Computational Approach to Micromechanical Contacts

Lecture 1.
 Introduction to the Finite Element Method

Vladislav A. Yastrebov

MINES ParisTech, PSL Research University, Centre des Matériaux, CNRS UMR 7633, Evry, France
@ Centre des Matériaux
September 2017

1 Elements of tensor algebra
2 Continuum mechanics: recall

3 Finite element method
1 Main idea of the FEM
2 Finite element and shape functions
3 Strain tensor
4 Stress tensor
5 Reactions
6 Boundary conditions
7 Balance of virtual work
8 Integration
9 Solver types
10 Example
11 References

Elements of tensor algebra

Vectors and tensors

Tensor notations
■ Scalars $\in \mathbb{R}$:

$$
a, \alpha, C
$$

Component notations
■ Scalars $\in \mathbb{R}$:

$$
a, \alpha, C
$$

Vectors and tensors

Tensor notations
■ Scalars $\in \mathbb{R}$:

$$
a, \alpha, C
$$

- Vectors $\in \mathbb{V}_{\text {dim }}$:

$$
\underline{a}, \underline{\tau}
$$

Component notations

■ Scalars $\in \mathbb{R}$:

$$
a, \alpha, C
$$

■ Vectors ${ }^{*} \in \mathbb{R}^{\text {dim }}$:

$$
\begin{aligned}
& a_{i}, \tau_{j} \\
& \text { with } \underline{a}=a_{i} \underline{e}^{i} \text { and } a_{i}=\underline{e}^{i} \cdot \underline{a}
\end{aligned}
$$

*Component notations require introducing a basis $\underline{e}^{i}, i=1 \ldots \operatorname{dim}$ and a dual basis \underline{e}_{j} such that $\underline{e}_{j} \cdot \underline{e}^{i}=\delta_{j}^{i}$, where $\delta_{j}^{i}=0$ if $i \neq j$ and $\delta_{j}^{i}=1$ if $i=j$.

Vectors and tensors

Tensor notations
■ Scalars $\in \mathbb{R}$:

$$
a, \alpha, C
$$

- Vectors $\in \mathbb{V}_{\text {dim }}$:

$$
\underline{a}, \underline{\tau}
$$

Component notations

■ Scalars $\in \mathbb{R}$:

$$
a, \alpha, C
$$

■ Vectors ${ }^{*} \in \mathbb{R}^{\text {dim }}$:

$$
a_{i}, \tau_{j}
$$

$$
\text { with } \underline{a}=a_{i} \underline{e}^{i} \text { and } a_{i}=\underline{e}^{i} \cdot \underline{a}
$$

- Second-order tensors $\in \mathbb{T}_{\text {dim }}^{2}$: $\underline{\underline{A}}, \underline{\underline{\sigma}}$
- Second-order tensors $\in \mathbb{R}^{\operatorname{dim}} \times \mathbb{R}^{\operatorname{dim}}$:

$$
\begin{gathered}
A_{i j}, \sigma_{k l} \\
\text { with } \underline{\underline{A}}=A_{i j} \underline{e}^{i} \otimes \underline{e}^{j} \text { and } A_{i j}=\underline{e}_{i} \cdot \underline{\underline{A}} \cdot \underline{e}_{j}
\end{gathered}
$$

*Component notations require introducing a basis $\underline{e}^{i}, i=1 \ldots \operatorname{dim}$ and a dual basis ${\underset{e}{e}}_{j}$ such that $\underline{e}_{j} \cdot \underline{e}^{i}=\delta_{j}^{i}$, where $\delta_{j}^{i}=0$ if $i \neq j$ and $\delta_{j}^{i}=1$ if $i=j$.

Tensor notations

- Scalars $\in \mathbb{R}$:

$$
a, \alpha, C
$$

- Vectors $\in \mathbb{V}_{\text {dim }}$:

$$
\underline{a}, \underline{\tau}
$$

■ Second-order tensors $\in \mathbb{T}_{\text {dim }}^{2}$:

$$
\underline{\underline{A}}, \underline{\underline{\sigma}}
$$

- Forth-order tensors $\in \mathbb{T}_{\text {dim }}^{4}$:
${ }^{4} \underline{\underline{C}}$

Component notations

■ Scalars $\in \mathbb{R}$:

$$
a, \alpha, C
$$

■ Vectors ${ }^{*} \in \mathbb{R}^{\text {dim }}$:

$$
a_{i}, \tau_{j}
$$

$$
\text { with } \underline{a}=a_{i} \underline{e}^{i} \text { and } a_{i}=\underline{e}^{i} \cdot \underline{a}
$$

- Second-order tensors $\in \mathbb{R}^{\operatorname{dim}} \times \mathbb{R}^{\operatorname{dim}}$:

$$
\begin{aligned}
& A_{i j}, \sigma_{k l} \\
& \text { with } \underline{\underline{A}}=A_{i j} \underline{e}^{i} \otimes \underline{e}^{j} \text { and } A_{i j}=\underline{e}_{i} \cdot \underline{\underline{A}} \cdot \underline{e}_{j}
\end{aligned}
$$

- Forth-order tensors

$$
\in \mathbb{R}^{\operatorname{dim}} \times \cdots \times \mathbb{R}^{\operatorname{dim}}:
$$

$$
C_{i j k l}
$$

$$
\text { with }{ }_{\underline{4} \underline{C}}^{\underline{\underline{C}}} C_{i j k l} \underline{e}^{i} \otimes \underline{e}^{j} \otimes \underline{e}^{k} \otimes \underline{e}^{l} \text { and }
$$

$$
C_{i j k l}=\underline{e}_{l} \cdot\left(\underline{e}_{k} \cdot\left(\underline{e}_{j} \cdot\left(\underline{e}_{i} \cdot{ }^{4} \underline{\underline{C}}\right)\right)\right)
$$

*Component notations require introducing a basis $\underline{e}^{i}, i=1 \ldots \operatorname{dim}$ and a dual basis ${\underset{e}{e}}_{j}$ such that $\underline{e}_{j} \cdot \underline{e}^{i}=\delta_{j}^{i}$, where $\delta_{j}^{i}=0$ if $i \neq j$ and $\delta_{j}^{i}=1$ if $i=j$.

Tensor notations

- Transposition

$$
\underline{\underline{C}}=\underline{\underline{D}}^{\top},(\underline{\underline{A}} \cdot \underline{\underline{B}})^{\top}=\underline{\underline{B}}^{\top} \cdot \underline{\underline{A}}^{\top}
$$

- Symmetric tensor

$$
\underline{\underline{A}}^{\top}=\underline{\underline{A}}
$$

- Antisymmetric* ${ }^{*}$ tensor

$$
\underline{\underline{B}}^{\top}=-\underline{\underline{B}}
$$

- Tensor decomposition

$$
\begin{gathered}
\underline{\underline{C}}=\underline{\underline{C}}^{S}+\underline{\underline{C}}^{A} \quad \text { with } \\
\underline{\underline{C}}^{S}=\frac{1}{2}\left(\underline{\underline{C}}+\underline{\underline{C}}^{\top}\right), \underline{\underline{C^{A}}}=\frac{1}{2}\left(\underline{\underline{C}}-\underline{\underline{C}}^{\top}\right)
\end{gathered}
$$

Component notations

- Transposition

$$
C_{i j}=D_{j i}
$$

- Symmetric tensor

$$
A_{i j}=A_{j i}
$$

- Antisymmetric tensor

$$
B_{i j}=-B_{j i}
$$

- Tensor decomposition

$$
\begin{gathered}
C_{i j}=C_{i j}^{S}+C_{i j}^{A} \quad \text { with } \\
C_{i j}^{S}=\frac{1}{2}\left(C_{i j}+C_{j i}\right), C_{i j}^{A}=\frac{1}{2}\left(C_{i j}-C_{j i}\right)
\end{gathered}
$$

Examples

■ Identity tensor (symmetric) $\underline{\underline{I}}=\delta^{i j} \underline{e}_{i} \otimes \underline{e}_{j}=\underline{e}_{i} \otimes \underline{e}_{i}$
■ Rotation tensor (asymmetric $=\operatorname{symmetric}(\neq 0)+\operatorname{antisymmetric}(\neq 0))$:
$\underline{\underline{Q}} \sim\left[\begin{array}{ccc}\cos (\phi) & \sin (\phi) & 0 \\ -\sin (\phi) & \cos (\phi) & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\cos (\phi) & 0 & 0 \\ 0 & \cos (\phi) & 0 \\ 0 & 0 & 1\end{array}\right]+\left[\begin{array}{ccc}0 & \sin (\phi) & 0 \\ -\sin (\phi) & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

[^0]
Tensor algebra: products

Tensor notations

- Mutliplication by a scalar

$$
\alpha \underline{\underline{A}}=\underline{\underline{A}} \alpha
$$

- Scalar product*

$$
\begin{aligned}
& \underline{a} \cdot \underline{b}=c \\
& \underline{\boldsymbol{a}} \cdot \underline{\underline{A}}=\underline{b} \\
& \underline{\underline{\boldsymbol{A}}} \cdot \underline{\underline{B}}=\underline{\underline{C}}
\end{aligned}
$$

- Tensor contraction

$$
\begin{aligned}
& \underline{\bar{A}}: \underline{\underline{B}}=c \\
& \underline{\underline{A}} \cdot \underline{\underline{B}}=d
\end{aligned}
$$

Component notations

- Mutliplication by a scalar

$$
\alpha A_{i j}=A_{i j} \alpha
$$

■ Scalar (dot) product**

$$
\begin{aligned}
& a_{i} b^{i}=c \\
& a_{i} A^{i j}=b^{j} \\
& A_{i j} B^{j k}=C_{i}^{k}
\end{aligned}
$$

- Tensor contraction

$$
\begin{aligned}
& A_{i j} B_{i j}=c \\
& A_{i j} B_{j i}=d
\end{aligned}
$$

- Remark:

$$
\begin{aligned}
& \underline{\underline{A}}: \underline{\underline{B}}=\underline{\underline{A}}^{S}: \underline{\underline{B}}^{S}+\underline{\underline{A}}^{A}: \underline{\underline{B}}^{A} \text { and } \underline{\underline{A}}^{S}: \underline{\underline{B}}^{A}=\underline{\underline{A}}^{A}: \underline{\underline{B}}^{S}=0 \\
& \underline{\underline{A}} \cdot \underline{\underline{B}}=\underline{\underline{A}}^{S} \cdots \underline{\underline{B}}^{S}+\underline{\underline{A}}^{A} \cdots \underline{\underline{B}}^{A} \text { and } \underline{\underline{A}}^{S} \cdots \underline{\underline{B}}^{A}=\underline{\underline{A}}^{A} \cdot \underline{\underline{B}}^{S}=0
\end{aligned}
$$

[^1]
Tensor algebra: products II \& invariants

Tensor notations

- Vector product ${ }^{*}$

$$
\underline{a} \times \underline{b}=\underline{c}
$$

such that $\underline{c} \cdot \underline{a}=0, \underline{c} \cdot \underline{b}=0$

Component notations

- Vector product*
$c^{i}=\epsilon_{i j k} a^{j} b^{k}$
with $\epsilon_{i j k}$ Levi-Civita symbol

$$
\epsilon_{i j k}= \begin{cases}1, & \text { if }(i, j, k)=(1,2,3) \text { or }(2,3,1) \text { or }(3,1,2) \\ -1, & \text { if }(i, j, k)=(2,1,3) \text { or }(1,3,2) \text { or }(3,2,1) \\ 0, & \text { otherwise }\end{cases}
$$

- Tensor product**

$$
\begin{aligned}
& \underline{a} \otimes \underline{b}=\underline{\underline{C}} \\
& \underline{\underline{A}} \otimes \underline{\underline{B}}={ }^{4} \underline{\underline{C}}
\end{aligned}
$$

- Invariants:

$$
I_{1}(\underline{\underline{A}})=\operatorname{tr}(\underline{\underline{A}})=\underline{\underline{I}}: \underline{\underline{A}}
$$

$$
I_{2}(\underline{\underline{A}})=\frac{1}{2}\left[\operatorname{tr}(\underline{\underline{A}})^{2}-\operatorname{tr}\left(\underline{\underline{A^{2}}}\right)\right]
$$

$$
I_{3}(\underline{\underline{A}})=\operatorname{det}(\underline{\underline{A}})
$$

- Tensor product
$a_{i} b_{j}=C_{i j}$
$A_{i j} B_{k l}=C_{i j k l}$
- Invariants:
$I_{1}(\underline{\underline{A}})=A_{i i}=A_{11}+A_{22}+A_{33}$
$I_{2}(\underline{\underline{A}})=\ldots$
$I_{3}(\underline{\underline{A}})=\ldots$

[^2]${ }^{* *}$ Also called outer product.

Tensor algebra: deviatoric \& spherical parts

Tensor notations

- Spherical part of tensor $\underline{\underline{A}}$

$$
\operatorname{Sp}(\underline{\underline{A}})=\frac{1}{3} \operatorname{tr}(\underline{\underline{A}}) \underline{\underline{I}}
$$

- Deviatoric part of tensor $\underline{\underline{A}}$

$$
\operatorname{Dv}(\underline{\underline{A}})=\underline{\underline{A}}-\frac{1}{3} \operatorname{tr}(\underline{\underline{A}}) \underline{\underline{I}}
$$

Component notations

■ Spherical part of tensor $\underline{\underline{A}}$

$$
\operatorname{Sp}(\underline{\underline{A}})=\frac{1}{3}\left(A_{k k}\right) \delta_{i j}
$$

- Deviatoric part of tensor $\underline{\underline{A}}$
$\operatorname{Dv}(\underline{\underline{A}})=A_{i j}-\frac{1}{3}\left(A_{k k}\right) \delta_{i j}$
- Tensor decomposition

$$
\underline{\underline{A}}=\operatorname{Sp}(\underline{\underline{A}})+\operatorname{Dv}(\underline{\underline{A}})
$$

■ Remark: for an antisymmetric tensor $\underline{\underline{B}}^{A}$

$$
\operatorname{Sp}\left(\underline{\underline{B}}^{A}\right)=0 \quad \Rightarrow \quad \underline{\underline{B}}^{A}=\operatorname{Dv}\left(\underline{\underline{B}}^{A}\right)
$$

Tensor algebra: principal values

- Principal values of a linear operator $\underset{\underline{A}}{\text { : }}$

$$
\underline{\underline{A}} \cdot \underline{u}=\lambda \underline{u} \quad \Leftrightarrow \quad(\underline{\underline{A}}-\lambda \underline{\underline{\boldsymbol{I}}}) \cdot \underline{u}=0
$$

If $\underline{\underline{A}}=\underline{\underline{A}}^{S}$ for dim $=3$ then exist three real λ_{i} and corresponding \underline{u}_{i} called eigen values and eigen vectors of operator $\underline{\underline{A}}$, respectively.
Moreover, for $i \neq j, \underline{u}_{i} \cdot \underline{u}_{j}=0$.

- To find λ_{i} we solve

$$
I_{3}(\underline{\underline{A}})-I_{2}(\underline{\underline{A}}) \lambda+I_{1}(\underline{\underline{A}}) \lambda^{2}-\lambda^{3}=0
$$

- Then tensor can be rewritten in its eigen basis:

$$
\begin{aligned}
& \qquad \underline{\underline{A}}=\lambda_{1} \underline{u}_{1} \otimes \underline{u}_{1}+\lambda_{2} \underline{u}_{2} \otimes \underline{u}_{2}+\lambda_{3} \underline{u}_{3} \otimes \underline{\boldsymbol{u}}_{3} \\
& \text { and } \operatorname{tr}(\underline{\underline{A}})=\lambda_{i}\left|\underline{\underline{u}}_{i}\right|^{2} .
\end{aligned}
$$

Continuum Mechanics: Recall

- Consider change in positions of points with time t

■ Consider two states: $t=t_{0}$ (reference) and $t=t_{1}$ (current configurations)

- Point \underline{X} from the reference configuration is labeled \underline{x} in the current configuration
■ Displacement vector between t_{0} and t_{1} is $\underline{u}=\underline{x}-\underline{X}$

$\xrightarrow[\substack{t_{0} \\ \text { Reference configuration }}]{\substack{t_{1} \\ \text { Current configuration }}} \quad$ time, t
- Consider change in positions of points with time t

■ Consider two states: $t=t_{0}$ (reference) and $t=t_{1}$ (current configurations)

- Point \underline{X} from the reference configuration is labeled \underline{x} in the current configuration
■ Displacement vector between t_{0} and t_{1} is $\underline{u}=\underline{x}-\underline{X}$

$\xrightarrow[\substack{t_{0} \\ \text { Reference configuration }}]{\substack{t_{1} \\ \text { Current configuration }}} \quad$ time, t
- Consider change in positions of points with time t

■ Consider two states: $t=t_{0}$ (reference) and $t=t_{1}$ (current configurations)

- Point \underline{X} from the reference configuration is labeled \underline{x} in the current configuration
■ Displacement vector between t_{0} and t_{1} is $\underline{u}=\underline{x}-\underline{X}$

$\xrightarrow[\substack{t_{0} \\ \text { Reference configuration }}]{\substack{t_{1} \\ \text { Current configuration }}} \quad$ time, t

■ Transformation gradient $\underset{\underline{F}}{=}=\frac{\partial \underline{x}}{\partial \underline{X}}=\frac{\partial(\underline{X}+\underline{u})}{\partial \underline{X}}=\underline{I}+\frac{\partial \underline{u}}{\partial \underline{X}}=\underline{\underline{I}}+\underline{\underline{H}}$
■ Cauchy-Green right tensor $\underline{\underline{C}}=\underline{\underline{F^{\top}}} \cdot \underline{\underline{F}}$
■ Green-Lagrange deformation tensor $\underset{\underline{E}}{\underline{E}}=\frac{1}{2}(\underline{\underline{C}}-\underline{\underline{I}})=\underline{\underline{H}}^{S}+\frac{1}{2} \underline{\underline{H}}^{\top} \cdot \underline{\underline{H}}$

- For $H_{i j} \ll 1, \underline{\underline{E}} \approx \underline{\underline{H}}^{S}$ and we obtain a tensor of small deformations

$$
\underline{\underline{\varepsilon}}=\underline{\underline{H}}^{S}=\frac{1}{2}\left[\frac{\partial \underline{u}}{\partial \underline{X}}+\left(\frac{\partial \underline{u}}{\partial \underline{X}}\right)^{\top}\right]=\frac{1}{2}\left(\nabla \underline{u}+(\nabla \underline{u})^{\top}\right)
$$

■ Hooke's law in uniaxial test:

$$
F=k u \quad \Leftrightarrow \quad \sigma_{x x}=E \varepsilon_{x x}
$$

- In general case stress and strain are related through a linear operator (fourth-order elasticity tensor ${ }^{4} \underline{\underline{C}}$):

$$
\underline{\underline{\sigma}}={ }^{4} \underline{\underline{C}}: \underline{\underline{\varepsilon}}
$$

- Inversely the strain can be found through a stiffness tensor ${ }^{4}$ S:

$$
\underline{\underline{\varepsilon}}={ }^{4} \underline{\underline{S}}: \underline{\underline{\sigma}}
$$

- In the case of isotropic material the Hooke's law reduces to:

$$
\underline{\underline{\sigma}}=\lambda \operatorname{tr} \underline{\underline{\varepsilon}} \underline{\underline{\underline{I}}}+2 \mu \underline{\underline{\varepsilon}}
$$

with λ, μ being Lamé coefficients:

$$
\lambda=\frac{v E}{(1+v)(1-2 v)}, \quad \mu=\frac{E}{2(1+v)}
$$

with Young's modulus E and Poisson's ratio v.

- In the component form it reads:

$$
\sigma_{i j}=\lambda\left(\varepsilon_{k k}\right) \delta_{i j}+2 \mu \varepsilon_{i j}
$$

- In the matrix form:

$$
\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{22} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{33}
\end{array}\right]=2 \mu\left[\begin{array}{ccc}
\lambda \operatorname{tr} \underline{\underline{\varepsilon}}) /(2 \mu)+\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
\varepsilon_{12} & \lambda \operatorname{tr} \underline{\underline{\varepsilon}}) /(2 \mu)+\varepsilon_{22} & \varepsilon_{23} \\
\varepsilon_{13} & \varepsilon_{23} & \lambda \operatorname{tr} \underline{\underline{\varepsilon}}) /(2 \mu)+\varepsilon_{33}
\end{array}\right]
$$

- In the case of isotropic material the Hooke's law reduces to:

$$
\underline{\underline{\sigma}}=\lambda \operatorname{tr} \underline{\underline{\varepsilon}} \underline{\underline{\underline{I}}}+2 \mu \underline{\underline{\varepsilon}}
$$

with λ, μ being Lamé coefficients:

$$
\lambda=\frac{v E}{(1+v)(1-2 v)}, \quad \mu=\frac{E}{2(1+v)}
$$

with Young's modulus E and Poisson's ratio v.

- In the component form it reads:

$$
\sigma_{i j}=\lambda\left(\varepsilon_{k k}\right) \delta_{i j}+2 \mu \varepsilon_{i j}
$$

- In the matrix form:

$$
\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{22} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{33}
\end{array}\right]=2 \mu\left[\begin{array}{ccc}
\nu \operatorname{tr} \underline{\underline{\varepsilon}}) /(1-2 v)+\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
\varepsilon_{12} & \nu \operatorname{tr} \underline{\underline{\varepsilon}}) /(1-2 v)+\varepsilon_{22} & \varepsilon_{23} \\
\varepsilon_{13} & \varepsilon_{23} & \nu \operatorname{tr} \underline{\underline{\varepsilon}}) /(1-2 v)+\varepsilon_{33}
\end{array}\right]
$$

Hooke's law for isotropic solids: strain

- Strain as a function of stress:

$$
\underline{\underline{\varepsilon}}=\frac{1+v}{E} \underline{\underline{\sigma}}-\frac{v}{E} \operatorname{tr}(\underline{\underline{\sigma}}) \underline{\underline{I}} .
$$

- In the component form it reads:

$$
\varepsilon_{i j}=\frac{1+v}{E} \sigma_{i j}-\frac{v}{E} \sigma_{k k} \delta_{i j}
$$

■ In the matrix form:

$$
\left[\begin{array}{lll}
\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
\varepsilon_{12} & \varepsilon_{22} & \varepsilon_{23} \\
\varepsilon_{13} & \varepsilon_{23} & \varepsilon_{33}
\end{array}\right]=\frac{1}{E}\left[\begin{array}{ccc}
(1+v) \sigma_{11}-v \operatorname{tr}(\underline{\underline{\sigma}}) & (1+v) \sigma_{12} & (1+v) \sigma_{13} \\
(1+v) \sigma_{12} & (1+v) \sigma_{22}-v \operatorname{tr}(\underline{\underline{\sigma}}) & (1+v) \sigma_{23} \\
(1+v) \sigma_{13} & (1+v) \sigma_{23} & (1+v) \sigma_{33}-v \operatorname{tr}(\underline{\underline{\sigma}})
\end{array}\right]
$$

Hooke's law for isotropic solids: strain

- Strain as a function of stress:

$$
\underline{\underline{\varepsilon}}=\frac{1+v}{E} \underline{\underline{\sigma}}-\frac{v}{E} \operatorname{tr}(\underline{\underline{\sigma}}) \underline{\underline{I}} .
$$

- In the component form it reads:

$$
\varepsilon_{i j}=\frac{1+v}{E} \sigma_{i j}-\frac{v}{E} \sigma_{k k} \delta_{i j}
$$

■ In the matrix form:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
\varepsilon_{12} & \varepsilon_{22} & \varepsilon_{23} \\
\varepsilon_{13} & \varepsilon_{23} & \varepsilon_{33}
\end{array}\right]=\frac{1}{E}\left[\begin{array}{ccc}
(1+v) \sigma_{11}-v \operatorname{tr}(\underline{\underline{\sigma}}) & (1+v) \sigma_{12} & (1+v) \sigma_{13} \\
(1+v) \sigma_{12} & (1+v) \sigma_{22}-v \operatorname{tr}(\underline{\underline{\sigma}}) & (1+v) \sigma_{23} \\
(1+v) \sigma_{13} & (1+v) \sigma_{23} & (1+v) \sigma_{33}-v \operatorname{tr}(\underline{\underline{\sigma}})
\end{array}\right]} \\
& \quad=\frac{1}{E}\left[\begin{array}{ccc}
\sigma_{11}-v\left(\sigma_{22}+\sigma_{33}\right) & (1+v) \sigma_{12} & (1+v) \sigma_{13} \\
(1+v) \sigma_{12} & \sigma_{22}-v\left(\sigma_{11}+\sigma_{33}\right) & (1+v) \sigma_{23} \\
(1+v) \sigma_{13} & (1+v) \sigma_{23} & \sigma_{33}-v\left(\sigma_{11}+\sigma_{22}\right)
\end{array}\right]
\end{aligned}
$$

- Infinitesimal strain tensor is symmetric and satisfies the compatibility conditions*:

$$
\nabla \times(\nabla \times \underline{\underline{\varepsilon}})=0
$$

- Stress tensor $\underset{\underline{\sigma}}{\underline{\sigma}}$ should ensure equilibrium of infinitesimal element ${ }^{* *}$:

$$
\text { Force balance: } \int_{S} \underline{n} \cdot \underline{\underline{\sigma}} d S=0
$$

$$
\text { Momentum balance: } \int_{S} \underline{r} \times(\underline{n} \cdot \underline{\underline{\sigma}}) d S=0
$$

■ Following Gauss-Ostrogradsky theorem:

$$
\begin{aligned}
& \int_{S} \underline{n} \cdot \underline{\underline{\sigma}} d S=\int_{V} \nabla \cdot \underline{\underline{\sigma}} d V=0 \text { Since volume } \\
& V \text { can be arbitrary chosen, then }
\end{aligned}
$$

$$
\nabla \cdot \underline{\underline{\sigma}}=0 \text { everywhere in } V
$$

[^3]■ Second Newton's law:

$$
m \underline{\ddot{u}}=\underline{f} \quad \Rightarrow \quad \rho \underline{\ddot{u}}=\frac{1}{V} f
$$

- In presence of volumetric forces with density $f_{-V^{\prime}}$, the total force is given by:

$$
\underline{f}=\int_{V} \underline{f}_{V} d V+\int_{S} \underline{\boldsymbol{n}} \cdot \underline{\underline{\sigma}} d S
$$

- Then using the second Newton's law and Gauss-Ostrogradsky's theorem:

$$
\int_{V}\left(\nabla \cdot \underline{\underline{\sigma}}+f_{V}\right) d V=\int_{V} \rho \underline{\ddot{u}} d V
$$

- Since it is right for arbitrary V, then in every point of V :

$$
\nabla \cdot \underline{\underline{\sigma}}+\underline{f}_{V}=\rho \underline{\ddot{u}}
$$

- Equilibrium (3 equations):

$$
\nabla \cdot \underline{\underline{\sigma}}+f_{-V}=\rho \underline{\ddot{u}}
$$

- In component form:

$$
\begin{aligned}
& \frac{\partial \sigma_{11}}{\partial x}+\frac{\partial \sigma_{12}}{\partial y}+\frac{\partial \sigma_{13}}{\partial z}+f_{V_{x}}=\rho \ddot{u}_{x} \\
& \frac{\partial \sigma_{12}}{\partial x}+\frac{\partial \sigma_{22}}{\partial y}+\frac{\partial \sigma_{23}}{\partial z}+f_{V_{y}}=\rho \ddot{u}_{y} \\
& \frac{\partial \sigma_{13}}{\partial x}+\frac{\partial \sigma_{23}}{\partial y}+\frac{\partial \sigma_{33}}{\partial z}+f_{V_{z}}=\rho \ddot{u}_{z}
\end{aligned}
$$

Deformable solid and boundary conditions

Notations:

- Consider a solid Ω with boundary $\partial \Omega$
- Boundary is split into Γ_{u} and Γ_{f} : $\partial \Omega=\Gamma_{u} \cup \Gamma_{f}$
- At Γ_{u} displacements $\underline{u}_{0}(t, \underline{X})$ are prescribed (Dirichlet boundary conditions [BC]):

$$
\underline{u}=\underline{u}_{0} \text { at } \Gamma_{u}
$$

- At Γ_{f} tractions $\underline{t}_{0}(t, \underline{X})$ are prescribed (Neumann BC):

$$
\begin{aligned}
& \underline{\underline{\sigma}} \cdot \underline{n}=\underline{t}_{0} \text { at } \Gamma_{f} \\
& \underline{\underline{\sigma}} \cdot \underline{n}=0 \text { at } \Gamma_{f}^{0}
\end{aligned}
$$

Deformable solid and boundary conditions

Notations:

- Consider a solid Ω with boundary $\partial \Omega$
- Boundary is split into Γ_{u} and Γ_{f} : $\partial \Omega=\Gamma_{u} \cup \Gamma_{f}$
- At Γ_{u} displacements $\underline{u}_{0}(t, \underline{X})$ are prescribed (Dirichlet boundary conditions [BC]):

$$
\underline{u}=\underline{u}_{0} \text { at } \Gamma_{u}
$$

- At Γ_{f} tractions $\underline{t}_{0}(t, \underline{X})$ are prescribed (Neumann BC):

$$
\begin{aligned}
& \underline{\underline{\sigma}} \cdot \underline{n}=\underline{t}_{0} \text { at } \Gamma_{f} \\
& \underline{\underline{\sigma}} \cdot \underline{n}=0 \text { at } \Gamma_{f}^{0}
\end{aligned}
$$

Remarks:

- on the same boundary both BCs can be prescribed if they are orthogonal one to each other, i.e. $\underline{u}_{0} \cdot \underline{t}_{0}=0$ (ex.: friction);
- a relationship between these BCs can be prescribed (Robin BC): $\underline{u}_{0}=\underline{U}-k \underline{t}_{0}$ (ex.: Winkler's foundation).

Elastic and quasistatic problem set-up

■ Equilibrium in absence of inertial forces

$$
\nabla \cdot \underline{\underline{\sigma}}+{\underset{\underline{f}}{V}}=0
$$

- Consistutive relation:

$$
\underline{\underline{\sigma}}={ }^{4} \underline{\underline{C}}: \underline{\underline{\varepsilon}}
$$

- Strain tensor:

$$
\underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{u}+(\nabla \underline{\boldsymbol{u}})^{\top}\right)
$$

■ Problem:
find such field \underline{u} in Ω that satisfies equilibrium Eq. (*) and boundary conditions.

- Boundary conditions:

$$
\begin{aligned}
& \underline{u}=\underline{u}_{0} \text { at } \Gamma_{u} \\
& \underline{\underline{\sigma}} \cdot \underline{n}=\underline{t}_{0} \text { at } \Gamma_{f} \\
& \underline{\underline{\sigma}} \cdot \underline{n}=0 \text { at } \Gamma_{f}^{0}
\end{aligned}
$$

Finite Element Method

Main idea

- From continuous to discrete problem
- Split solid into finite elements
$\Omega \rightarrow \Omega^{h}$ with $\Omega^{h}=\sum_{e} \Omega_{e}^{h}$
- All quantities are associated with this discretization:

$$
\underline{\underline{u}} \rightarrow \underline{u}^{h}, \underline{\underline{\sigma}} \rightarrow \underline{\underline{\sigma}}^{h}, \Gamma_{f} \rightarrow \Gamma_{f}^{h}, \underline{t}_{0} \rightarrow \underline{t}_{0}^{h}, \ldots
$$

- Search for \underline{u}^{h} only in a finite number of points (nodes)
- Interpolate in between (within elements)
- Ensure (1) equilibrium of every element and (2) satisfaction of boundary conditions

(1) $\nabla \cdot \underline{\underline{\sigma}}^{h}+f_{v}^{h}=0$ in $\Omega_{e}^{h}, \forall e$
(2.a) $\underline{\underline{\sigma}}^{h} \cdot \underline{n}^{h}=\underline{t}_{0}^{h}$ at Γ_{f}^{h}
(2.b) $\underline{u}^{h}=\underline{u}_{0}^{h}$ at Γ_{u}^{h}

Main idea

- From continuous to discrete problem
- Split solid into finite elements

$$
\Omega \rightarrow \Omega^{h} \text { with } \Omega^{h}=\sum_{e} \Omega_{e}^{h}
$$

- All quantities are associated with this discretization:

$$
\underline{\underline{u}} \rightarrow \underline{u}^{h}, \underline{\underline{\sigma}} \rightarrow \underline{\underline{\sigma}}^{h}, \Gamma_{f} \rightarrow \Gamma_{f}^{h}, \underline{t}_{0} \rightarrow \underline{t}_{0}^{h}, \ldots
$$

- Search for \underline{u}^{h} only in a finite number of points (nodes)
- Interpolate in between (within elements)
- Ensure (1) equilibrium of every element and (2) satisfaction of boundary conditions
(1) $\nabla \cdot \underline{\underline{\sigma}}^{h}+f_{v}^{h}=0$ in $\Omega_{e}^{h}, \forall e$
(2.a) $\underline{\underline{\sigma}}^{h} \cdot \underline{\underline{n}}^{h}=\underline{t}_{0}^{h}$ at Γ_{f}^{h}
(2.b) $\underline{u}^{h}=\underline{u}_{0}^{h}$ at Γ_{u}^{h}

- Existence and uniqueness of the solution \underline{u}_{*}^{h}
- When discretization-size tends to zero $h \rightarrow 0$, convergence to the solution of the continuum problem: $\underline{u}_{*}^{h} \xrightarrow[h \rightarrow 0]{\longrightarrow} \underline{u}_{*}$

Standard discrete system

1 For any discrete system the quantities of interest [q] depend on system parameters $[p]$ and on locally acting external parameters $[\mathrm{e}]$

$$
[\mathbf{q}]_{i}=[\mathbf{q}]_{i}\left([\mathbf{p}]_{j},[\mathbf{e}]_{i}\right)
$$

2 In the first approximation this dependence is linear

$$
\begin{aligned}
& q_{1}=K_{11} p_{1}+K_{12} p_{2}+\ldots K_{1 N} p_{N}+A_{11} e_{1} \\
& q_{2}=K_{21} p_{1}+K_{22} p_{2}+\ldots K_{2 N} p_{N}+A_{22} e_{2} \\
& \ldots \\
& q_{N}=K_{21} p_{1}+K_{22} p_{2}+\ldots K_{2 N} p_{N}+A_{N N} e_{N}
\end{aligned}
$$

3 In matrix form

$$
[\mathbf{q}]_{i}=[\mathbf{K}]_{i j}[\mathbf{p}]_{j}+[\mathbf{A}]_{i i}[\mathbf{e}]_{i}
$$

4 Assuming that external parameters are of the same nature as quantities of interest $\left([\mathrm{A}]_{i j}=[\mathrm{I}]_{i j}\right)$

$$
[\mathbf{q}]_{i}=[\mathbf{K}]_{i j}[\mathbf{p}]_{j}+[\mathbf{e}]_{i}
$$

Discrete system in structural mechanics

Main quantities

■ Quantities of interest [q] are, in general, forces [f]

- System parameters [p] are, in general, displacements [u]

■ External parameters [e] are, in general, external forces [f] ${ }^{\text {ext }}$

Main steps

1 Construct stiffness matrix and nodal loads vector

$$
[\mathbf{K}]_{i j}^{k},[\mathbf{f}]_{i}^{k}, \quad i, j \in 1, N N^{k} ; k \in N E,
$$

where $N N^{k}$ is the number of nodes of k-th element, $N E$ is the number of elements.

2 Assemble them into the global stiffness matrix and global load vector

$$
[\mathbf{K}]_{i j},[\mathbf{f}]_{i,}, \quad i, j \in 1, N N,
$$

where $N N$ is the total number of nodes.
3 Add boundary conditions (for example Dirichlet and Neumann)

$$
[\mathbf{f}]_{k}^{\text {ext }}, \quad k \in B C_{f} ; \quad[\mathbf{u}]_{l}^{0}, \quad l \in B C_{u}
$$

4 Solve linear system of equations

$$
[\mathbf{K}]_{i j}[\mathbf{u}]_{j}=[\mathbf{f}]_{i}-[\mathbf{f}]_{i}^{e x t} \quad \rightarrow \quad[\mathbf{u}]_{j^{*}}
$$

- Displacements are known at nodes: $\underline{u}_{i}^{h}, i=1,4$
- We need to know them inside the element
- Parametrize the inside with parameters $\{\xi, \eta\} \in[-1,1]$
- Use interpolation or shape functions $N_{i}(\xi, \eta)$ for position \underline{X}

$$
\underline{\boldsymbol{X}}^{h}(\xi, \eta)=\sum_{i} \underline{\boldsymbol{X}}_{i}^{h} N_{i}(\xi, \eta)
$$

and displacement \underline{u} :

$$
\underline{\boldsymbol{u}}^{h}(\xi, \eta)=\sum_{i} \underline{\boldsymbol{u}}_{i}^{h} N_{i}(\xi, \eta)
$$

■ Remark: Find $\{\xi, \eta\}$ from \underline{X} is not always straigthforward (may result in a system of non-linear equations)

Continuum

- Displacements are known at nodes: $\underline{u}_{i}^{h}, i=1,4$
- We need to know them inside the element
- Parametrize the inside with parameters $\{\xi, \eta\} \in[-1,1]$
- Use interpolation or shape functions $N_{i}(\xi, \eta)$ for position \underline{X}

$$
\underline{\boldsymbol{X}}^{h}(\xi, \eta)=\sum_{i} \underline{\boldsymbol{X}}_{i}^{h} N_{i}(\xi, \eta)
$$

and displacement \underline{u} :

$$
\underline{\boldsymbol{u}}^{h}(\xi, \eta)=\sum_{i} \underline{\boldsymbol{u}}_{i}^{h} N_{i}(\xi, \eta)
$$

■ Remark: Find $\{\xi, \eta\}$ from \underline{X} is not always straigthforward (may result in a system of non-linear equations)

Continuum

Finite element

Shape functions II

Rules

- Node i has coordinates $\left\{\xi_{i}, \eta_{i}\right\}$
- Then $N_{i}\left(\xi_{j}, \eta_{j}\right)=\delta_{i j}$
- Partition of unity:

$$
\forall \xi, \eta,: \sum_{i} N_{i}(\xi, \eta)=1
$$

Types

- Linear shape functions

$$
\frac{\partial N}{\partial \xi}=\text { const }
$$

- Non-linear shape functions

$$
\frac{\partial N}{\partial \xi}=f(\xi)
$$

- Linear elements vs quadratic elements
- Higher order elements

Shape functions III

Example: bar element

- Linear shape functions:

$$
\begin{aligned}
& N_{1}(\xi)=\frac{1}{2}(1-\xi) \\
& N_{2}(\xi)=\frac{1}{2}(1+\xi)
\end{aligned}
$$

- Quadratic shape functions:

$$
\begin{aligned}
& N_{1}(\xi)=\frac{1}{2} \xi(\xi-1) \\
& N_{2}(\xi)=\left(1-\xi^{2}\right) \\
& N_{3}(\xi)=\frac{1}{2} \xi(1+\xi)
\end{aligned}
$$

Shape functions: vectors and matrices

- Displacement nodal vectors $\underline{u}_{i}=\underline{e}_{x} u_{i}^{x}+\underline{e}_{y} u_{i}^{y}$

■ Array of nodal coordinates (size dim • n)

$$
[\mathbf{X}]=\left[x_{1}, y_{1}, x_{2}, y_{2}, \ldots x_{n}, y_{n}\right]_{2 n}^{\top}
$$

- Array of nodal displacements (size $\operatorname{dim} \cdot n$)

$$
[\mathbf{u}]=\left[u_{1}^{x}, u_{1}^{y}, u_{2}^{x}, u_{2}^{y}, \ldots u_{n}^{x}, u_{n}^{y}\right]_{2 n}^{\top}
$$

- Arrays of shape functions (size $\operatorname{dim} \cdot n$)

$$
\left.\left.\left.\left.\begin{array}{l}
{\left[\mathbf{N}_{\mathbf{x}}\right]=\left[\begin{array}{lllll}
N_{1}, & 0, & N_{2}, & 0, & \ldots
\end{array} N_{n}, 0\right.}
\end{array}\right]_{2 n}^{\top}\right]\left[\mathbf{N}_{\mathbf{y}}\right]=\left[0, N_{1}, 0, N_{2}, \ldots 0, N_{n}\right]_{2 n}^{\top}\right]\left[\begin{array}{ccccccc}
N_{1} & 0 & N_{2} & 0 & \ldots & N_{n} & 0 \\
0 & N_{1} & 0 & N_{2} & \ldots & 0 & N_{n}
\end{array}\right]_{2 n \times \operatorname{dim}}^{\top}\right] .[\mathbf{N}]=\left[\begin{array}{c}
0
\end{array}\right.
$$

- Then

$$
\begin{array}{cc}
x(\xi, \eta, t)=\left[\mathbf{N}_{\mathbf{x}}(\xi, \eta)\right]^{\top}[\mathbf{X}(\mathbf{t})], & y(\xi, \eta, t)=\left[\mathbf{N}_{\mathbf{y}}(\xi, \eta)\right]^{\top}[\mathbf{X}(\mathbf{t})] \\
u^{x}(\xi, \eta, t)=\left[\mathbf{N}_{\mathbf{x}}(\xi, \eta)\right]^{\top}[\mathbf{u}(\mathbf{t})], & u^{y}(\xi, \eta, t)=\left[\mathbf{N}_{\mathbf{y}}(\xi, \eta)\right]^{\top}[\mathbf{u}(\mathbf{t})]
\end{array}
$$

Gradients and shape functions

- Need to evaluate gradients (spatial derivatives) like $\frac{\partial f}{\partial x}$
- But with shape functions $f=f(\xi, \eta)$
- Then $\frac{\partial f(\xi, \eta)}{\partial x}=\frac{\partial f}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial f}{\partial \eta} \frac{\partial \eta}{\partial x}$
- However, in general we do not have $\xi=\xi(x, y)$ but rather $x=x(\xi, \eta)$
- Let's do it other way around

$$
\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\partial}{\partial x} \frac{\partial x}{\partial \xi}+\frac{\partial}{\partial y} \frac{\partial y}{\partial \xi} \\
\frac{\partial}{\partial x} \frac{\partial x}{\partial \eta}+\frac{\partial}{\partial y} \frac{\partial y}{\partial \eta}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y}
\end{array}\right]=[\mathrm{J}]\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y}
\end{array}\right]
$$

- Matrix [J] is called Jacobian operator and enables to obtain

$$
\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y}
\end{array}\right]=[\mathrm{J}]^{-1}\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]
$$

Jacobian operator

- Jacobian operator or simply Jacobian:

$$
[\mathbf{J}]=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]
$$

- Using $x=\left[\mathbf{N}_{\mathrm{x}}\right]^{\top}[\mathbf{X}], \quad y=\left[\mathbf{N}_{\mathrm{y}}\right]^{\top}[\mathbf{X}]$ we get:

$$
[\mathrm{J}]=\left[\begin{array}{ll}
{\left[\mathbf{N}_{\mathbf{x}, \xi}\right]^{\top}[\mathbf{X}]} & {\left[\mathbf{N}_{\mathbf{y}, \xi}\right]^{\top}[\mathbf{X}]} \\
{\left[\mathbf{N}_{\mathbf{x}, \eta}\right]^{\top}[\mathbf{X}]} & {\left[\mathbf{N}_{\mathbf{y}, \eta}\right]^{\top}[\mathbf{X}]}
\end{array}\right],
$$

where $\left[\mathbf{N}_{\mathrm{x}, \xi}\right]=\left[\frac{\partial N_{1}}{\partial \xi}, 0, \frac{\partial N_{2}}{\partial \xi}, 0, \ldots \frac{\partial N_{n}}{\partial \xi}, 0\right]^{\top}$ etc.

- Then the inverse Jacobian is given by:

$$
[\mathbf{J}]^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
{\left[\mathbf{N}_{\mathrm{y}, \eta}\right]^{\top}[\mathbf{X}]} & -\left[\mathbf{N}_{\mathrm{y}, \xi}\right]^{\top}[\mathbf{X}] \\
-\left[\mathbf{N}_{\mathrm{x}, \eta}\right]^{\top}[\mathbf{X}] & {\left[\mathbf{N}_{\mathrm{x}, \xi}\right]^{\top}[\mathbf{X}]}
\end{array}\right],
$$

with $\Delta=\operatorname{det}([J])=[X]^{\top}\left(\left[\mathbf{N}_{\mathrm{x}, \xi}\right]\left[\mathbf{N}_{\mathrm{y}, \eta}\right]^{\top}-\left[\mathbf{N}_{\mathrm{y}, \xi}\right]\left[\mathbf{N}_{\mathrm{x}, \eta}\right]^{\top}\right)[\mathrm{X}] \neq 0$

- Strain tensor: $\quad \underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{u}+(\nabla \underline{u})^{\top}\right)$
- Interpolated displacements: $u^{x}=\left[\mathbf{N}_{\mathrm{x}}\right]^{\top}[\mathbf{u}], \quad u^{y}=\left[\mathbf{N}_{\mathbf{y}}\right]^{\top}[\mathbf{u}]$

■ Displacement gradient:

$$
\begin{aligned}
\nabla \underline{u}= & \underline{e}_{x} \otimes \frac{\partial \underline{u}^{h}}{\partial x}+\underline{e}_{y} \otimes \frac{\partial \underline{u}^{h}}{\partial y}=\underline{\boldsymbol{e}}^{x} \otimes \underline{e}^{x} \frac{\partial u^{x}}{\partial x}+\underline{e}^{x} \otimes \underline{\boldsymbol{e}}^{y} \frac{\partial u^{y}}{\partial x}+\underline{\boldsymbol{e}}^{y} \otimes \underline{e}^{x} \frac{\partial u^{x}}{\partial y}+\underline{e}^{y} \otimes \underline{e}^{y} \frac{\partial u^{y}}{\partial y} \\
& \underline{\nabla} \underline{\boldsymbol{u}}^{\sim} \sim\left[\begin{array}{ll}
\frac{\partial u^{x}}{\partial x} & \frac{\partial u^{y}}{\partial x} \\
\frac{\partial u^{x}}{\partial y} & \frac{\partial u^{y}}{\partial y}
\end{array}\right]=[\mathbf{J}]^{-1}\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]\left[\begin{array}{c}
u^{x} \\
u^{y}
\end{array}\right]^{\top}=[\mathbf{J}]^{-1}\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]\left[\begin{array}{l}
{\left[\mathbf{N}_{\mathbf{x}}\right]^{\top}[\mathbf{u}]} \\
{\left[\mathbf{N}_{\mathbf{y}}\right]^{\top}[\mathbf{u}]}
\end{array}\right]^{\top}
\end{aligned}
$$

■ Finally $[\mathbb{E}]=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]^{\top}[\mathbf{J}]^{-1}\left[\begin{array}{ll}\partial\left[\mathbf{N}_{\mathrm{x}}\right]^{\top} / \partial \xi & \partial\left[\mathbf{N}_{\mathbf{y}}\right]^{\top} / \partial \xi \\ \partial\left[\mathbf{N}_{\mathrm{x}}\right]^{\top} / \partial \eta & \partial\left[\mathbf{N}_{\mathbf{y}}\right]^{\top} / \partial \eta\end{array}\right][\mathbf{u}]$
$\varepsilon_{x x}=\left([\mathbf{J}]_{11}^{-1}\left[\mathbf{N}_{\mathbf{x}, \xi]}\right]+[\mathbf{J}]_{12}^{-1}\left[\mathbf{N}_{\mathbf{x}, \eta}\right]\right)^{\top}[\mathbf{u}]=\frac{1}{\Delta}\left(\left[\mathbf{N}_{\mathbf{y}, \eta}\right]^{\top}[\mathbf{X}]\left[\mathbf{N}_{\mathbf{x}, \xi}\right]-\left[\mathbf{N}_{\mathbf{y}, \xi}\right]^{\top}[\mathbf{X}]\left[\mathbf{N}_{\mathbf{x}, \eta}\right]\right)^{\top}[\mathbf{u}]$
$\varepsilon_{y y}=\left([\mathbf{J}]_{21}^{-1}\left[\mathbf{N}_{\mathbf{y}, \xi}\right]+[\mathbf{J}]_{22}^{-1}\left[\mathbf{N}_{\mathbf{y}, \eta}\right]\right)^{\top}[\mathbf{u}]=\frac{1}{\Delta}\left(-\left[\mathbf{N}_{\mathbf{x}, \eta}\right]^{\top}[\mathbf{X}]\left[\mathbf{N}_{\mathbf{y}, \xi}\right]+\left[\mathbf{N}_{\mathbf{x}, \xi}\right]^{\top}[\mathbf{X}]\left[\mathbf{N}_{\mathbf{y}, \eta}\right]\right)^{\top}[\mathbf{u}]$
$\varepsilon_{x y}=\frac{1}{2}\left(\frac{\partial u^{x}}{\partial y}+\frac{\partial u^{y}}{\partial x}\right)=\frac{1}{2}\left([\mathbf{J}]_{11}^{-1}\left[\mathbf{N}_{\mathbf{y}, \xi}\right]+[\mathbf{J}]_{12}^{-1}\left[\mathbf{N}_{\mathbf{y}, \eta}\right]+[\mathbf{J}]_{21}^{-1}\left[\mathbf{N}_{\mathbf{x}, \xi}\right]+[\mathbf{J}]_{22}^{-1}\left[\mathbf{N}_{\mathbf{x}, \eta}\right]\right)^{\top}[\mathbf{u}]$

- Strain tensor: $\quad \underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{u}+(\nabla \underline{u})^{\top}\right)$

■ Interpolated displacements: $u^{x}=\left[\mathbf{N}_{\mathrm{x}}\right]^{\top}[\mathbf{u}], \quad u^{y}=\left[\mathbf{N}_{\mathbf{y}}\right]^{\top}[\mathbf{u}]$

- Displacement gradient:

$$
\begin{aligned}
\nabla \underline{u}= & \underline{e}_{x} \otimes \frac{\partial \underline{u}^{h}}{\partial x}+\underline{\boldsymbol{e}}_{y} \otimes \frac{\partial \underline{u}^{h}}{\partial y}=\underline{e}^{x} \otimes \underline{e}^{x} \frac{\partial u^{x}}{\partial x}+\underline{e}^{x} \otimes \underline{e}^{y} \frac{\partial u^{y}}{\partial x}+\underline{e}^{y} \otimes \underline{e}^{x} \frac{\partial u^{x}}{\partial y}+\underline{e}^{y} \otimes \underline{e}^{y} \frac{\partial u^{y}}{\partial y} \\
& \nabla \underline{\boldsymbol{u}} \sim\left[\begin{array}{ll}
\frac{\partial u^{x}}{\partial x} & \frac{\partial u^{y}}{\partial x} \\
\frac{\partial u^{x}}{\partial y} & \frac{\partial u^{y}}{\partial y}
\end{array}\right]=[\mathbf{J}]^{-1}\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]\left[\begin{array}{c}
u^{x} \\
u^{y}
\end{array}\right]^{\top}=[\mathbf{J}]^{-1}\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]\left[\begin{array}{l}
{\left[\mathbf{N}_{\mathbf{x}}\right]^{\top}[\mathbf{u}]} \\
{\left[\mathbf{N}_{\mathbf{y}}\right]^{\top}[\mathbf{u}]}
\end{array}\right]^{\top}
\end{aligned}
$$

■ Finally $[\mathrm{E}]=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]^{\top}[\mathbf{J}]^{-1}\left[\begin{array}{lll}\partial\left[\mathbf{N}_{\mathrm{x}}\right]^{\top} / \partial \xi & \partial\left[\mathbf{N}_{\mathbf{y}}\right]^{\top} / \partial \xi \\ \partial\left[\mathbf{N}_{\mathrm{x}}\right]^{\top} / \partial \eta & \partial\left[\mathbf{N}_{\mathbf{y}}\right]^{\top} / \partial \eta\end{array}\right][\mathbf{u}]$

$$
\begin{aligned}
& \varepsilon_{x x}=\left([\mathbf{J}]_{11}^{-1}\left[\mathbf{N}_{\mathbf{x}, \xi}\right]+[\mathbf{J}]_{12}^{-1}\left[\mathbf{N}_{\mathbf{x}, \eta}\right]\right)^{\top}[\mathbf{u}]=\frac{1}{\Delta}\left(\left[\mathbf{N}_{\mathbf{y}, \eta}\right]^{\top}[\mathbf{X}]\left[\mathbf{N}_{\mathbf{x}, \xi}\right]-\left[\mathbf{N}_{\mathbf{y}, \xi}\right]^{\top}[\mathbf{X}]\left[\mathbf{N}_{\mathbf{x}, \eta}\right]\right)^{\top}[\mathbf{u}] \\
& \varepsilon_{y y}=\left([\mathbf{J}]_{21}^{-1}\left[\mathbf{N}_{\mathbf{y}, \xi}\right]+[\mathbf{J}]_{22}^{-1}\left[\mathbf{N}_{\mathbf{y}, \eta}\right]\right)^{\top}[\mathbf{u}]=\frac{1}{\Delta}\left(-\left[\mathbf{N}_{\mathbf{x}, \eta}\right]^{\top}[\mathbf{X}]\left[\mathbf{N}_{\mathbf{y}, \xi}\right]+\left[\mathbf{N}_{\mathbf{x}, \xi}\right]^{\top}[\mathbf{X}]\left[\mathbf{N}_{\mathbf{y}, \eta}\right]\right)^{\top}[\mathbf{u}] \\
& \varepsilon_{x y}=\frac{1}{2 \Delta}\left(\left[\mathbf{N}_{\mathbf{y}, \eta}\right]^{\top}[\mathbf{X}]\left[\mathbf{N}_{\mathbf{y}, \xi}\right]-\left[\mathbf{N}_{\mathbf{y}, \xi}\right]^{\top}[\mathbf{X}]\left[\mathbf{N}_{\mathbf{y}, \eta}\right]-\left[\mathbf{N}_{\mathbf{x}, \eta}\right]^{\top}[\mathbf{X}]\left[\mathbf{N}_{\mathbf{x}, \xi}\right]+\left[\mathbf{N}_{\mathbf{x}, \xi}\right]^{\top}[\mathbf{X}]\left[\mathbf{N}_{\mathbf{x}, \eta}\right]\right)^{\top}[\mathbf{u}]
\end{aligned}
$$

- Strain tensor: $\quad \underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{u}+(\nabla \underline{u})^{\top}\right)$
- Represent it as an array (Voigt notations):

$$
\underline{\underline{\varepsilon}} \quad \Rightarrow \quad[\mathbf{E}]=\left[\begin{array}{lll}
\varepsilon_{x x}, & \varepsilon_{y y}, & \gamma_{x y}
\end{array}\right]^{\top}, \quad \gamma_{x y}=2 \varepsilon_{x y}
$$

- Then

$$
[\mathbf{E}]_{3}=[\mathbf{B}]_{3 \times 2 n}^{\top}[\mathbf{u}]_{2 n}
$$

- With [B] given by:

Infinitesimal strain in 2D: example

- Consider a linear triangular element with shape functions:
$N_{1}=-\frac{1}{2}(\xi+\eta), \quad N_{2}=\frac{1}{2}(1+\xi), \quad N_{3}=\frac{1}{2}(1+\eta)$
- Their derivatives are given by:

Parameteric space

Physical space

$\varepsilon_{y y}=\frac{1}{4 \Delta}\left[\left(x_{2}-x_{1}\right)\left(u_{3}^{y}-u_{1}^{y}\right)-\left(x_{3}-x_{1}\right)\left(u_{2}^{y}-u_{1}^{y}\right)\right]$
$\gamma_{x y}=\frac{1}{4 \Delta}\left[\left(y_{3}-y_{1}\right)\left(u_{2}^{y}-u_{1}^{y}\right)-\left(y_{2}-y_{1}\right)\left(u_{3}^{y}-u_{1}^{y}\right)+\left(x_{2}-x_{1}\right)\left(u_{3}^{x}-u_{1}^{x}\right)-\left(x_{3}-x_{1}\right)\left(u_{2}^{x}-u_{1}^{x}\right)\right]$

Infinitesimal strain in 2D: example II

- Rectangular triangle $x_{1}=x_{3}, y_{1}=y_{2}, \Delta=L_{x} L_{y} / 4$
- Case 1: pure tension/compression along OX iaoi $u_{3}^{y}=u_{1}^{y}, u_{2}^{y}=u_{1}^{y}, u_{3}^{x}=u_{1}^{x}$ Ex.: $u_{2}^{x}=\delta: \quad \varepsilon_{x x}=\frac{1}{4 \Delta}\left(y_{3}-y_{1}\right)\left(u_{2}^{x}-u_{1}^{x}\right)=\delta / L_{x}, \quad \varepsilon_{y y}=\gamma_{x y}=0$

Case 1

Reference configuration
Current configuration

Infinitesimal strain in 2D: example II

- Rectangular triangle $x_{1}=x_{3}, y_{1}=y_{2}, \Delta=L_{x} L_{y} / 4$
- Case 1: pure tension/compression along $O X$ iaoi $u_{3}^{y}=u_{1}^{y}, u_{2}^{y}=u_{1}^{y}, u_{3}^{x}=u_{1}^{x}$ Ex.: $u_{2}^{x}=\delta: \quad \varepsilon_{x x}=\frac{1}{4 \Delta}\left(y_{3}-y_{1}\right)\left(u_{2}^{x}-u_{1}^{x}\right)=\delta / L_{x}, \quad \varepsilon_{y y}=\gamma_{x y}=0$
■ Case 2: pure tension/compression along OY iaoi $u_{2}^{x}=u_{1}^{x}, u_{2}^{y}=u_{1}^{y}, u_{3}^{x}=u_{1}^{x}$ Ex.: $u_{3}^{y}=\delta: \quad \varepsilon_{y y}=\frac{1}{4 \Delta}\left(x_{2}-x_{1}\right)\left(u_{3}^{y}-u_{1}^{y}\right)=\delta / L_{y}, \quad \varepsilon_{x x}=\gamma_{x y}=0$

Case 1
Case 2

Current configuration

ure 1

Infinitesimal strain in 2D: example II

- Rectangular triangle $x_{1}=x_{3}, y_{1}=y_{2}, \Delta=L_{x} L_{y} / 4$
- Case 1: pure tension/compression along $O X$ iaoi $u_{3}^{y}=u_{1}^{y}, u_{2}^{y}=u_{1}^{y}, u_{3}^{x}=u_{1}^{x}$ Ex.: $u_{2}^{x}=\delta: \quad \varepsilon_{x x}=\frac{1}{4 \Delta}\left(y_{3}-y_{1}\right)\left(u_{2}^{x}-u_{1}^{x}\right)=\delta / L_{x}, \quad \varepsilon_{y y}=\gamma_{x y}=0$
- Case 2: pure tension/compression along OY iaoi $u_{2}^{x}=u_{1}^{x}, u_{2}^{y}=u_{1}^{y}, u_{3}^{x}=u_{1}^{x}$ Ex.: $u_{3}^{y}=\delta: \quad \varepsilon_{y y}=\frac{1}{4 \Delta}\left(x_{2}-x_{1}\right)\left(u_{3}^{y}-u_{1}^{y}\right)=\delta / L_{y}, \quad \varepsilon_{x x}=\gamma_{x y}=0$
- Case 3: pure shear in $X Y$ iaoi $u_{2}^{x}=u_{1}^{x}, u_{3}^{y}=u_{1}^{y}$

Ex.: $u_{2}^{y}=\delta_{y}, u_{3}^{x}=\delta_{x}$:
$\gamma_{x y}=\frac{1}{4 \Delta}\left(\left(y_{3}-y_{1}\right)\left(u_{2}^{y}-u_{1}^{y}\right)+\left(x_{2}-x_{1}\right)\left(u_{3}^{x}-u_{1}^{x}\right)\right)=\frac{\delta_{y}}{L_{x}}+\frac{\delta_{x}}{L_{y}}, \quad \varepsilon_{x x}=\varepsilon_{y y}=0$

Case 1

Case 2
Case 3

Reference configuration
Current configuration

Stress tensor

- In linear elasticity:

$$
\underline{\underline{\sigma}}={ }^{4} \underline{\underline{C}}:\left(\underline{\underline{\varepsilon}}-\underline{\underline{\varepsilon}}_{0}\right)+\underline{\underline{\sigma}}_{0}
$$

- Residual stress field $\underline{\sigma}_{0}$
- Initial strain field $\frac{\varepsilon}{\underline{\varepsilon}}$

■ In self equilibrated system: $\underline{\underline{\sigma}}_{0}={ }^{4} \underline{\underline{C}}: \underline{\underline{\varepsilon}}_{0}$ resulting in

$$
\underline{\underline{\sigma}}={ }^{4} \underline{\underline{C}}:\left(\underline{\underline{\varepsilon}}-\underline{\underline{\varepsilon}}_{t h}\right)
$$

- With thermal strain field $\underline{\underline{\varepsilon}}_{t h}$:

$$
\underline{\underline{\varepsilon}}_{t h}=\alpha\left(T-T_{0}\right) \underline{\underline{\boldsymbol{I}}}
$$

where α is the coefficient of thermal expansion (CTE), T and T_{0} are the current and reference temperature fields, respectively.

- Recall stress/strain relationship:

$$
\underline{\underline{\sigma}}=\frac{v E}{(1+v)(1-2 v)} \operatorname{tr}(\underline{\underline{\varepsilon}}) \underline{\underline{I}}+\frac{E}{1+v} \underline{\underline{\varepsilon}}
$$

■ Stress (in Voigt notations): $\quad \underline{\underline{\sigma}} \Rightarrow[\mathbf{S}]=\left[\begin{array}{lll}\sigma_{x x}, & \sigma_{y y}, & \sigma_{x y}\end{array}\right]^{\top}$
■ In plane stress $\sigma_{z z}=0, \varepsilon_{z z}=\frac{v}{v-1}\left(\varepsilon_{x x}+\varepsilon_{y y}\right)$
■ In plain strain $\sigma_{z z}=v\left(\sigma_{x x}+\sigma_{y y}\right), \varepsilon_{z z}=0$
■ Stress/strain relationship: $[\mathrm{S}]_{i}=[\mathrm{D}]_{i j}[\mathrm{E}]_{j}$

- Matrix [D] in plane strain $\varepsilon_{z z}=\varepsilon_{x z}=\varepsilon_{y z}=0$:

$$
[\mathbf{D}]_{i j}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & (1-2 v) / 2^{*}
\end{array}\right]
$$

■ Matrix [D] in plane stress $\sigma_{z z}=\sigma_{x z}=\sigma_{y z}=0, \operatorname{tr}(\underline{\underline{\varepsilon}})=\frac{1-2 v}{1-v}\left(\varepsilon_{x x}+\varepsilon_{y y}\right)$:

$$
[\mathbf{D}]_{i j}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & (1-v) / 2^{*}
\end{array}\right]
$$

*Factor $1 / 2$ appears because $\gamma_{x y}$ was inserted in [E] instead of $\varepsilon_{x y}$.

Stress: general case

Voigt notations in 3D case

■ Stress tensor: $\underline{\underline{\sigma}} \rightarrow[\mathbf{S}]=\left[\sigma_{x x}, \sigma_{y y}, \sigma_{z z}, \sigma_{x y}, \sigma_{y z}, \sigma_{x z}\right]^{\top}$
■ Strain tensor: $\underline{\underline{\varepsilon}} \rightarrow[\mathbf{E}]=\left[\varepsilon_{x x}, \varepsilon_{y y}, \varepsilon_{z z}, \gamma_{x y}, \gamma_{y z}, \gamma_{x z}\right]^{\top}$
■ Hooke's law: $[\mathrm{S}]=[\mathrm{D}][\mathrm{E}]$

- Isotropic elasticity (two constants E, v):

$$
[\mathbf{D}]_{i j}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{cccccc}
1-v & v & v & 0 & 0 & 0 \\
v & 1-v & v & 0 & 0 & 0 \\
v & v & 1-v & 0 & 0 & 0 \\
0 & 0 & 0 & (1-2 v) / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & (1-2 v) / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & (1-2 v) / 2
\end{array}\right]
$$

■ Cubic elasticity (3 constants E, v, μ):

$$
[\mathrm{D}]_{i j}=\left[\begin{array}{cccccc}
C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\
C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\
C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{44}
\end{array}\right]
$$

Stress: general case II

Voigt notations in 3D case

■ Transversely isotropic elasticity (5 constants $E_{1}, E_{2}, v_{1}, \nu_{2}, \mu_{1}$):

$$
[\mathrm{D}]_{i j}=\left[\begin{array}{cccccc}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\
C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & \left(C_{11}-C_{12}\right) / 2
\end{array}\right]
$$

■ Orthotropic elasticity (9 constants $\left.E_{x x}, E_{y y}, E_{z z}, v_{x y}, v_{y z}, v_{x z}, \mu_{x y}, \mu_{y z}, \mu_{x z}\right)$:

$$
[\mathbf{D}]_{i j}=\left[\begin{array}{cccccc}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\
C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{66}
\end{array}\right]
$$

Strain/Stress: spherical part

Spherical part of a tensor $=\frac{1}{3} \operatorname{tr}(\underline{\underline{A}}) \underline{\underline{I}}$

- If the strain tensor can be presented as $\underline{\underline{\varepsilon}}=\frac{1}{3} \operatorname{tr} \underline{\underline{\varepsilon}} \underline{\underline{\underline{I}}}$, then only volume change happens at this location $\Delta V / V_{0}=\operatorname{tr}(\underline{\underline{\varepsilon}})$

$$
\underline{\underline{\varepsilon}} \sim\left[\begin{array}{lll}
\varepsilon & 0 & 0 \\
0 & \varepsilon & 0 \\
0 & 0 & \varepsilon
\end{array}\right]
$$

- If the stress tensor can be presented as $\underline{\underline{\sigma}}=\frac{1}{3} \operatorname{tr}(\underline{\underline{\sigma}}) \underline{\underline{I}}$, then the stress state is pure hydrostatic compression under pressure $p=-\operatorname{tr}(\sigma) / 3$

$$
\underline{\underline{\sigma}} \sim\left[\begin{array}{ccc}
-p & 0 & 0 \\
0 & -p & 0 \\
0 & 0 & -p
\end{array}\right]
$$

Strain/Stress: deviatoric part

Deviatoric part of a tensor $=\underline{\underline{A}}-\frac{1}{3} \operatorname{tr}(\underline{\underline{A}} \underline{\underline{I}}$

- If the strain tensor does not have spherical part $\underline{\underline{\varepsilon}}=\underline{\underline{\varepsilon}}-\frac{1}{3} \operatorname{tr}(\underline{\underline{\varepsilon}}) \underline{\underline{I}}$, then no volume change happens at this location $\Delta V / V_{0}=0$ only the shape changes, Ex.:

$$
\underline{\underline{\varepsilon}} \sim\left[\begin{array}{ccc}
\varepsilon & 0 & 0 \\
0 & -0.5 \varepsilon & 0 \\
0 & 0 & -0.5 \varepsilon
\end{array}\right], \quad \underline{\underline{\varepsilon}} \sim\left[\begin{array}{lll}
0 & \varepsilon & 0 \\
\varepsilon & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- If the stress tensor is presented only by deviatoric part $\underline{\underline{\sigma}}=\underline{\underline{\sigma}}-\frac{1}{3} \operatorname{tr}(\underline{\underline{\sigma}}) \underline{\underline{I}}$, then the stress state is pure shear:

$$
\underline{\underline{\sigma}} \sim\left[\begin{array}{ccc}
-\sigma & 0 & 0 \\
0 & 2 \sigma & 0 \\
0 & 0 & -\sigma
\end{array}\right], \quad \underline{\underline{\sigma}} \sim\left[\begin{array}{ccc}
0 & \sigma_{x y} & \sigma_{x z} \\
\sigma_{x y} & 0 & 0 \\
\sigma_{x z} & 0 & 0
\end{array}\right]
$$

■ In general both parts are present: $\underline{\underline{\varepsilon}}=\underline{\underline{e}}+\operatorname{tr}(\underline{\underline{\varepsilon}}) \underline{\underline{I}} / 3, \underline{\underline{\sigma}}=\underline{\underline{s}}+\operatorname{tr}(\underline{\underline{\sigma}}) \underline{\underline{I}} / 3$

Strain/Stress: elastic relationships

- Recall: $\underline{\underline{\varepsilon}}=\underline{\underline{e}}+\frac{\Delta V}{3 V} \underline{\underline{I}} \quad \underline{\underline{\sigma}}=\underline{\underline{s}}-p \underline{\underline{I}}$
- For deviatoric part in linear isotropic elasticity

$$
\underline{\underline{s}}=\frac{E}{1+v} \underline{\underline{e}} \quad \underline{\underline{s}}=2 \mu \underline{\underline{e}},
$$

where $\mu=\frac{E}{2(1+v)}$ is called shear modulus.

- For spherical parts

$$
\operatorname{tr}(\underline{\underline{\varepsilon}})=\frac{1-2 v}{E} \operatorname{tr}(\sigma)=-\frac{3(1-2 v)}{E} p
$$

then

$$
-\frac{1}{V} \frac{d V}{d p}=\frac{3(1-2 v)}{E} \Leftrightarrow-V \frac{d p}{d V}=\frac{E}{3(1-2 v)}=K
$$

where $K=\frac{E}{3(1-2 v)}$ is called bulk modulus.

Stress and reactions: element's equilibrium II

- Work of nodal forces on virtual nodal displacements $=\frac{1}{2} \underset{-}{f} \cdot \delta \underline{u}_{i}$
- Work density of distributed volumetric forces $=\frac{1}{2} f_{V} \cdot \delta \underline{\boldsymbol{u}}_{V}$
- Corresponding density of elastic energy $=\frac{1}{2} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}}$

Stress and reactions: element's equilibrium II

- Work of nodal forces on virtual nodal displacements $=\frac{1}{2}{\underset{\sim}{f}}^{-} \cdot \delta \underline{u}_{i}$
- Work density of distributed volumetric forces $=\frac{1}{2}{\underset{-}{V}}^{-} \cdot \delta \underline{u}_{V}$

■ Corresponding density of elastic energy $=\frac{1}{2} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}}$

- Stored elastic energy equals this work:

$$
\int_{V^{e}} \underline{\underline{\sigma}}: \underline{\underline{\varepsilon}} d V=\sum_{i} \underline{f}_{i} \cdot \underline{u}_{i}+\int V^{e} \underline{f}_{V} \cdot \delta \underline{\boldsymbol{u}} d V
$$

Stress and reactions: element's equilibrium II

- Work of nodal forces on virtual nodal displacements $=\frac{1}{2}{\underset{-}{i}}^{\text {- }} \cdot \delta \underline{u}_{i}$
- Work density of distributed volumetric forces $=\frac{1}{2} f_{V} \cdot \delta \underline{u}_{V}$

■ Corresponding density of elastic energy $=\frac{1}{2} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}}$

- Stored elastic energy equals this work:

$$
\int_{V^{e}} \underline{\underline{\sigma}}: \underline{\underline{\varepsilon}} d V=\sum_{i} f_{-i} \cdot \underline{u}_{i}+\int V^{e} \underline{f}_{V} \cdot \delta \underline{\boldsymbol{u}} d V
$$

- Elastic stress $\underline{\underline{\sigma}}={ }^{4} \underline{\underline{C}}:\left(\underline{\underline{\varepsilon}}-\underline{\underline{\varepsilon}}_{t h}\right) \Rightarrow[\mathrm{S}]=[\mathrm{D}]\left([\mathrm{E}]-\left[\mathrm{E}_{\mathrm{th}}\right]\right)$

■ Strain $\underline{\underline{\varepsilon}} \sim[\mathbf{E}]=[\mathbf{B}]^{\top}[\mathbf{u}]$, vol. force density ${\underset{\underline{v}}{v}}^{\sim}\left[\mathbf{f}_{\mathbf{v}}\right]=\left[f_{v}^{x}, f_{v}^{y}, f_{v}^{z}\right]^{\top}$, volumetric virt. displacement $\delta \underline{u}_{V} \sim[\mathbf{N}]^{\top} \delta[\mathbf{u}]$:

$$
\int_{V^{e}}\left\{\left([\mathbf{D}]\left([\mathbf{E}]-\left[\mathbf{E}_{\mathrm{th}}\right]\right)\right)^{\top} \delta[\mathbf{E}]-\left[\mathbf{f}_{\mathbf{v}}\right]^{\top}\left[\mathbf{N}_{\mathbf{i}}\right]^{\top} \delta[\mathbf{u}]\right\} d V=[\mathbf{f}]^{\top} \delta[\mathbf{u}]
$$

- Work of nodal forces on virtual nodal displacements $=\frac{1}{2}{\underset{-}{-}}^{-} \cdot \delta \underline{u}_{i}$

■ Work density of distributed volumetric forces $=\frac{1}{2} f_{V} \cdot \delta \underline{u}_{V}$
■ Corresponding density of elastic energy $=\frac{1}{2} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}}$

- Stored elastic energy equals this work:

$$
\int_{V^{e}} \underline{\underline{\sigma}}: \underline{\underline{\varepsilon}} d V=\sum_{i} f_{-i} \cdot \underline{u}_{i}+\int V^{e} \underline{f}_{V} \cdot \delta \underline{\boldsymbol{u}} d V
$$

- Elastic stress $\underline{\underline{\sigma}}={ }^{4} \underline{\underline{C}}:\left(\underline{\underline{\varepsilon}}-\underline{\underline{\varepsilon}}_{t h}\right) \Rightarrow[\mathrm{S}]=[\mathrm{D}]\left([\mathrm{E}]-\left[\mathrm{E}_{\text {th }}\right]\right)$
- Strain $\underset{\underline{\varepsilon}}{\sim} \sim[\mathrm{E}]=[\mathbf{B}]^{\top}[\mathbf{u}]$, vol. force density $\underset{-v}{f} \sim\left[\mathrm{f}_{\mathrm{v}}\right]=\left[f_{v}^{x}, f_{v}^{y}, f_{v}^{z}\right]^{\top}$, volumetric virt. displacement $\delta \underline{u}_{V} \sim[\mathbf{N}]^{\top} \delta[\mathbf{u}]$:

$$
\int_{V^{e}}\left\{\left([\mathbf{D}]\left([\mathbf{E}]-\left[\mathbf{E}_{\mathrm{th}}\right]\right)\right)^{\top} \delta[\mathbf{E}]-\left[\mathrm{f}_{\mathbf{v}}\right]^{\top}\left[\mathbf{N}_{\mathbf{i}}\right]^{\top} \delta[\mathbf{u}]\right\} d V=[\mathrm{f}]^{\top} \delta[\mathbf{u}]
$$

$$
[\mathbf{u}]\left[\int_{V^{e}}[\mathbf{B}][\mathbf{D}][\mathbf{B}]^{\top} d V\right] \delta[\mathbf{u}]-\left[\int_{V^{e}}\left(\left[\mathbf{f}_{\mathbf{v}}\right]^{\top}\left[\mathbf{N}_{\mathbf{i}}\right]^{\top}+\left[\mathbf{E}_{\mathrm{th}}\right]^{\top}[\mathbf{D}][\mathbf{B}]^{\top}\right) d V\right] \delta[\mathbf{u}]=[\mathbf{f}]^{\top} \delta[\mathbf{u}]
$$

Stress and reactions: element's equilibrium II

■ Balance of virtual work for a single element:

$$
[\mathbf{u}]\left[\int_{V^{e}}[\mathbf{B}][\mathbf{D}][\mathbf{B}]^{\top} d V\right] \delta[\mathbf{u}]-\left[\int_{V^{e}}\left(\left[\mathbf{f}_{\mathbf{v}}\right]^{\top}\left[\mathbf{N}_{\mathbf{i}}\right]^{\top}+\left[\mathbf{E}_{\mathrm{th}}\right]^{\top}[\mathbf{D}][\mathbf{B}]^{\top}\right) d V\right] \delta[\mathbf{u}]=[\mathbf{f}]^{\top} \delta[\mathbf{u}]
$$

- For arbitrary virtual displacements $\delta[\mathbf{u}]$:

$$
\underbrace{\left[\int_{V^{e}}[\mathbf{B}]^{\top}[\mathbf{D}][\mathbf{B}] d V\right][\mathbf{u}]+\underbrace{\left[\int_{V^{e}}\left(-\left[\mathbf{f}_{\mathbf{v}}\right]^{\top}\left[\mathbf{N}_{\mathbf{i}}\right]-[\mathbf{B}][\mathbf{D}]\left[\mathbf{E}_{\mathrm{th}}\right]\right) d V\right]}_{\left[\mathbf{f}_{\mathrm{int}}^{\mathrm{e}}\right]}=\underbrace{[\mathbf{f}]}_{\left[\mathbf{f}_{\mathrm{ext}} \mathrm{e}^{e}\right]} . \underbrace{[}] .{ }^{[}]}_{\left[\mathbf{K}^{\mathrm{e}}\right]}
$$

- System of equations linking displacements and reactions:

$$
\left[\mathrm{K}^{\mathrm{e}}\right]\left[\mathrm{u}^{\mathrm{e}}\right]+\left[\mathrm{f}_{\mathrm{int}}^{\mathrm{e}}\right]=\left[\mathrm{f}_{\mathrm{ext}}^{\mathrm{e}}\right]
$$

Assembly

- At every internal node the total force should be zero:

$$
\sum_{e}\left[\mathbf{f}_{\mathrm{ext}}^{\mathrm{e}}\right]=0
$$

summation over all elements e attached to this node.

- Summation over all nodes gives:

$$
[\mathbf{K}][\mathbf{u}]+\left[\mathbf{f}_{\mathbf{i n t}}\right]=0
$$

Dirichlet boundary conditions

Dirichlet BC

■ Use penalty method to enforce prescribed displacements: array $\left[\mathbf{u}_{0}\right]=\left[\begin{array}{llllll}0 & \ldots & u_{i 0} & 0 & \ldots & 0\end{array} u_{j 0} 0\right]$

- Diagonal selection matrix $\left[\mathrm{I}^{\mathrm{s}}\right]$ with ones at prescribed degrees of freedom (DOFs):

$$
\left[\mathbf{I}^{\mathbf{s}}\right]=\left[\begin{array}{cccccccccc}
& & & \overbrace{0}^{i} & 0 & \ldots & 0 & 0 & 0 & \\
0 & \ldots & 0 & \overbrace{0}^{j} & & & \\
\vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \\
0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \\
0 & \ldots & 0 & 1 & 0 & \ldots & 0 & 0 & 0 & \} i \\
0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \\
\vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \\
0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \\
0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 1 & 0 & \} j \\
0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 &
\end{array}\right]
$$

- Then the system is changed to

$$
\left([\mathbf{K}]+\epsilon\left[\mathbf{I}^{\mathrm{s}}\right]\right)[\mathbf{u}]=\left([\mathbf{I}]-\left[\mathbf{I}^{\mathrm{s}}\right]\right)\left(\left[\mathbf{f}_{\mathrm{ext}}\right]-\left[\mathbf{f}_{\mathrm{int}}\right]\right)+\epsilon\left[\mathbf{u}_{0}\right]
$$

where ϵ is the penalty coefficient such that $\epsilon \gg \max \left(K_{i j}\right)$, and [I] is the identity matrix.

Neumann boundary conditions

Neumann BC

- Surface traction \underline{t}_{0} at Γ_{f}

■ Virtual work of surface traction over one element:

$$
\int_{\Gamma_{f}^{e}} \underline{\boldsymbol{t}}_{0} \cdot \delta \underline{\boldsymbol{u}} d \Gamma=\underline{f}_{-x t}^{i} \cdot \delta \underline{\boldsymbol{u}}_{i}^{e}
$$

- Then

$$
\left[\mathbf{f}_{\mathrm{ext}}^{\mathrm{i}}\right]=\int_{\Gamma_{f}^{e}}\left[\mathbf{t}_{0}\right]^{\top}[\mathbf{N}]^{\top} d \Gamma
$$

Discrete system of equations

- Balance of virtual work for the whole body:

$$
\underbrace{\left[\int_{V}[\mathbf{B}]^{\top}[\mathbf{D}][\mathbf{B}] d V\right][\mathbf{u}]=\underbrace{\int_{\Gamma_{f}}\left[\mathbf{t}_{0}\right]^{\top}[\mathbf{N}]^{\top} d \Gamma}_{\left[\mathbf{f}_{\mathbf{e x t}}\right]}+\underbrace{\left[\int_{V}\left(\left[\mathbf{f}_{\mathbf{v}}\right]^{\top}\left[\mathbf{N}_{\mathbf{i}}\right]+[\mathbf{B}][\mathbf{D}]\left[\mathbf{E}_{\mathrm{th}}\right]\right) d V\right]}_{-\left[\mathbf{f}_{\mathrm{int}}\right]} .}_{[\mathbf{K}]}
$$

- System of equations linking displacements and reactions:

$$
[\mathrm{K}][\mathrm{u}]=\left[\mathrm{f}_{\mathrm{ext}}\right]-\left[\mathrm{f}_{\mathrm{int}}\right]
$$

■ Stiffness matrix [K]
■ Vector of degrees of freedom (DOFs) [u]
■ Right hand term (vector of forces) $\left[\mathrm{f}_{\mathrm{ext}}\right]-\left[\mathrm{f}_{\text {int }}\right]$

Different approach: virtual work formulation I

- Arbitrary virtual displacements ס \underline{u}
- Strong form: $\nabla \cdot \underline{\underline{\sigma}}+{\underset{-V}{ }}=0+\mathrm{BCs}$
- Take a product with virtual displacements and integrate over Ω :

$$
\int_{\Omega}\left(\nabla \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\boldsymbol{u}}+\underline{f}_{V} \cdot \delta \underline{u}\right) d V=0
$$

- Replacement: $\nabla \cdot \underline{\underline{\sigma}} \cdot \delta \underline{u}=\nabla \cdot(\underline{\underline{\sigma}} \cdot \delta \underline{\underline{u}})-\underline{\underline{\sigma}}: \nabla \delta \underline{u}$
- Following Gauss-Ostrogradsky theorem: $\int_{V} \nabla \cdot(\bullet) d V=\int_{S} \underline{n} \cdot(\bullet) d S$
- So

$$
\int_{\partial \Omega} \underline{\boldsymbol{n}} \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\boldsymbol{u}} d S+\int_{\Omega}\left(f_{-V} \cdot \delta \underline{\boldsymbol{u}}-\underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}}\right) d V=0
$$

Different approach: virtual work formulation II

continue...

- Weak form

$$
\int_{\partial \Omega} \underline{\boldsymbol{n}} \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\boldsymbol{u}} d S+\int_{\Omega}\left(f_{-V} \cdot \delta \underline{\boldsymbol{u}}-\underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}}\right) d V=0
$$

- Non-trivial Neumann boundary conditions at Γ_{f}

$$
\int_{\Omega} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}} d V=\int_{\Gamma_{f}} \underline{\boldsymbol{t}}_{0} \cdot \delta \underline{\boldsymbol{u}} d S+\int_{\Omega} \underline{f}_{-} \cdot \delta \underline{\boldsymbol{u}} d V
$$

- Remark I: in the strong form \underline{u} should be C^{2}-smooth, in the weak form \underline{u} should be only square-integrable as well as its first derivative, thus $\underline{u} \in \mathbb{H}^{1}$, i.e. from Sobolev's functional space of the first order. In addition $\underline{u}=\underline{u}_{0}$ at Γ_{u}
- Remark II: for linear elasticity, the stress tensor ${ }_{\underline{\sigma}}^{\underline{\sigma}}={ }^{4} \underline{\underline{C}}:\left(\underline{\underline{\varepsilon}}-\underline{\underline{\varepsilon}}_{t h}\right)$

$$
\int_{\Omega} \underline{\underline{\varepsilon}}::^{4} \underline{\underline{\boldsymbol{C}}}: \delta \underline{\underline{\boldsymbol{\varepsilon}}} d V=\int_{\Gamma_{f}} \underline{t}_{0} \cdot \delta \underline{\boldsymbol{u}} d S+\int_{\Omega}\left(\underline{f}_{V}+{ }^{4} \underline{\underline{\boldsymbol{C}}}: \underline{\underline{\varepsilon}} t h\right) \cdot \delta \underline{\boldsymbol{u}} d V
$$

Different approach II: potential energy

Remark III:

- If the system remains linear (boundary conditions, linear elasticity)
- The principle of virtual work is equivalent to the minimum of the total potential energy
- $\{$ Potential energy $\}=\{$ Internal energy $\}-\{$ Work of all forces $\}$

$$
\Pi\left(\underline{u}, \underline{t}_{0}, \underline{u}_{0}\right)=\frac{1}{2} \int_{\Omega} \underline{\underline{\sigma}}: \underline{\underline{\varepsilon}} d V-\int_{\Gamma_{f}} \underline{t}_{0} \cdot \underline{u} d \Gamma-\int_{\Omega} \underline{f}_{V} \cdot \underline{u} d V
$$

- Stationary point of the total potential energy $\frac{\partial \Pi}{\partial \underline{u}}=0$ for given loads $\underline{t}_{0}, \underline{u}_{0}:$

$$
\frac{\partial \Pi}{\partial \underline{u}}=\int_{\Omega} \underline{\underline{\varepsilon}}::^{4} \underline{\underline{C}}: \frac{\partial \underline{\underline{\varepsilon}}}{\partial \underline{\underline{u}}} d V-\int_{\Gamma_{f}} \underline{t}_{0} d \Gamma-\int_{\Omega} f_{-V} d V=0
$$

■ The same equation

Evaluation of the integrals

■ Weak form (recall):

$$
\underbrace{\left[\int_{V}[\mathbf{B}]^{\top}[\mathbf{D}][\mathbf{B}] d V\right][\mathbf{u}]}_{[\mathbf{K}]}=\underbrace{\int_{\Gamma_{f}}\left[\mathbf{t}_{0}\right]^{\top}[\mathbf{N}]^{\top} d \Gamma}_{\left[\mathbf{f}_{\text {ext }}\right]}+\underbrace{\left[\int_{V}\left(\left[\mathbf{f}_{\mathbf{v}}\right]^{\top}\left[\mathbf{N}_{\mathbf{i}}\right]+[\mathbf{B}][\mathbf{D}]\left[\mathbf{E}_{\mathbf{t h}}\right]\right) d V\right]}_{-\left[\mathbf{f}_{\mathbf{i n t}}\right]}
$$

- Exact integration: $\int_{a}^{b} f(x) d x=F(b)-F(a)$ (not always possible)
- Approximate integration (trapezoidal rule, Simpson's rule)
- Gauss quadrature: $\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{N_{G P}} w_{i} f\left(x_{i}\right)$
- Gauss points x_{i} with $i=1, N_{G P}$
- Integration is exact for polynomials of order $2 N_{G P}-1$
- Tabulated data for x_{i}, w_{i} (1D, 2D, 3D integration)
- Function $f(x)=\cos \left(\pi x^{2} / 2\right)$
- $N_{G P}=1$: error $\approx 28.22 \%$
- $N_{G P}=2$: error $\approx 11.04 \%$
- $N_{G P}=3$: error $\approx 1.14 \%$
- $N_{G P}=4:$ error $\approx 0.14 \%$
- $N_{G P}=5$: error $\approx 0.01 \%$
- Function $f(x)=x \sin (\pi x)$
- $N_{G P}=1$: error $\approx 100.00 \%$
- $N_{G P}=2$: error $\approx 76.05 \%$
- $N_{G P}=3$: error $\approx 12.07 \%$
- $N_{G P}=4$: error $\approx 0.80 \%$

■ $N_{G P}=5$: error $\approx 0.03 \%$

Evaluation of the integrals II

- Consider: $\int_{V}[\mathbf{B}]^{\top}[\mathbf{D}][\mathbf{B}] d V=\sum_{e=1}^{N_{e}} \int_{V_{e}}[\mathbf{B}]^{\top}[\mathbf{D}][\mathbf{B}] d V$
- Transpose to the parametric space (2D example)

$$
\int_{V_{e}}[\mathbf{B}(\xi, \eta)]^{\top}[\mathbf{D}][\mathbf{B}(\xi, \eta)] d V=\int_{-1}^{1} \int_{-1}^{1}[\mathbf{B}(\xi, \eta)]^{\top}[\mathbf{D}][\mathbf{B}(\xi, \eta)] \operatorname{det}([\mathbf{J}]) d \xi d \eta
$$

- Finally:

$$
[\mathbf{K}]=\int_{V}[\mathbf{B}]^{\top}[\mathbf{D}][\mathbf{B}] d V=\sum_{e=1}^{N_{e}} \sum_{G P=1}^{N_{G P}}\left[\mathbf{B}^{\mathbf{e}}\left(\xi_{\mathbf{G P}}, \eta_{\mathbf{G P}}\right)\right]^{\top}[\mathbf{D}]\left[\mathbf{B}^{\mathbf{e}}\left(\xi_{G \mathbf{G P}}, \eta_{\mathbf{G P}}\right)\right] \operatorname{det}\left(\left[J^{e}\left(x i_{G P}, \eta_{G P}\right)\right]\right) w_{G P}
$$

Evaluation of the integrals III

- If $N(\xi, \eta)=P_{p}$ is a polynomial of order p, then $[\mathbf{J}]=P_{\operatorname{dim}(p-1)}$, $[\mathrm{B}]=\frac{P_{2(p-1)}}{Q_{\operatorname{dim}(p-1)}}$
- Remark I: Gauss quadrature is exact for $p=1$ and approximate if $p>1$.
- Remark II: Stress and strains are exactly evaluated only in Gauss points, in all other points they are extrapolated/interpolated
- Remark III: 1 GP for linear triangle, 3 GP for quadratic triangle, 4 GP for bilinear quadrilateral element, 9 GP for quadratic quadrilateral, etc.
- Remark IV: Underintegration may lead to zero-energy deformation modes (which are often stabilized in FE software)

Evaluation of the integrals: quadrilateral 2D element

- Shape functions:

$$
\begin{array}{ll}
N_{1}=\frac{1}{4}(1-\xi)(1-\eta), & N_{2}=\frac{1}{4}(1+\xi)(1-\eta) \\
N_{3}=\frac{1}{4}(1+\xi)(1+\eta), & N_{4}=\frac{1}{4}(1-\xi)(1+\eta)
\end{array}
$$

- Shape function derivatives:

$$
\begin{aligned}
& N_{1, \xi}=-\frac{1}{4}(1-\eta), \quad N_{2, \xi}=\frac{1}{4}(1-\eta) \\
& N_{3, \xi}=\frac{1}{4}(1+\eta), \quad N_{4, \xi}=-\frac{1}{4}(1+\eta) \\
& N_{1, \eta}=-\frac{1}{4}(1-\xi), \quad N_{2, \eta}=-\frac{1}{4}(1+\xi) \\
& N_{3, \eta}=\frac{1}{4}(1+\xi), \quad N_{4, \eta}=\frac{1}{4}(1-\xi)
\end{aligned}
$$

- Determinant of Jacobian $(d A=\operatorname{det}[\mathbf{J}] d \xi d \eta)$:

$$
\begin{aligned}
& \operatorname{det}([\mathbf{J}])= \\
& \frac{1}{16}\left[\left((1-\eta)\left(x_{2}-x_{1}\right)+(1+\eta)\left(x_{3}-x_{4}\right)\right)\left((1+\xi)\left(y_{3}-y_{2}\right)+(1-\xi)\left(y_{4}-y_{1}\right)\right)-\right. \\
& \left.-\left((1-\eta)\left(y_{2}-y_{1}\right)+(1+\eta)\left(y_{3}-y_{4}\right)\right)\left((1+\xi)\left(x_{3}-x_{2}\right)+(1-\xi)\left(x_{4}-x_{1}\right)\right)\right]
\end{aligned}
$$

Evaluation of the integrals: quadrilateral 2D element

- Shape functions:

$$
\begin{array}{ll}
N_{1}=\frac{1}{4}(1-\xi)(1-\eta), & N_{2}=\frac{1}{4}(1+\xi)(1-\eta) \\
N_{3}=\frac{1}{4}(1+\xi)(1+\eta), & N_{4}=\frac{1}{4}(1-\xi)(1+\eta)
\end{array}
$$

- Shape function derivatives:
$N_{1, \xi}=-\frac{1}{4}(1-\eta), \quad N_{2, \xi}=\frac{1}{4}(1-\eta)$
$N_{3, \xi}=\frac{1}{4}(1+\eta), \quad N_{4, \xi}=-\frac{1}{4}(1+\eta)$
$N_{1, \eta}=-\frac{1}{4}(1-\xi), \quad N_{2, \eta}=-\frac{1}{4}(1+\xi)$
$N_{3, \eta}=\frac{1}{4}(1+\xi), \quad N_{4, \eta}=\frac{1}{4}(1-\xi)$
- Determinant of Jacobian $(d A=\operatorname{det}[\mathbf{J}] d \xi d \eta)$:

$$
\begin{aligned}
& \operatorname{det}([\mathbf{J}])= \\
& \frac{1}{16}\left[\left((1-\eta)\left(x_{2}-x_{1}\right)+(1+\eta)\left(x_{3}-x_{4}\right)\right)\left((1+\xi)\left(y_{3}-y_{2}\right)+(1-\xi)\left(y_{4}-y_{1}\right)\right)-\right. \\
& \left.-\left((1-\eta)\left(y_{2}-y_{1}\right)+(1+\eta)\left(y_{3}-y_{4}\right)\right)\left((1+\xi)\left(x_{3}-x_{2}\right)+(1-\xi)\left(x_{4}-x_{1}\right)\right)\right]
\end{aligned}
$$

- Warning: to ensure $\operatorname{det}([J])>0$ the element should remain convex

Parameteric space

Physical space

Solvers

Problem: Find $[\mathbf{u}]$ such that $[\mathbf{K}][\mathbf{u}]=[\mathrm{f}]$, i.e. $[\mathbf{u}]=[\mathrm{K}]^{-1}[\mathrm{f}]$

■ Iterative solvers
The solution is approached iteratively, does not require much memory, restrictions to matrix type, sensitive to matrix conditioning, a preconditioner is often needed.

- Gauss-Seidel method (GS)
- Conjugate gradient method (CG)
- Generalized minimum residual method (GMRES)
- Direct solvers

The solution is provided directly, no restrictions on matrix type, less sensitive to matrix conditioning, based on LU or Cholesky decomposition

- Frontal
- Sparse direct

■ . . .

Example

- 3 bars in 2D
- 3 elements, 3 nodes, 6 dofs

References

■ O.C. Zienkiewicz \& R.L. Taylor. The Finite Element Method: vol 1. The Basis, vol 2. Solid Mechanics, Butterworth-Heinemann (2000)
$■$ O.C. Zienkiewicz, \& R.L. Taylor. The finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann (2005)

■ K.J. Bathe. Finite Element Procedures, Prentice Hall (1996)

- P. Wriggers. Nonlinear Finite Element Methods. Springer (2008)
- M.A. Crisfield. Non-linear Finite Element Analysis of Solids and Structures. Vol 1 \& 2, Wiley (1991)

Thank you for your attention!

[^0]: *Antisymmetric \equiv skew-symmetric

[^1]: *Scalar product \equiv dot product \equiv inner product.
 ${ }^{* *}$ We assume Einstein summation by repeating index, i.e. $a_{i} A^{i j}=\sum_{i=1}^{\operatorname{dim}} a_{i} A^{i j}$.

[^2]: ${ }^{*}$ Defined only for $\operatorname{dim}=3$, also called cross product.

[^3]: *In case of a simply-connected solid.
 ${ }^{* *}$ In absence of volumetric forces.

