = 0

If A
=

= A
=

S for dim = 3 then exist three real λi and corresponding ui
called eigen values and eigen vectors of operator A

=
, respectively.

Moreover, for i , j, ui · uj = 0.

To find λi we solve

I3(A
=

) − I2(A
=

)λ + I1(A
=

)λ2
− λ3 = 0

Then tensor can be rewritten in its eigen basis:

A
=

= λ1u1 ⊗ u1 + λ2u2 ⊗ u2 + λ3u3 ⊗ u3

and tr(A
=

) = λi|ui|
2.
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Continuum Mechanics: Recall



Deformable medium •

Consider change in positions of points with time t

Consider two states: t = t0 (reference) and t = t1 (current configurations)

Point X from the reference configuration is labeled x in the current
configuration

Displacement vector between t0 and t1 is u = x − X
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Deformable medium •

Consider change in positions of points with time t

Consider two states: t = t0 (reference) and t = t1 (current configurations)

Point X from the reference configuration is labeled x in the current
configuration

Displacement vector between t0 and t1 is u = x − X
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Deformable medium •

Consider change in positions of points with time t

Consider two states: t = t0 (reference) and t = t1 (current configurations)

Point X from the reference configuration is labeled x in the current
configuration

Displacement vector between t0 and t1 is u = x − X
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Deformation tensor •

Transformation gradient F
=

=
∂x
∂X

=
∂
(
X + u

)
∂X

= I
=

+
∂u
∂X

= I
=

+ H
=

Cauchy-Green right tensor C
=

= F
=
ᵀ
· F
=

Green-Lagrange deformation tensor E
=

=
1
2

(
C
=
− I

=

)
= H

=
S +

1
2

H
=
ᵀ
·H
=

For Hij � 1, E
=
≈ H

=
S and we obtain a tensor of small deformations

ε
=

= H
=

S =
1
2

 ∂u
∂X

+

(
∂u
∂X

)ᵀ =
1
2

(
∇u + (∇u)

ᵀ
)
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Stress tensor and Hooke’s law •

Hooke’s law in uniaxial test:

σxx = Eεxx

F = ku ⇔ σxxA =
EA
L0

u = EA
L − L0

L0

In general case stress and strain are
related through a linear operator
(fourth-order elasticity tensor 4C

=
):

σ
=

= 4C
=

: ε
=

Inversely the strain can be found
through a stiffness tensor 4S

=
:

ε
=

= 4S
=

: σ
=
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Hooke’s law for isotropic solids: stress •

In the case of isotropic material the Hooke’s law reduces
to:

σ
=

= λtr(ε
=

)I
=

+ 2µε
=
,

with λ, µ being Lamé coefficients:

λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E
2(1 + ν)

with Young’s modulus E and Poisson’s ratio ν.

In the component form it reads:

σij = λ(εkk)δij + 2µεij

In the matrix form:

σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 = 2µ


λtr(ε

=
)/(2µ) + ε11 ε12 ε13

ε12 λtr(ε
=

)/(2µ) + ε22 ε23

ε13 ε23 λtr(ε
=

)/(2µ) + ε33


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Hooke’s law for isotropic solids: stress •

In the case of isotropic material the Hooke’s law reduces
to:

σ
=

= λtr(ε
=

)I
=

+ 2µε
=
,

with λ, µ being Lamé coefficients:

λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E
2(1 + ν)

with Young’s modulus E and Poisson’s ratio ν.

In the component form it reads:

σij = λ(εkk)δij + 2µεij

In the matrix form:

σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 = 2µ


νtr(ε

=
)/(1 − 2ν) + ε11 ε12 ε13

ε12 νtr(ε
=

)/(1 − 2ν) + ε22 ε23

ε13 ε23 νtr(ε
=

)/(1 − 2ν) + ε33


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Hooke’s law for isotropic solids: strain •

Strain as a function of stress:

ε
=

=
1 + ν

E
σ
=
−
ν
E

tr(σ
=

)I
=
.

In the component form it reads:

εij =
1 + ν

E
σij −

ν
E
σkkδij

In the matrix form:

ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

 =
1
E


(1 + ν)σ11 − νtr(σ

=
) (1 + ν)σ12 (1 + ν)σ13

(1 + ν)σ12 (1 + ν)σ22 − νtr(σ
=

) (1 + ν)σ23

(1 + ν)σ13 (1 + ν)σ23 (1 + ν)σ33 − νtr(σ
=

)


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Hooke’s law for isotropic solids: strain •

Strain as a function of stress:

ε
=

=
1 + ν

E
σ
=
−
ν
E

tr(σ
=

)I
=
.

In the component form it reads:

εij =
1 + ν

E
σij −

ν
E
σkkδij

In the matrix form:

ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

 =
1
E


(1 + ν)σ11 − νtr(σ

=
) (1 + ν)σ12 (1 + ν)σ13

(1 + ν)σ12 (1 + ν)σ22 − νtr(σ
=

) (1 + ν)σ23

(1 + ν)σ13 (1 + ν)σ23 (1 + ν)σ33 − νtr(σ
=

)


=

1
E

σ11 − ν(σ22 + σ33) (1 + ν)σ12 (1 + ν)σ13
(1 + ν)σ12 σ22 − ν(σ11 + σ33) (1 + ν)σ23
(1 + ν)σ13 (1 + ν)σ23 σ33 − ν(σ11 + σ22)


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Equilibrium of an infinitesimal element •

Infinitesimal strain tensor is symmetric
and satisfies the compatibility
conditions∗:

∇ ×

(
∇ × ε

=

)
= 0

Stress tensor σ
=

should ensure
equilibrium of infinitesimal element∗∗:

Force balance:
∫
S

n · σ
=

dS = 0

Momentum balance:
∫
S

r× (n ·σ
=

) dS = 0

Following Gauss-Ostrogradsky theorem:∫
S

n · σ
=

dS =
∫
V
∇ · σ

=
dV = 0 Since volume

V can be arbitrary chosen, then
∇ · σ

=
= 0 everywhere in V.

∗In case of a simply-connected solid.
∗∗In absence of volumetric forces.
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Equilibrium of an infinitesimal element II •

Second Newton’s law:

mü = f ⇒ ρü =
1
V

f

In presence of volumetric forces with
density f

V
, the total force is given by:

f =
∫
V

f
V

dV +
∫
S

n · σ
=

dS

Then using the second Newton’s law
and Gauss-Ostrogradsky’s theorem:∫
V

(
∇ · σ

=
+ f

V

)
dV =

∫
V
ρü dV

Since it is right for arbitrary V, then in
every point of V:

∇ · σ
=

+ f
V

= ρü
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Equilibrium of an infinitesimal element II •

Equilibrium (3 equations):

∇ · σ
=

+ f
V

= ρü

In component form:
∂σ11

∂x
+
∂σ12

∂y
+
∂σ13

∂z
+ fVx = ρüx

∂σ12

∂x
+
∂σ22

∂y
+
∂σ23

∂z
+ fVy = ρüy

∂σ13

∂x
+
∂σ23

∂y
+
∂σ33

∂z
+ fVz = ρüz
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Deformable solid and boundary conditions •

Notations:

Consider a solid Ω with
boundary ∂Ω

Boundary is split into Γu and Γf :
∂Ω = Γu ∪ Γf

At Γu displacements u0(t,X) are
prescribed (Dirichlet boundary
conditions [BC]):

u = u0 at Γu

At Γf tractions t0(t,X) are
prescribed (Neumann BC):

σ
=
· n = t0 at Γf

σ
=
· n = 0 at Γ0

f
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Deformable solid and boundary conditions •

Notations:

Consider a solid Ω with
boundary ∂Ω

Boundary is split into Γu and Γf :
∂Ω = Γu ∪ Γf

At Γu displacements u0(t,X) are
prescribed (Dirichlet boundary
conditions [BC]):

u = u0 at Γu

At Γf tractions t0(t,X) are
prescribed (Neumann BC):

σ
=
· n = t0 at Γf

σ
=
· n = 0 at Γ0

f

Remarks:
on the same boundary both BCs can be prescribed if they are orthogonal
one to each other, i.e. u0 · t0 = 0 (ex.: friction);

a relationship between these BCs can be prescribed (Robin BC):
u0 = U − kt0 (ex.: Winkler’s foundation).
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Elastic and quasistatic problem set-up •

Equilibrium in absence of
inertial forces

∇ · σ
=

+ f
V

= 0 (∗)

Consistutive relation:

σ
=

=4 C
=

: ε
=

Strain tensor:

ε
=

=
1
2

(
∇u + (∇u)

ᵀ
)

Boundary conditions:

u = u0 at Γu

σ
=
· n = t0 at Γf

σ
=
· n = 0 at Γ0

f

Problem:
find such field u in Ω that
satisfies equilibrium Eq. (∗)
and boundary conditions.
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Finite Element Method



Main idea •

From continuous to discrete problem

Split solid into finite elements

Ω→ Ωh with Ωh =
∑
e

Ωh
e

All quantities are associated with
this discretization:
u→ uh, σ

=
→ σ

=
h, Γf → Γh

f , t0 → th
0, . . .

Search for uh only in a finite number
of points (nodes)

Interpolate in between (within
elements)

Ensure (1) equilibrium of every
element and (2) satisfaction of
boundary conditions

(1) ∇ · σ
=

h + f h

v
= 0 in Ωh

e ,∀e

(2.a) σ
=

h
· nh = th

0 at Γh
f

(2.b) uh = uh
0 at Γh

u
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Main idea •

From continuous to discrete problem

Split solid into finite elements

Ω→ Ωh with Ωh =
∑
e

Ωh
e

All quantities are associated with
this discretization:
u→ uh, σ

=
→ σ

=
h, Γf → Γh

f , t0 → th
0, . . .

Search for uh only in a finite number
of points (nodes)

Interpolate in between (within
elements)

Ensure (1) equilibrium of every
element and (2) satisfaction of
boundary conditions

(1) ∇ · σ
=

h + f h

v
= 0 in Ωh

e ,∀e

(2.a) σ
=

h
· nh = th

0 at Γh
f

(2.b) uh = uh
0 at Γh

u

Existence and uniqueness of the
solution uh

∗

When discretization-size tends
to zero h→ 0, convergence to
the solution of the continuum
problem: uh

∗
−−−→
h→0

u
∗
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Standard discrete system •

1 For any discrete system the quantities of interest [q] depend on system
parameters [p] and on locally acting external parameters [e]

[q]i = [q]i

(
[p]j, [e]i

)
2 In the first approximation this dependence is linear

q1 = K11p1 + K12p2 + . . .K1NpN + A11e1

q2 = K21p1 + K22p2 + . . .K2NpN + A22e2

. . .
qN = K21p1 + K22p2 + . . .K2NpN + ANNeN

3 In matrix form

[q]i = [K]ij [p]j + [A]ii [e]i

4 Assuming that external parameters are of the same nature as quantities
of interest ([A]ij = [I]ij)

[q]i = [K]ij [p]j + [e]i
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Discrete system in structural mechanics •

Main quantities
Quantities of interest [q] are, in general, forces [f]
System parameters [p] are, in general, displacements [u]
External parameters [e] are, in general, external forces [f]ext

Main steps
1 Construct stiffness matrix and nodal loads vector

[K]k
ij , [f]k

i , i, j ∈ 1,NNk; k ∈ NE,

where NNk is the number of nodes of k-th element, NE is the number of
elements.

2 Assemble them into the global stiffness matrix and global load vector

[K]ij , [f]i, i, j ∈ 1,NN,

where NN is the total number of nodes.
3 Add boundary conditions (for example Dirichlet and Neumann)

[f]ext
k , k ∈ BCf ; [u]0

l , l ∈ BCu

4 Solve linear system of equations

[K]ij [u]j = [f]i − [f]ext
i → [u]j∗
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Shape functions •

Displacements are known at
nodes: uh

i , i = 1, 4

We need to know them inside
the element

Parametrize the inside with
parameters {ξ, η} ∈ [−1, 1]

Use interpolation or shape
functions Ni(ξ, η)
for position X

Xh(ξ, η) =
∑
i

Xh
i Ni(ξ, η)

and displacement u:

uh(ξ, η) =
∑
i

uh
i Ni(ξ, η)

Remark: Find {ξ, η} from X is not
always straigthforward
(may result in a system of
non-linear equations)
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∑
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∑
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Shape functions II •

Rules

Node i has coordinates {ξi, ηi}

Then Ni(ξj, ηj) = δij

Partition of unity:

∀ξ, η, :
∑
i

Ni(ξ, η) = 1

Types

Linear shape functions
∂N
∂ξ

= const

Non-linear shape functions
∂N
∂ξ

= f (ξ)

Linear elements vs quadratic
elements

Higher order elements
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Shape functions III •

Example: bar element

Linear shape functions:

N1(ξ) =
1
2

(1 − ξ)

N2(ξ) =
1
2

(1 + ξ)

Quadratic shape functions:

N1(ξ) =
1
2
ξ(ξ − 1)

N2(ξ) = (1 − ξ2)

N3(ξ) =
1
2
ξ(1 + ξ)
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Shape functions: vectors and matrices •

Displacement nodal vectors ui = exux
i + eyuy

i

Array of nodal coordinates (size dim · n)

[X] = [x1, y1, x2, y2, . . . xn, yn]ᵀ2n

Array of nodal displacements (size dim · n)

[u] = [ux
1, uy

1, ux
2, uy

2, . . . ux
n, uy

n]ᵀ2n

Arrays of shape functions (size dim · n)

[Nx] = [N1, 0, N2, 0, . . . Nn, 0]ᵀ2n

[Ny] = [0, N1, 0, N2, . . . 0, Nn]ᵀ2n

[N] =

[
N1 0 N2 0 . . . Nn 0
0 N1 0 N2 . . . 0 Nn

]ᵀ
2n×dim

Then

x(ξ, η, t) = [Nx(ξ, η)]
ᵀ
[X(t)], y(ξ, η, t) = [Ny(ξ, η)]

ᵀ
[X(t)]

ux(ξ, η, t) = [Nx(ξ, η)]
ᵀ
[u(t)], uy(ξ, η, t) = [Ny(ξ, η)]

ᵀ
[u(t)]
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Gradients and shape functions •

Need to evaluate gradients (spatial derivatives) like ∂f
∂x

But with shape functions f = f (ξ, η)

Then
∂f (ξ, η)
∂x

=
∂f
∂ξ
∂ξ
∂x

+
∂f
∂η

∂η

∂x
However, in general we do not have ξ = ξ(x, y) but rather x = x(ξ, η)

Let’s do it other way around
∂
∂ξ
∂
∂η

 =


∂
∂x
∂x
∂ξ

+
∂
∂y
∂y
∂ξ

∂
∂x
∂x
∂η

+
∂
∂y
∂y
∂η

 =


∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η



∂
∂x
∂
∂y

 = [ J ]


∂
∂x
∂
∂y


Matrix [ J ] is called Jacobian operator and enables to obtain

∂
∂x
∂
∂y

 = [ J ]−1


∂
∂ξ
∂
∂η


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Jacobian operator •

Jacobian operator or simply Jacobian:

[ J ] =

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η


Using x = [Nx]ᵀ [X], y = [Ny]ᵀ [X] we get:

[ J ] =

[Nx,ξ]
ᵀ
[X] [Ny,ξ]

ᵀ [X]

[Nx,η]
ᵀ
[X] [Ny,η]

ᵀ [X]

 ,
where [Nx,ξ] =

[
∂N1

∂ξ
, 0,

∂N2

∂ξ
, 0, . . .

∂Nn

∂ξ
, 0

]ᵀ
etc.

Then the inverse Jacobian is given by:

[ J ]−1 =
1
∆

 [Ny,η]
ᵀ
[X] −[Ny,ξ]

ᵀ [X]

−[Nx,η]
ᵀ
[X] [Nx,ξ]

ᵀ [X]

 ,
with ∆ = det([ J ]) = [X]ᵀ

(
[Nx,ξ][Ny,η]

ᵀ
− [Ny,ξ][Nx,η]

ᵀ
)

[X] , 0
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Infinitesimal strain in 2D •

Strain tensor: ε
=

=
1
2

(
∇u + (∇u)

ᵀ
)

(∗)

Interpolated displacements: ux = [Nx]
ᵀ
[u], uy = [Ny]

ᵀ
[u]

Displacement gradient:

∇u = ex⊗
∂uh

∂x
+ey⊗

∂uh

∂y
= ex
⊗ex ∂ux

∂x
+ex
⊗ey ∂uy

∂x
+ey
⊗ex ∂ux

∂y
+ey
⊗ey ∂uy

∂y

∇u ∼


∂ux

∂x
∂uy

∂x
∂ux

∂y
∂uy

∂y

 = [ J ]−1


∂
∂ξ
∂
∂η


ux

uy


ᵀ

= [ J ]−1


∂
∂ξ
∂
∂η


[Nx]

ᵀ
[u]

[Ny]
ᵀ
[u]


ᵀ

Finally [E] =

[
1 0 1
0 1 1

]ᵀ
[ J ]−1

[
∂[Nx]ᵀ/∂ξ ∂[Ny]ᵀ/∂ξ
∂[Nx]ᵀ/∂η ∂[Ny]ᵀ/∂η

]
[u]

εxx =
(
[ J ]−1

11 [Nx,ξ] + [ J ]−1
12 [Nx,η]

)ᵀ
[u] =

1
∆

(
[Ny,η]

ᵀ
[X][Nx,ξ] − [Ny,ξ]

ᵀ
[X][Nx,η]

)ᵀ
[u]

εyy =
(
[ J ]−1

21 [Ny,ξ] + [ J ]−1
22 [Ny,η]

)ᵀ
[u] =

1
∆

(
−[Nx,η]

ᵀ
[X][Ny,ξ] + [Nx,ξ]

ᵀ
[X][Ny,η]

)ᵀ
[u]

εxy =
1
2

(
∂ux

∂y
+
∂uy

∂x

)
=

1
2

(
[ J ]−1

11 [Ny,ξ] + [ J ]−1
12 [Ny,η] + [ J ]−1

21 [Nx,ξ] + [ J ]−1
22 [Nx,η]

)ᵀ
[u]

V.A. Yastrebov Lecture 1 41/76



Infinitesimal strain in 2D •

Strain tensor: ε
=

=
1
2

(
∇u + (∇u)

ᵀ
)

(∗)

Interpolated displacements: ux = [Nx]
ᵀ
[u], uy = [Ny]

ᵀ
[u]

Displacement gradient:

∇u = ex⊗
∂uh

∂x
+ey⊗

∂uh

∂y
= ex
⊗ex ∂ux

∂x
+ex
⊗ey ∂uy

∂x
+ey
⊗ex ∂ux

∂y
+ey
⊗ey ∂uy

∂y

∇u ∼


∂ux

∂x
∂uy

∂x
∂ux

∂y
∂uy

∂y

 = [ J ]−1


∂
∂ξ
∂
∂η


ux

uy


ᵀ

= [ J ]−1


∂
∂ξ
∂
∂η


[Nx]

ᵀ
[u]

[Ny]
ᵀ
[u]


ᵀ

Finally [E] =

[
1 0 1
0 1 1

]ᵀ
[ J ]−1

[
∂[Nx]ᵀ/∂ξ ∂[Ny]ᵀ/∂ξ
∂[Nx]ᵀ/∂η ∂[Ny]ᵀ/∂η

]
[u]

εxx =
(
[ J ]−1

11 [Nx,ξ] + [ J ]−1
12 [Nx,η]

)ᵀ
[u] =

1
∆

(
[Ny,η]

ᵀ
[X][Nx,ξ] − [Ny,ξ]

ᵀ
[X][Nx,η]

)ᵀ
[u]

εyy =
(
[ J ]−1

21 [Ny,ξ] + [ J ]−1
22 [Ny,η]

)ᵀ
[u] =

1
∆

(
−[Nx,η]

ᵀ
[X][Ny,ξ] + [Nx,ξ]

ᵀ
[X][Ny,η]

)ᵀ
[u]

εxy =
1

2∆

(
[Ny,η]

ᵀ
[X][Ny,ξ] − [Ny,ξ]

ᵀ
[X][Ny,η] − [Nx,η]

ᵀ
[X][Nx,ξ] + [Nx,ξ]

ᵀ
[X][Nx,η]

)ᵀ
[u]
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Infinitesimal strain in 2D in matrix form •

Strain tensor: ε
=

=
1
2

(
∇u + (∇u)

ᵀ
)

(∗)

Represent it as an array (Voigt notations):

ε
=
⇒ [E] =

[
εxx, εyy, γxy

]ᵀ
, γxy = 2εxy

Then
[E]3 = [B]

ᵀ

3×2n
[u]2n

With [B] given by:

[B]
ᵀ

=
1
∆



(
[Ny,η]

ᵀ
[X][Nx,ξ] − [Ny,ξ]

ᵀ
[X][Nx,η]

)ᵀ
(
−[Nx,η]

ᵀ
[X][Ny,ξ] + [Nx,ξ]

ᵀ
[X][Ny,η]

)ᵀ
(
[Ny,η]

ᵀ
[X][Ny,ξ] − [Ny,ξ]

ᵀ
[X][Ny,η] − [Nx,η]

ᵀ
[X][Nx,ξ] + [Nx,ξ]

ᵀ
[X][Nx,η]

)ᵀ


3×2n
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Infinitesimal strain in 2D: example •

Consider a linear triangular element with shape
functions:

N1 = − 1
2 (ξ + η), N2 = 1

2 (1 + ξ), N3 = 1
2 (1 + η)

Their derivatives are given by:

N1,ξ = −1/2, N2,ξ = 1/2, N3,ξ = 0

N1,η = −1/2, N2,η = 0, N3,η = 1/2

∆ =
1
4

((x2 − x1)(y3 − y1) − (y2 − y1)(x3 − x1))∗

Then

εxx =
1

4∆

[
(y3 − y1)(ux

2 − ux
1) − (y2 − y1)(ux

3 − ux
1)
]

εyy =
1

4∆

[
(x2 − x1)(uy

3 − uy
1) − (x3 − x1)(uy

2 − uy
1)
]

γxy =
1

4∆

[
(y3 − y1)(uy

2 − uy
1) − (y2 − y1)(uy

3 − uy
1) + (x2 − x1)(ux

3 − ux
1) − (x3 − x1)(ux

2 − ux
1)
]

∗Half of the area of the triangle.
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Infinitesimal strain in 2D: example II •

Rectangular triangle x1 = x3, y1 = y2, ∆ = LxLy/4

Case 1: pure tension/compression along OX iaoi uy
3 = uy

1, uy
2 = uy

1, ux
3 = ux

1
Ex.: ux

2 = δ : εxx = 1
4∆

(y3 − y1)(ux
2 − ux

1) = δ/Lx, εyy = γxy = 0
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Infinitesimal strain in 2D: example II •

Rectangular triangle x1 = x3, y1 = y2, ∆ = LxLy/4

Case 1: pure tension/compression along OX iaoi uy
3 = uy

1, uy
2 = uy

1, ux
3 = ux

1
Ex.: ux

2 = δ : εxx = 1
4∆

(y3 − y1)(ux
2 − ux

1) = δ/Lx, εyy = γxy = 0

Case 2: pure tension/compression along OY iaoi ux
2 = ux

1, uy
2 = uy

1, ux
3 = ux

1
Ex.: uy

3 = δ : εyy = 1
4∆

(x2 − x1)(uy
3 − uy

1) = δ/Ly, εxx = γxy = 0
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Infinitesimal strain in 2D: example II •

Rectangular triangle x1 = x3, y1 = y2, ∆ = LxLy/4

Case 1: pure tension/compression along OX iaoi uy
3 = uy

1, uy
2 = uy

1, ux
3 = ux

1
Ex.: ux

2 = δ : εxx = 1
4∆

(y3 − y1)(ux
2 − ux

1) = δ/Lx, εyy = γxy = 0

Case 2: pure tension/compression along OY iaoi ux
2 = ux

1, uy
2 = uy

1, ux
3 = ux

1
Ex.: uy

3 = δ : εyy = 1
4∆

(x2 − x1)(uy
3 − uy

1) = δ/Ly, εxx = γxy = 0

Case 3: pure shear in XY iaoi ux
2 = ux

1, uy
3 = uy

1
Ex.: uy

2 = δy, ux
3 = δx :

γxy =
1

4∆

(
(y3 − y1)(uy

2 − uy
1) + (x2 − x1)(ux

3 − ux
1)
)

=
δy

Lx
+
δx

Ly
, εxx = εyy = 0
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Stress tensor •

In linear elasticity:
σ
=

=4 C
=

: (ε
=
− ε

=0
) + σ

=0

Residual stress field σ
=0

Initial strain field ε
=0

In self equilibrated system: σ
=0

=4 C
=

: ε
=0

resulting in

σ
=

=4 C
=

: (ε
=
− ε

=th
)

With thermal strain field ε
=th

:

ε
=th

= α(T − T0)I
=
,

whereα is the coefficient of thermal expansion (CTE), T and T0 are the
current and reference temperature fields, respectively.
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Stress: 2D isotropic elasticity •

Recall stress/strain relationship:

σ
=

=
νE

(1 + ν)(1 − 2ν)
tr(ε

=
)I
=

+
E

1 + ν
ε
=

Stress (in Voigt notations): σ
=
⇒ [S] = [σxx, σyy, σxy]ᵀ

In plane stress σzz = 0, εzz = ν
ν−1 (εxx + εyy)

In plain strain σzz = ν(σxx + σyy), εzz = 0
Stress/strain relationship: [S]i = [D]ij [E]j

Matrix [D] in plane strain εzz = εxz = εyz = 0:

[D]ij =
E

(1 + ν)(1 − 2ν)

1 − ν ν 0
ν 1 − ν 0
0 0 (1 − 2ν)/2∗


Matrix [D] in plane stress σzz = σxz = σyz = 0, tr(ε

=
) = 1−2ν

1−ν (εxx + εyy):

[D]ij =
E

1 − ν2

1 ν 0
ν 1 0
0 0 (1 − ν)/2∗


∗Factor 1/2 appears because γxy was inserted in [E] instead of εxy.
V.A. Yastrebov Lecture 1 49/76



Stress: general case •

Voigt notations in 3D case

Stress tensor: σ
=
→ [S] = [σxx, σyy, σzz, σxy, σyz, σxz]

ᵀ

Strain tensor: ε
=
→ [E] = [εxx, εyy, εzz, γxy, γyz, γxz]

ᵀ

Hooke’s law: [S] = [D] [E]
Isotropic elasticity (two constants E, ν):

[D]ij =
E

(1 + ν)(1 − 2ν)



1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 (1 − 2ν)/2 0 0
0 0 0 0 (1 − 2ν)/2 0
0 0 0 0 0 (1 − 2ν)/2


Cubic elasticity (3 constants E, ν, µ):

[D]ij =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


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Stress: general case II •

Voigt notations in 3D case
Transversely isotropic elasticity (5 constants E1,E2, ν1, ν2, µ1):

[D]ij =



C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 (C11 − C12)/2


Orthotropic elasticity (9 constants Exx,Eyy,Ezz, νxy, νyz, νxz, µxy, µyz, µxz):

[D]ij =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66


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Strain/Stress: spherical part •

Spherical part of a tensor =
1
3

tr(A
=

)I
=

If the strain tensor can be presented as ε
=

= 1
3 tr(ε

=
)I
=

,
then only volume change happens at this location ∆V/V0 = tr(ε

=
)

ε
=
∼

ε 0 0
0 ε 0
0 0 ε


If the stress tensor can be presented as σ

=
= 1

3 tr(σ
=

)I
=

,
then the stress state is pure hydrostatic compression under pressure
p = −tr(σ)/3

σ
=
∼

−p 0 0
0 −p 0
0 0 −p


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Strain/Stress: deviatoric part •

Deviatoric part of a tensor = A
=
−

1
3

tr(A
=

)I
=

If the strain tensor does not have spherical part ε
=

= ε
=
−

1
3 tr(ε

=
)I
=

,
then no volume change happens at this location ∆V/V0 = 0 only the
shape changes, Ex.:

ε
=
∼

ε 0 0
0 −0.5ε 0
0 0 −0.5ε

 , ε
=
∼

0 ε 0
ε 0 0
0 0 0


If the stress tensor is presented only by deviatoric part σ

=
= σ

=
−

1
3 tr(σ

=
)I
=

,
then the stress state is pure shear:

σ
=
∼

−σ 0 0
0 2σ 0
0 0 −σ

 , σ
=
∼

 0 σxy σxz

σxy 0 0
σxz 0 0


In general both parts are present: ε

=
= e

=
+ tr(ε

=
)I
=
/3, σ

=
= s

=
+ tr(σ

=
)I
=
/3
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Strain/Stress: elastic relationships •

Recall: ε
=

= e
=

+
∆V
3V

I
=

, σ
=

= s
=
− pI

=

For deviatoric part in linear isotropic elasticity

s
=

=
E

1 + ν
e
=
, s

=
= 2µe

=
,

where µ =
E

2(1 + ν)
is called shear modulus.

For spherical parts

tr(ε
=

) =
1 − 2ν

E
tr(σ) = −

3(1 − 2ν)
E

p

then

−
1
V

dV
dp

=
3(1 − 2ν)

E
⇔ −V

dp
dV

=
E

3(1 − 2ν)
= K

where K =
E

3(1 − 2ν)
is called bulk modulus.
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Stress and reactions: element’s equilibrium II •

Work of nodal forces on virtual nodal displacements =
1
2

f
i
· δui

Work density of distributed volumetric forces =
1
2

f
V
· δuV

Corresponding density of elastic energy =
1
2
σ
=

: δε
=

Stored elastic energy equals this work:∫
Ve

σ
=

: ε
=

dV =
∑

i

f
i
· ui +

∫
Vef

V
· δu dV

Elastic stress σ
=

=4 C
=

: (ε
=
− ε

=th
)⇒ [S] = [D] ([E] − [E th])

Strain ε
=
∼ [E] = [B]ᵀ [u], vol. force density f

v
∼ [fv] = [ f x

v , f
y
v , f z

v ]ᵀ ,
volumetric virt. displacement δuV ∼ [N]ᵀδ[u]:∫

Ve

{
([D] ([E] − [E th]))

ᵀ
δ[E] − [fv]

ᵀ
[Ni]

ᵀ
δ[u]

}
dV = [f]

ᵀ
δ[u]

[u]


∫
Ve

[B] [D] [B]
ᵀ

dV

 δ[u] −


∫
Ve

(
[fv]

ᵀ
[Ni]

ᵀ
+ [E th]

ᵀ
[D] [B]

ᵀ )
dV

 δ[u] = [f]
ᵀ
δ[u]
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Stress and reactions: element’s equilibrium II •

Work of nodal forces on virtual nodal displacements =
1
2

f
i
· δui

Work density of distributed volumetric forces =
1
2

f
V
· δuV

Corresponding density of elastic energy =
1
2
σ
=

: δε
=

Stored elastic energy equals this work:∫
Ve

σ
=

: ε
=

dV =
∑

i

f
i
· ui +

∫
Vef

V
· δu dV

Elastic stress σ
=

=4 C
=

: (ε
=
− ε

=th
)⇒ [S] = [D] ([E] − [E th])

Strain ε
=
∼ [E] = [B]ᵀ [u], vol. force density f

v
∼ [fv] = [ f x

v , f
y
v , f z

v ]ᵀ ,
volumetric virt. displacement δuV ∼ [N]ᵀδ[u]:∫

Ve

{
([D] ([E] − [E th]))

ᵀ
δ[E] − [fv]

ᵀ
[Ni]

ᵀ
δ[u]

}
dV = [f]

ᵀ
δ[u]

[u]


∫
Ve

[B] [D] [B]
ᵀ

dV

 δ[u] −


∫
Ve

(
[fv]

ᵀ
[Ni]

ᵀ
+ [E th]

ᵀ
[D] [B]

ᵀ )
dV

 δ[u] = [f]
ᵀ
δ[u]
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Stress and reactions: element’s equilibrium II •

Work of nodal forces on virtual nodal displacements =
1
2

f
i
· δui

Work density of distributed volumetric forces =
1
2

f
V
· δuV

Corresponding density of elastic energy =
1
2
σ
=

: δε
=

Stored elastic energy equals this work:∫
Ve

σ
=

: ε
=

dV =
∑

i

f
i
· ui +

∫
Vef

V
· δu dV

Elastic stress σ
=

=4 C
=

: (ε
=
− ε

=th
)⇒ [S] = [D] ([E] − [E th])

Strain ε
=
∼ [E] = [B]ᵀ [u], vol. force density f

v
∼ [fv] = [ f x

v , f
y
v , f z

v ]ᵀ ,
volumetric virt. displacement δuV ∼ [N]ᵀδ[u]:∫

Ve

{
([D] ([E] − [E th]))

ᵀ
δ[E] − [fv]

ᵀ
[Ni]

ᵀ
δ[u]

}
dV = [f]

ᵀ
δ[u]

[u]


∫
Ve

[B] [D] [B]
ᵀ

dV

 δ[u] −


∫
Ve

(
[fv]

ᵀ
[Ni]

ᵀ
+ [E th]

ᵀ
[D] [B]

ᵀ )
dV

 δ[u] = [f]
ᵀ
δ[u]
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Stress and reactions: element’s equilibrium II •

Work of nodal forces on virtual nodal displacements =
1
2

f
i
· δui

Work density of distributed volumetric forces =
1
2

f
V
· δuV

Corresponding density of elastic energy =
1
2
σ
=

: δε
=

Stored elastic energy equals this work:∫
Ve

σ
=

: ε
=

dV =
∑

i

f
i
· ui +

∫
Vef

V
· δu dV

Elastic stress σ
=

=4 C
=

: (ε
=
− ε

=th
)⇒ [S] = [D] ([E] − [E th])

Strain ε
=
∼ [E] = [B]ᵀ [u], vol. force density f

v
∼ [fv] = [ f x

v , f
y
v , f z

v ]ᵀ ,
volumetric virt. displacement δuV ∼ [N]ᵀδ[u]:∫

Ve

{
([D] ([E] − [E th]))

ᵀ
δ[E] − [fv]

ᵀ
[Ni]

ᵀ
δ[u]

}
dV = [f]

ᵀ
δ[u]

[u]


∫
Ve

[B] [D] [B]
ᵀ

dV

 δ[u] −


∫
Ve

(
[fv]

ᵀ
[Ni]

ᵀ
+ [E th]

ᵀ
[D] [B]

ᵀ )
dV

 δ[u] = [f]
ᵀ
δ[u]
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Stress and reactions: element’s equilibrium II •

Balance of virtual work for a single element:

[u]


∫
Ve

[B] [D] [B]
ᵀ

dV

 δ[u] −


∫
Ve

(
[fv]

ᵀ
[Ni]

ᵀ
+ [E th]

ᵀ
[D] [B]

ᵀ )
dV

 δ[u] = [f]
ᵀ
δ[u]

For arbitrary virtual displacements δ[u]:
∫
Ve

[B]
ᵀ

[D] [B] dV

︸                   ︷︷                   ︸[
Ke]

[u] +


∫
Ve

(
−[fv]

ᵀ
[Ni] − [B] [D] [E th]

)
dV

︸                                          ︷︷                                          ︸
[fe

int]

= [f]

︸︷︷︸
[fe

ext]

System of equations linking displacements and reactions:

[Ke] [ue] + [fe
int] = [fe

ext]
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Assembly •

At every internal node the total force should be zero:∑
e

[fe
ext] = 0

summation over all elements e attached to this node.

Summation over all nodes gives:

[K] [u] + [fint] = 0

V.A. Yastrebov Lecture 1 60/76



Dirichlet boundary conditions •

Dirichlet BC
Use penalty method to enforce prescribed displacements: array
[u0] = [0 . . . 0 ui0 0 . . . 0 uj0 0]
Diagonal selection matrix [Is] with ones at prescribed degrees of
freedom (DOFs):

[
Is] =



0 . . . 0

i︷︸︸︷
0 0 . . . 0

j︷︸︸︷
0 0 } i

...
...

...
...

...
...

... } i
0 . . . 0 0 0 . . . 0 0 0 } i
0 . . . 0 1 0 . . . 0 0 0 } i
0 . . . 0 0 0 . . . 0 0 0 } i
...

...
...

...
...

...
... } i

0 . . . 0 0 0 . . . 0 0 0 } i
0 . . . 0 0 0 . . . 0 1 0 } j
0 . . . 0 0 0 . . . 0 0 0 } i


Then the system is changed to

([K] + ε [Is]) [u] = ([I] − [Is]) ([fext] − [fint]) + ε[u0]
where ε is the penalty coefficient such that ε� max(Kij), and [I] is the
identity matrix.
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Neumann boundary conditions •

Neumann BC

Surface traction t0 at Γf

Virtual work of surface traction
over one element:∫

Γe
f

t0 · δu dΓ = f i

ext
· δue

i

Then

[f i
ext] =

∫
Γe

f

[t0]
ᵀ
[N]

ᵀ
dΓ
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Discrete system of equations •

Balance of virtual work for the whole body:
∫
V

[B]
ᵀ

[D] [B] dV

︸                  ︷︷                  ︸
[K]

[u] =

∫
Γf

[t0]
ᵀ
[N]

ᵀ
dΓ

︸            ︷︷            ︸
[fext]

+


∫
V

(
[fv]

ᵀ
[Ni] + [B] [D] [E th]

)
dV

︸                                       ︷︷                                       ︸
−[fint]

System of equations linking displacements and reactions:

[K] [u] = [fext] − [fint]

Stiffness matrix [K]

Vector of degrees of freedom (DOFs) [u]

Right hand term (vector of forces) [fext] − [fint]
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Different approach: virtual work formulation I •

Arbitrary virtual displacements
δu

Strong form: ∇ · σ
=

+ f
V

= 0 + BCs

Take a product with virtual
displacements and integrate
over Ω:∫

Ω

(
∇ · σ

=
· δu + f

V
· δu

)
dV = 0

Replacement: ∇ · σ
=
· δu = ∇ ·

(
σ
=
· δu

)
− σ

=
: ∇δu

Following Gauss-Ostrogradsky theorem:
∫
V
∇ · (•) dV =

∫
S

n · (•) dS

So ∫
∂Ω

n · σ
=
· δu dS +

∫
Ω

(
f

V
· δu − σ

=
: δε

=

)
dV = 0
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Different approach: virtual work formulation II •

continue. . .

Weak form∫
∂Ω

n·σ
=
·δu dS+

∫
Ω

(
f

V
· δu − σ

=
: δε

=

)
dV = 0

Non-trivial Neumann boundary
conditions at Γf∫
Ω

σ
=

: δε
=

dV =

∫
Γf

t0·δu dS+

∫
Ω

f
V
·δu dV

Remark I: in the strong form u should be C2-smooth, in the weak form u
should be only square-integrable as well as its first derivative, thus
u ∈H1, i.e. from Sobolev’s functional space of the first order. In
addition u = u0 at Γu

Remark II: for linear elasticity, the stress tensor∗ σ
=

=4 C
=

: (ε
=
− ε

=th
)∫

Ω

ε
=

:4 C
=

: δε
=

dV =

∫
Γf

t0 · δu dS +

∫
Ω

(
f

V
+4C

=
: ε
=th

)
· δu dV
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Different approach II: potential energy •

Remark III:

If the system remains linear (boundary conditions, linear elasticity)

The principle of virtual work is equivalent to the minimum of the total
potential energy

{Potential energy} = {Internal energy} - {Work of all forces}

Π(u, t0,u0) =
1
2

∫
Ω

σ
=

: ε
=

dV −
∫
Γf

t0 · u dΓ −

∫
Ω

f
V
· u dV

Stationary point of the total potential energy
∂Π
∂u

= 0 for given loads

t0,u0:

∂Π
∂u

=

∫
Ω

ε
=

:4 C
=

:
∂ε
=
∂u

dV −
∫
Γf

t0 dΓ −

∫
Ω

f
V

dV = 0

The same equation
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Evaluation of the integrals •

Weak form (recall):
∫
V

[B]
ᵀ

[D] [B] dV

︸                   ︷︷                   ︸
[K]

[u] =

∫
Γf

[t0]
ᵀ

[N]
ᵀ

dΓ

︸            ︷︷            ︸
[fext]

+


∫
V

(
[fv]

ᵀ
[Ni] + [B] [D] [E th]

)
dV

︸                                        ︷︷                                        ︸
−[fint]

Exact integration:
b∫

a
f (x)dx = F(b) − F(a) (not always possible)

Approximate integration (trapezoidal rule, Simpson’s rule)

Gauss quadrature:
b∫

a
f (x)dx ≈

NGP∑
i=1

wif (xi)

Gauss points xi with i = 1,NGP

Integration is exact for polynomials of order 2NGP − 1

Tabulated data for xi,wi (1D, 2D, 3D integration)
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Evaluation of the integrals: example •

Function f (x) = cos(πx2/2)
NGP = 1: error ≈ 28.22 %
NGP = 2: error ≈ 11.04 %
NGP = 3: error ≈ 1.14 %
NGP = 4: error ≈ 0.14 %
NGP = 5: error ≈ 0.01 %

Function f (x) = x sin(πx)
NGP = 1: error ≈ 100.00 %
NGP = 2: error ≈ 76.05 %
NGP = 3: error ≈ 12.07 %
NGP = 4: error ≈ 0.80 %
NGP = 5: error ≈ 0.03 %

1.0 0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

cos(πx2 /2)

x sin(πx)

V.A. Yastrebov Lecture 1 68/76



Evaluation of the integrals II •

Consider:
∫
V

[B]
ᵀ

[D] [B] dV =

Ne∑
e=1

∫
Ve

[B]
ᵀ

[D] [B] dV

Transpose to the parametric space (2D example)

∫
Ve

[B(ξ, η)]
ᵀ

[D] [B(ξ, η)] dV =

1∫
−1

1∫
−1

[B(ξ, η)]
ᵀ

[D] [B(ξ, η)] det([ J ]) dξdη

Finally:

[K] =
∫
V

[B]
ᵀ

[D] [B] dV =
Ne∑
e=1

NGP∑
GP=1

[Be(ξGP , ηGP )]
ᵀ

[D] [Be(ξGP , ηGP )] det([ Je(xiGP , ηGP ) ])wGP
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Evaluation of the integrals III •

If N(ξ, η) = Pp is a polynomial of order p, then [ J ] = Pdim(p−1),

[B] =
P2(p−1)

Qdim(p−1)

Remark I: Gauss quadrature is exact for p = 1 and approximate if p > 1.

Remark II: Stress and strains are exactly evaluated only in Gauss
points, in all other points they are extrapolated/interpolated

Remark III: 1 GP for linear triangle, 3 GP for quadratic triangle, 4 GP
for bilinear quadrilateral element, 9 GP for quadratic quadrilateral, etc.

Remark IV: Underintegration may lead to zero-energy deformation
modes (which are often stabilized in FE software)
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Evaluation of the integrals: quadrilateral 2D element •

Shape functions:

N1 = 1
4 (1 − ξ)(1 − η), N2 = 1

4 (1 + ξ)(1 − η)

N3 = 1
4 (1 + ξ)(1 + η), N4 = 1

4 (1 − ξ)(1 + η)

Shape function derivatives:

N1,ξ = − 1
4 (1 − η), N2,ξ = 1

4 (1 − η)

N3,ξ = 1
4 (1 + η), N4,ξ = − 1

4 (1 + η)
N1,η = − 1

4 (1 − ξ), N2,η = − 1
4 (1 + ξ)

N3,η = 1
4 (1 + ξ), N4,η = 1

4 (1 − ξ)

Determinant of Jacobian (dA = det [ J ]dξdη):

det([ J ]) =

1
16

[
((1 − η)(x2 − x1) + (1 + η)(x3 − x4))((1 + ξ)(y3 − y2) + (1 − ξ)(y4 − y1))−

− ((1 − η)(y2 − y1) + (1 + η)(y3 − y4))((1 + ξ)(x3 − x2) + (1 − ξ)(x4 − x1))
]

V.A. Yastrebov Lecture 1 71/76



Evaluation of the integrals: quadrilateral 2D element •

Shape functions:

N1 = 1
4 (1 − ξ)(1 − η), N2 = 1

4 (1 + ξ)(1 − η)

N3 = 1
4 (1 + ξ)(1 + η), N4 = 1

4 (1 − ξ)(1 + η)

Shape function derivatives:

N1,ξ = − 1
4 (1 − η), N2,ξ = 1

4 (1 − η)

N3,ξ = 1
4 (1 + η), N4,ξ = − 1

4 (1 + η)
N1,η = − 1

4 (1 − ξ), N2,η = − 1
4 (1 + ξ)

N3,η = 1
4 (1 + ξ), N4,η = 1

4 (1 − ξ)

Determinant of Jacobian (dA = det [ J ]dξdη):

det([ J ]) =

1
16

[
((1 − η)(x2 − x1) + (1 + η)(x3 − x4))((1 + ξ)(y3 − y2) + (1 − ξ)(y4 − y1))−

− ((1 − η)(y2 − y1) + (1 + η)(y3 − y4))((1 + ξ)(x3 − x2) + (1 − ξ)(x4 − x1))
]

Warning: to ensure det([ J ]) > 0 the element
should remain convex
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Solvers •

Problem: Find [u] such that [K] [u] = [f] , i.e. [u] = [K]−1 [f]

Iterative solvers
The solution is approached iteratively, does not require much memory,
restrictions to matrix type, sensitive to matrix conditioning, a preconditioner is
often needed.

Gauss-Seidel method (GS)
Conjugate gradient method (CG)
Generalized minimum residual method (GMRES)
. . .

Direct solvers
The solution is provided directly, no restrictions on matrix type, less sensitive
to matrix conditioning, based on LU or Cholesky decomposition

Frontal
Sparse direct
. . .
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Example •

3 bars in 2D

3 elements, 3 nodes, 6 dofs
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K Thank you for your attention!




