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Elements of tensor algebra



Vectors and tensors

Tensor notations Component notations
m Scalars € R: m Scalars € R:
a,a,C a,a,C
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Vectors and tensors

Tensor notations Component notations
m Scalars € IR: m Scalars € IR:
a,a,C a,a,C
m Vectors € Vgin: m Vectors® € R4™:
a,T ai, Tj

witha =g’ anda;, =¢ - a

*Component notations require introducing a basis ¢',i = 1...dim and a dual basis e; such that
g el = (Sf,whereé/’ = Oifiijandé; =1ifi=j.
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Vectors and tensors

Tensor notations Component notations
m Scalars € IR: m Scalars € IR:
a,a,C a,a,C
m Vectors € Vgin: m Vectors® € R4™:
a,T ai, Tj

witha =g’ anda; =¢' - a

m Second-order tensors € T%, : m Second-order tensors € R¥"™ x R4™:

Ao Ajj, 0n

*Component notations require introducing a basis e¢',i = 1...dim and a dual basis [ such that
e ¢ = oj’i,whereo; = Oz‘fz‘;ejundo/fi =1ifi=].
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Vectors and tensors

Tensor notations Component notations
m Scalars € IR: m Scalars € IR:
a,a,C a,a,C
m Vectors € Vgin: m Vectors® € R4™:
a,T ai, Tj

witha =g’ anda;, =¢ - a

m Second-order tensors € T%, : m Second-order tensors € R¥"™ x R4™:
é , g A ijr Okl
withA = Aje'@cland Aj=¢ - A-e
m Forth-order tensors € T, : = Forth-order tensors
€ RIM x ... x RIm;
iC Cijt

with 4g = C,:,‘/(1gi ® g/ ® gk ® €/ and
Cin = e~ (e~ (¢-(¢-C)))

*Component notations require introducing a basis ¢',i = 1...dim and a dual basis e; such that

gj-gi:(ﬁ‘,:,wheretﬁl’ =0ifi#jand o} = 1ifi =],
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Tensor notations

m Transposition
c=D.(4-B) =B -4

m Symmetric tensor
A=A

m Antisymmetric* tensor
B'=-B

m Tensor decomposition
C=C"+C" with

(::S: %(C+CT),(:?A: %(g_gw)

Examples

Tensor algebra

Component notations
m Transposition
Cij=D;

m Symmetric tensor
Ajj = Aji
m Antisymmetric tensor
Bjj = —B;i
m Tensor decomposition
Ci= C; + CI//‘ with
C=1(Cyj+Cp), Ci =

1

= Identity tensor (symmetric) I = 6'¢, ® e =¢®e¢

m Rotation tensor (asymmetric = symmetric(# 0) + antisymmetric(# 0)):
cos(¢) 0 0 0
+

—sin(¢) cos(¢p) 0

cos(¢p) sin(¢p) O
a |
0 0 1

—sin(¢)
0

0 cos(¢p) O
0 0 1

*Antisymmetric = skew-symmetric
V.A. Yastrebov
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Tensor algebra: products

Tensor notations

m Mutliplication by a scalar

Component notations

m Mutliplication by a scalar

aé = éa aAj = Aja

m Scalar product’ m Scalar (dot) product™
a-b=c ab =c
a-A=b aAT = b
A-B=C AyBF = Ck

m Tensor contraction m Tensor contraction
4:B=c AyBij=c
A--B=d AiBji=d

m Remark:
A:B=A°:B°+A":B"andA°:B" =A":B° =0
A-B=A° B +A"B'and A’ B = 4" B =0

*Scalar product = dot product = inner product.
*We assume Einstein summation by repeating index, i.e. a;Al = Z,‘.i:”]“ a; Al

V.A. Yastrebov
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Tensor algebra: products II & invariants

Tensor notations Component notations
m Vector product’ m Vector product’
axb=c ¢ = epalb
such thatc-a=0,c-b=0 with €;; Levi-Civita symbol

1, if (1,7,k) = (1,2,3) or (2,3,1) or (3,1, 2)
€ =11, if(i,j,k)=(2,1,3)or(1,3,2)or (3,2,1)

0, otherwise.
m Tensor product™ m Tensor product
a®b=C_C aibj = Cj
A®B=‘C AjjBy = Cijn
= Invariants: m Invariants:
L(A)=tr(A)=1:A Li(A) =Ai = An + An + Ags
1
L(A) = 5 [r(A) - (4?)] h4) = ...
L(4) = det(4) L) = ...

*Defined only for dim = 3, also called cross product.
**Also called outer product.
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Tensor algebra: deviatoric & spherical parts

Tensor notations Component notations
m Spherical part of tensor A m Spherical part of tensor A
1 1 !
Sp(4) = gtl”(é)i Sp4) = i(Akk)“)zj
m Deviatoric part of tensor A m Deviatoric part of tensor A
1 1 !
Dv(é) = é - gtr(é)i D\’(é) = A,, — i(Akk)(S,'j

m Tensor decomposition

4 =5p(4) + Dv(4)

m Remark: for an antisymmetric tensor B”

Sp(B")=0 = B"=Dv(B")
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Tensor algebra: principal values

m Principal values of a linear operator A:

Au= o (A-AL)u=0

If A= f:ls for dim = 3 then exist three real /A; and corresponding z,
called eigen values and eigen vectors of operator 4, respectively.
Moreover, for i # j, u, - u; = 0.

m To find A; we solve

I3(A) = L(A)A + [(A)A* - A° =0
m Then tensor can be rewritten in its eigen basis:
A=, Quy + Ao, Qu, + A3, @ u,

and tr(4) = Al
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Continuum Mechanics: Recall



Deformable medium

m Consider change in positions of points with time ¢

m Consider two states: = f; (reference) and f = f; (current configurations)

m Point X from the reference configuration is labeled x in the current
configuration

m Displacement vector between fy and t; is u = x — X

Xl space
X
O
XZ X
X
1 1 >
t time, ¢

Reference configuration Current configuration
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Deformable medium

m Consider change in positions of points with time ¢

m Consider two states: = f; (reference) and f = f; (current configurations)

m Point X from the reference configuration is labeled x in the current
configuration

m Displacement vector between fy and t; is u = x — X

Xl space

t time, ¢

fo
Current configuration

Reference configuration
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Deformable medium

m Consider change in positions of points with time ¢

m Consider two states: = f; (reference) and f = f; (current configurations)

m Point X from the reference configuration is labeled x in the current
configuration

m Displacement vector between fy and t; is u = x — X

Xl space

t time, ¢
Reference configuration Current configuration
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Deformation tensor

o(X +u)

Transf ti dient F =
m Transformation gradient X

:£+

U
Al
I
|1~
+
Tle

|
|
Il’ﬁ ‘x“*
I

Cauchy-Green right tensor C =

C=EE

1 o1,
Green-Lagrange deformation tensor E = 5 (g -1 ) =H°+ E}ZI -H

For Hj < 1,E~ IZJS and we obtain a tensor of small deformations

) u ou\' 1

S = —| =5 (Va+ (V)
[aX (ax)] 5 (Vu+ (Vu)')

Xl space

&=

III

1y t time, ¢
Reference configuration Current configuration
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Stress tensor and Hooke’s law

m Hooke’s law in uniaxial test:
EA L-L, (.
F=ku o o0,A= L—Uu =EA L 0 | '
m In general case stress and strain are 3

related through a linear operator
(fourth-order elasticity tensor “C):

o="C:¢

m Inversely the strain can be found :
through a stiffness tensor 42: L[

e="S:0
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Hooke’s law for isotropic solids: stress

m In the case of isotropic material the Hooke’s law reduces
to:

g = AMr(e)L +2ug,

with A, i1 being Lamé coefficients:

vE . E
A+v)1-2v) Y720+

with Young’s modulus E and Poisson’s ratio v.

m In the component form it reads:

05 = A({kk)b,q,- + lelé',','

m In the matrix form:

011 012 013 /\tr(é)/(z,“) + &1 €12 €13
012 02 03|=2u &12 /\tr(g)/(zy) + &9 &3
013 023 033 €13 €23 Mr(&)/(2u) + €33
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Hooke’s law for isotropic solids: stress

m In the case of isotropic material the Hooke’s law reduces
to:

g = AMr(e)L +2ug,

with A, i1 being Lamé coefficients:

vE . E
A+v)1-2v) Y720+

with Young’s modulus E and Poisson’s ratio v.

m In the component form it reads:

05 = A({kk)b,q,- + lelé',','

m In the matrix form:

011 012 013 vir(e)/(1 = 2v) + ey €12 €13
012 0xn 03|=2u 12 vtr(g)/(l —-2V)+ex €23
013 023 033 €13 €3 vtr(e) /(1 - 2v) + e33
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Hooke’s law for isotropic solids: strain

m Strain as a function of stress:

1+v %
— —=tr(o)I |

&=

m In the component form it reads:

1+v v

é',‘j = 7E (7,:,' - E(Mkélj
m In the matrix form:
11 £ €13 1+ V)(Tll - L’t[‘(g) (1 +V)o1n 1 +v)o3
12 € Ex|l=—= 1 +v)o12 (1 +v)apn — vtr(o) (1+v)ops
€13 €3 €33 (1+v)o1s (1+v)ops (1 +v)o33 —vtr(o)
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Hooke’s law for isotropic solids: strain

m Strain as a function of stress:

1+v %
— —=tr(o)I |

&=

m In the component form it reads:

1+v v
é','/' = T(T,‘j — EGM\bU
m In the matrix form:
e 12 €13 1 1+ V)(Tll - L’t[‘(g) (1 +V)o1n 1 +v)o3
€12 & Ex3|= = 1 +v)o12 (1 +v)apn — vtr(o) 1 +v)oxs
£13 &3 €33 (1+v)o1s (1+v)ops (1 +v)o33 —vtr(o)
1 011 — 1’(0’22 + (733) (1 + 1’)0’12 (1 + 1’)(713
= E 1 +v)or 0y — V(011 + 033) (1 +v)ops
(] + V)(7|3 (] + 1/’)(723 033 — V((TH + 022)
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Equilibrium of an infinitesimal element

m Infinitesimal strain tensor is symmetric

and satisfies the compatibility
conditions®: R ;
VX(VXE):O ."IsinV:':

m Stress tensor ¢ should ensure
equilibrium of infinitesimal element*:

Force balance: fg ~0dS=0
S

——
wn

Momentum balance: f rx(n-0)dS =0
S

m Following Gauss-Ostrogradsky theorem:
fn gdS = fV odV =0 Since volume

|
I

V can be arbltrary chosen, then
everywhere in V. [

V-g—()

*In case of a simply-connected solid.
**In absence of volumetric forces.

N
@
N

Lecture 1
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Equilibrium of an infinitesimal element II

m Second Newton’s law:

1
mii=f = pg:‘—/f l S
m In presence of volumetric forces with -fVY
density f v the total force is given by: —
B \
f:ffvdv+fy-gds [
Lol 7=

m Then using the second Newton’s law
and Gauss-Ostrogradsky’s theorem:

V.-o+ dv = | pitdV
f( = 'iv) f‘l
14 14

m Since it is right for arbitrary V, then in
every point of V:

Veg+f, =pi

V.A. Yastrebov Lecture 1 24/76



Equilibrium of an infinitesimal element II

m Equilibrium (3 equations):

V-g+f\/:pg l

5]

m In component form: g
% + 95;2 N (9(;7213 +fo. = pis [
% . % i 35222 +fv, = pily
% * a;; * % + fv. = pil,
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Deformable solid and boundary conditions

Notations:

m Consider a solid Q) with
boundary JC)

m Boundary is split into I, and Iy
dQ=T,UT;

m At[, displacements u(t, X) are
prescribed (Dirichlet boundary
conditions [BC]):

u=u,at T,

m At [} tractions £,(t, X) are
prescribed (Neumann BC):

‘n= to at Ff

n=0atl}

a1
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Deformable solid and boundary conditions

Notations:

m Consider a solid Q) with
boundary JC)

m Boundary is split into I, and Iy
dQ=T,UT;

m At[, displacements u(t, X) are
prescribed (Dirichlet boundary
conditions [BC]):

u=u,at T,

m At tractions £ (f, X) are
prescribed (Neumann BC):

SIS
2
I
o |
=
!

Remarks:
m on the same boundary both BCs can be prescribed if they are orthogonal
one to each other, i.e. 1, - £, = 0 (ex.: friction);
m a relationship between these BCs can be prescribed (Robin BC):
u, = U — kt, (ex.: Winkler’s foundation).
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Elastic and quasistatic problem set-up

Equilibrium in absence of
inertial forces

Vog+f, =0 ()

m Consistutive relation:

c="C:¢
- oQ
m Strain tensor: m Problem:
find such field u in Q that
£=5 (Vg + (VE)T) satisfies equilibrium Eq. (*)

and boundary conditions.

Boundary conditions:

-

L= u, at T,

s |

'E:toatrf

liS)

‘n=0atl}
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Finite Element Method



Main idea

m From continuous to discrete problem
m Split solid into finite elements
Q— Q" with Q" =y QF

m All quantities are associated with
this discretization:

E_)EII/Q—)QII/D'_)F/;/EO _)tgl"'

m Search for " only in a finite number
of points (nodes)

m Interpolate in between (within
elements)

m Ensure (1) equilibrium of every
element and (2) satisfaction of
boundary conditions

(1) V-g"+f =0inQl, Ve
I gl J

(2.a) (:;’ -n' = 5; at l"f!

(2b) u'=ulatlh
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Main idea

m From continuous to discrete problem

m Split solid into finite elements
Q— Q" with Q" =y QF

m All quantities are associated with
this discretization:

E_)EII/Q—)QII/D'_)F/;/EO _)tgl"'

m Search for " only in a finite number
of points (nodes)

m Interpolate in between (within
elements)

m Ensure (1) equilibrium of every
element and (2) satisfaction of
boundary conditions

(1) V-o'+ f]' =0in Qf, Ve m Existence and uniqueness of the
oo & gh g T solution #"

Ga) ghn'=haly When discretization-size tend

@b) u'=ulatT" " en discretization-size tends

= to zero /1 — 0, convergence to

the solution of the continuum

problem: u/ — u
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Standard discrete system

For any discrete system the quantities of interest [q] depend on system
parameters [p] and on locally acting external parameters [e]

[ql: = [ql: ([p]; [e]})

In the first approximation this dependence is linear

g1 = Kiupr + Kippa + ... Kinpn + Aqre
g2 = Knpr + Koopo + ... Konpn + Axer

gy = Koipr + Kpps + ... Konpn + Annen
In matrix form

[qli = [K]; [p]; + [Al; [el;

Assuming that external parameters are of the same nature as quantities
of interest ([A];; = [I];)

[q]i = [K]; [p]; + [e];
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Discrete system in structural mechanics

Main quantities
m Quantities of interest [q] are, in general, forces [f]
m System parameters [p] are, in general, displacements [u]
m External parameters [e] are, in general, external forces [£]

Main steps
Construct stiffness matrix and nodal loads vector
(KIS, [flf, i1, NNk eNE,

where NN is the number of nodes of k-th element, NE is the number of
elements.

Assemble them into the global stiffness matrix and global load vector
[K];,[fl;, i,j€1,NN,
where NN is the total number of nodes.
Add boundary conditions (for example Dirichlet and Neumann)

[fl“, keBCy;  [ul), [€BC,
Solve linear system of equations

(K] [ul; = [fl; - [f*  —  [ul:
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Shape functions

m Displacements are known at
nodes: /', i =1,4

m We need to know them inside
the element

m Parametrize the inside with
parameters {&, 1} € [-1,1]

m Use interpolation or shape
functions N;(&, 1)
for position X Continuum Finite element

X"(&,m) = L XINi(&,7)
and displacement u:
u'(&,n) = Lu!N(&,n)

m Remark: Find {&, 1)} from X is not
always straigthforward
(may result in a system of
non-linear equations)

Physical space

Parameteric space
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Shape functions

m Displacements are known at
nodes: /', i =1,4

m We need to know them inside
the element

m Parametrize the inside with
parameters {&, 1} € [-1,1]

m Use interpolation or shape
functions N;(&, 1)
for position X Continuum Finite element

0 u’
X"(&,n) = LXIN(E ) g U7
i g g
and displacement u: 3
h(c _ INT.( € & )
u'(&,n) = ;y, Ni(&, 1) ul
m Remark: Find {&, 1)} from X is not 3
always straigthforward 5 !
(may.result ina system of g i TF
non-linear equations) g
a
1
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Rules
m Node i has coordinates {<;, 1);}
m Then N;(&, 1) = 0
m Partition of unity:
Y&, LNi(En)=1
Types

m Linear shape functions

—+ = const
&
m Non-linear shape functions
ON .
o =f©
m Linear elements vs quadratic
elements

m Higher order elements

V.A. Yastrebov
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Parameteric space Physical space

i
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Shape functions III

Example: bar element

m Linear shape functions: m Quadratic shape functions:
. 1 . 1
Ni(&) = 51 -9 Ni(&) = 5&(E-1)
2 2
o1 . 5= (1 - &2
N = 5(1+9) A
N3(&) = 55(1 +&)
Ni(<) Ny(€)
5 1 1
) ® ® ®
1 1 ¢ -1 1 ¢
Ny($) Ny(€) N5($)
. 1 1 1
T o ®© o ® o ®
0 el ¢ 1 @ I ¢ TTo :
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Shape functions: vectors and matrices

Displacement nodal vectors u, = e 1 + e,/

Array of nodal coordinates (size dim - 1)

[XI =[x, yi, X2, Y2, - Xu, Yl

m Array of nodal displacements (size dim - 1)

Y X Y x

(] = [, w), uf, ul, ... u3, uyly

m Arrays of shape functions (size dim - 1)
[Nx] = [N]/ 0/ NZ/ Or Nnr 0];”
[Ny] =[0, N, 0, No, ... 0, le];,,
M0 N 0 0N, 0]
[N] - 0 N1 0 NZ e 0 ™ |2nxdim
m Then

xX(& 1, 8) = IN (& DI IXW®L, - y(& 1, 1) = INy(& )] [X(D)]
w* (& n, 1) = INK(E ] Tu®],  w(E,1n,1) = [Ny(E, ] [u(t)]
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Gradients and shape functions

Need to evaluate gradients (spatial derivatives) like %

But with shape functions f = f(&, 17)
FEm _ o, o
dx  9&dx  Inox

m However, in general we do not have & = £(x, y) but rather x = x(&, 1)

m Then

m Let’s do it other way around

21 (2 2 [x W [0
dE| _|9xdE  dydé| |dE  IE||ox — 1] ox
2|7 2ax oo\ o)l 2|7Na
an dxadn  dyadn an  adnllaoy dy
m Matrix [ ] ] is called Jacobian operator and enables to obtain

9 9

ox | 0&

Sl=01Y

%y I
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Jacobian operator

m Jacobian operator or simply Jacobian:

_ |0 &

an an

m Using x = [N,]'[X], v =[Ny]"[X] we get:

[Nl IX] [Ny,eI"[X]
[Nk 1" IX] [Ny, 1"[X]

7

where [N, (] = [87\]1 N, N, O} etc

9% 0, 7 0, ... 9E

m Then the inverse Jacobian is given by:

[1\Ty,l]]T [X] _[I\Iy,é]T [X]
—[Ngl"IXT [Nyl [X]

1

-1 _ L
o1 =5

with A = det([J ]) = [X]" ([Ny][Ny,]" = [Ny, ][Ny, ") [X] # 0
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Infinitesimal strain in 2D

1 T
m Strain tensor: & = 5 (Vg + (Vu) ) (*)

m Interpolated displacements:  u* = [N,]'[u], ¥ =[Ny][u]
m Displacement gradient:

) Y/ ¢ ¢
&y ' 914 ' ot o du* ouY

— = — oF TRV I L Vet L L ey I
Vi=e® ox &% ady £ ox - ve dx teoe ady tee
ot ouY d - 9] N [l
ox ox | _ 11|98 . oy 9€ xl
Vu ~ ot ouw | = [J] i [u»” =[J] i N ]T[u]
dy  dy | an an | '
. 1o 1], [N/ INY]T /O]
- Fma”Y[E]*[o 11| Ul [Q[NX]T/&] AN, " o | [
exe = (U1 [Nl + 17133 INgy) 0] = £ (INg T IXIN 2] = Ny 1 [X1EN ) ]
w = (11T INyT + 1153 DNy 1) Tl = 5 (TN T IXIINy 2]+ Ny XTIy 1) ]

1(ou* oJuY 1 _ _ _ _ u
Exy = 5 (% + %) = i ([J]nl [Ny,Z] + []]121 [Ny,u] + [11211 [NX,Z] + []]221 [Nx,l]]) [u]
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Infinitesimal strain in 2D

1
m Strain tensor: & = 5 (Vy + (VE)T) (*)

» Interpolated displacements: " = [N,]'[u], u’ = [Ny][u]
m Displacement gradient:

Vu=e ®8Llh+ o' =e'®e O all/+e»”®e"'%+ey®e»‘/%
= T ox a/ B dx T~ ~— dy — T dy
o ] I 2 iy
dx  IJx eSS 1| 9& x] u
Vi~ 5 v|=1J] =[J1
u* oY a9 Lly a9 [N, ]"[u]
dy  dy | an an |

1 [IINLIT/9E IINy] /9E]
| U1 ][Q[NX]T/QII IIN, " o [

m Finally [E] = [(1)

exe = ([T INwel + 1152 [Nl [l =+ (INy0] IXIINye] = [Ny ] [X]INwy]) [l

>\~ DH

ey = (1715 [Nyl + 7152 [Nyy]) [l = 1 (<INl [XIINy ] + [N [XINy 1) [u]
ar = g (INy I IXIINy ] = [Ny e XTIy ] = [Ny I XINg ] + [N T XN 1) ol
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Infinitesimal strain in 2D in matrix form

1 T
Strain tensor: ¢ = 5 (Vg + (Vu) ) (*)

m Represent it as an array (Voigt notations):

N
g = [E] = [5.\:\'/ E}/}l// V.\'}/] ’ ;’X}l/ = 25.\'}1/

m Then
[E], = [BI;

3x2n

[u],,

With [B] given by:
(INy,q1" IXIINx €] — [Ny 1" [XI[N 1)
[B]' = + (=[N 1" [XI[Ny,] + [Ny " [XIINy 1)

([Ny,r[]T [X][Ny,{:] - [Ny,é]T [X][Ny,r]] - [Nx,q]T [X][Nx,t] + [Nx,{:]T [X][Nx,r]])T

T

3x2n
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Infinitesimal strain in 2D: example

m Consider a linear triangular element with shape Parameteric space
functions: o ”1
N, :—%(54—1]), Nz:%(l+£), N3:%(1+,7) 1

m Their derivatives are given by: & ®
Nig=-1/2, Npg=1/2, N3c=0 Physical space
Nqu = —1/2, NZ,;] =0, N3,7[ — 1/2 (Xé,DYQ)

! EIB))

A= *(( X2 = x1) (Y3 — y1) — (Y2 — y1)(x3 — x1))°

m Then
xe = g [ = 05 — 1) - (2 = y2)5 — )]
w = g [~ X0 = )~ (x5 = 20)08y — )]
Vo = g 3 = 1008 =) = 92 = 1) = ) + 2 = 30005 = ) = o3 = )3 — )]

“Half of the area of the triangle.
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Infinitesimal strain in 2D: example II

m Rectangular triangle x; = x3, y1 = y», A= L,L, /4

y ¥y _ Y

m Case 1: pure tension/compression along OX iaoi 1} = !, 1) = 1}, u = u}

Ex. u; =0: Eyn=

(@) L, (@) X

Reference configuration

V.A. Yastrebov

ﬁ(}/% - yl)(ug - UT) =0/Ly, Eyy =V = 0

Case 1

Current configuration
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Infinitesimal strain in 2D: example II

m Rectangular triangle x; = x3, y1 = y», A= L,L, /4

m Case 1: pure tension/compression along OX iaoi 1 = 1}, 1) = u], u} = u?

Ex.: \ =0: &n= 4\('/3 )( Uy — U, ) 0/Ly, Eyy = Vay = 0

m Case 2: pure tension/compression along OY iaoi 1} = u}, 1 = i}, u = u}

S | _ VU — .
Ex:u;=06: ¢, =g0—x)wu;—u)=0/L, &x=yy=0

Case 1 Case 2
y
® ® PN
L,V
@)
o I © x O s O ®
Reference configuration Current configuration
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Infinitesimal strain in 2D: example II

m Rectangular triangle x; = x3, y1 = y», A= L,L, /4

m Case 1: pure tension/compression along OX iaoi 1 = 1}, 1) = u], u} = u?

Ex.: \ =0: &n= 4\('/3 )( Uy — U, ) 0/Ly, Eyy = Vay = 0

m Case 2: pure tension/compression along OY iaoi 1} = u}, 1 = i}, u = u}
Ex:uy=06: &= 0—x)u—u))=06/L, &x=yy=0

m Case 3: pure shear in XY iaoi 1} = u}, 1) = 1]
Ex.: 1! =6, uy =0y

2
1 x X b}/ b
Vxy = IA ((ys - LVl)(”lz/ - ”'11/) + (2 = x1)(u3 — ”‘1)) = LT + LT\/’ Exx =&y =0
Case 1 Case 2 Case 3
Y J
[©) X
©) S g 1o
Ly
©) Qs
y
o L © x © R ® O
Reference configuration Current configuration
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Stress tensor

m In linear elasticity:

Residual stress field g

Initial strain field ¢
=

In self equilibrated system: g =*

lle}

g resulting in

With thermal strain field £,
e =a(T-ToH)L
=th =

wherea is the coefficient of thermal expansion (CTE), T and T are the
current and reference temperature fields, respectively.
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Stress: 2D isotropic elasticity

m Recall stress/strain relationship:
vE
Trva—m)TOLF 1€

m Stress (in Voigt notations): ¢ = [S]=[0w, o0y, 0yl

lis)

m Inplane stress 0.. = 0, €., = (e + €yy)
m In plain strain 0., = V(0. + 0yy), €22 = 0

m Stress/strain relationship: [S]; = [D]; [E];

m Matrix [D] in plane strain ¢.. = ¢, = ¢,. = 0:

E 1—v % 0
[D]; = ——————| Vv 1-v 0
1+v)(1-2v) o 0 1 -2v)/2"
® Matrix [D] in plane stress 0.. = 0. = 0,. =0, tr(Q = 1112\','(5,\.,\, + &)
1 v 0
E
[Dlj=1—>[v 1 0
Vo 0 a-v/2

“Factor 1/2 appears because )., was inserted in [E] instead of ¢,
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Stress: general case

Voigt notations in 3D case
m Stress tensor: ¢ — [S] = [04, 0y, 02, Oxy, Oyz, 022]

m Strain tensor: g - [E] = [E.\'.\'/ Eyyr €2z, Vayr Vyzr }/A'Z]T

m Hooke’s law: [S] = [D][E]
m Isotropic elasticity (two constants E, v):
1-v v v 0 0 0
v 1-v v 0 0 0
[D]; = E v v 1-v 0 0 0
T d+v)a-2v)| O 0 0 (1-2v)/2 0 0
0 0 0 0 (1-2v)/2 0
0 0 0 0 0 (1-2v)/2

m Cubic elasticity (3 constants E, v, 1):

Ci1 Cip Cpo 0 0

Co Ciy Cpp O 0

_[{C2 Cp Cn O 0
DLi=1"%" 09 0 cu 0 0

0 0 0 0 Cya

0 0 0 0 0
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Stress: general case 11

Voigt notations in 3D case
m Transversely isotropic elasticity (5 constants E1, E,, v1, Vs, [i1):

Cn Cnp Cs O 0 0
Cop Cnp Ciz 0 0 0
_|{Ciz Cus 0 0 0
Pli=1" 0 0 cu o 0
0 0 0 0 Cys 0

0 0 0 0 0 (Cu-Cp)2

m Orthotropic elasticity (9 constants E.., E,y, E=-, Vay, Vyz, Vaz, Ly, Hyz Haz):

Cn Cnp Cs O 0 0
Co Cpn Cy O 0 0
_|Ci3 Cx Gz O 0 0
Pli=10" 0 0 cu 0 o0
0 0 0 0 Cs 0

0 0 0 0 0 Ceg
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Strain/Stress: spherical part

1
Spherical part of a tensor = gtr(é)i

m If the strain tensor can be presented as ¢ = 1 tr(¢)L,
then only volume change happens at this location AV/V = tr(e)

m If the stress tensor can be presented as ¢ = %tr(g)l,
then the stress state is pure hydrostatic compression under pressure
p = —tr(o)/3
-» 0 0
0 -p O
0 0 -p
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Strain/Stress: deviatoric part
1

Deviatoric part of a tensor = A — itr(f:\)i

m If the strain tensor does not have spherical part ¢ = £ — Str(¢)L,
then no volume change happens at this location AV/V, =0 only the

shape changes, Ex.:
€ 0 0 0 ¢ 0
e~|0 —-0.5¢ 0 |1, e~le 0 O
o 0 -0.5¢ ~ o 0 o0
g=¢-;tr(@L

m If the stress tensor is presented only by deviatoric part
then the stress state is pure shear:

-0 0 0
0 20 0], o~
0 0 -0 -

0 0y O
Oxy
Oyz

I}

=e+tr(e)l/3,0=s+tr(0)l/3

m In general both parts are present: ¢
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Strain/Stress: elastic relationships

AV
m Recall: g=e+ Wi, g

[~

P

[lw

m For deviatoric part in linear isotropic elasticity

E

=2
1+v2 274

IS

s= [

E .
where 1 = 3T+ 7) is called shear modulus.

m For spherical parts

-2v 1-2
tr(e) = ! EZ‘ tr(o) = —3( 3 V)
then P
_ldl:3(1—21’) o _Vl: E _
V dp E dav - 3(1-2v)

is called bulk modulus.

E
where K = 30 —2)
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Stress and reactions: element’s equilibrium II

1
m Work of nodal forces on virtual nodal displacements = 7 f. - ou

1

1
m Work density of distributed volumetric forces = = f - ou,
2Ly U=

g:b

N =

m Corresponding density of elastic energy =
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Stress and reactions: element’s equilibrium II

1
m Work of nodal forces on virtual nodal displacements = 5 f - ou,

1
m Work density of distributed volumetric forces = = f - ou,
2Ly U=

Corresponding density of elastic energy = = ¢ : 0

||
N =

Stored elastic energy equals this work:

fg:ng:nggi+fV‘f\/~(5ng

ve
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Stress and reactions: element’s equilibrium II

1
m Work of nodal forces on virtual nodal displacements = 5 f - ou,
1
m Work density of distributed volumetric forces = > fv - ouy,

g:b

N =

m Corresponding density of elastic energy =
m Stored elastic energy equals this work:

fg:ng:nggi+fV‘f\/~(‘5ng

b8
m Elastic stress 0 =*C : (£ — £,) = [S]=[DI([E] - [Ew])
m Strain e ~ [E] = [B] [u], vol. force density f ~[f,] = LFx AL 21,

volumetric virt. displacement du,, ~ [N]"5[u]:

f {(ID] ([E] - [Ew])" S[E] - [£,]" [Ni]" 6[ul} dV = [£]" 6[u]

ve
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Stress and reactions: element’s equilibrium II

1
m Work of nodal forces on virtual nodal displacements = 5 f - ou,
1
m Work density of distributed volumetric forces = > fv - ouy,

g:b

N =

m Corresponding density of elastic energy =
m Stored elastic energy equals this work:

fg:ng:nggi+fV‘f\/~(‘5ng

e

m Elastic stress o :4g : (é_é,;) = [S] = [D] ([E] = [Ew])

m Straine ~ [E] = [B]"[u], vol. force densityfﬂ ~[f1=f5 £ 1,
volumetric virt. displacement du,, ~ [N]"5[u]:

f {(ID] ([E] - [Ew])" S[E] - [£,]" [Ni]" 6[ul} dV = [£]" 6[u]

Vi
[u] f [B] [D][B] 4V é[u]—l j (£ [Ni]" + [Equ]" [DI[B]) dV|6[u] = [£]"6[u]

ve ve
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Stress and reactions: element’s equilibrium II

m Balance of virtual work for a single element:

[u] ofu] - o[u] = [£]" 6[u]

[ (167080 + (B DI (B ) @V

e

f [B] [D][B" 4V
“/U

m For arbitrary virtual displacements o[u]:

= [f]

f [BI" [D][BldV
e

[u] + [ [( —[£,1"[N;] - [B][D] [Eth]) dv
b

——
[Ke] [fientJ [fixt]

m System of equations linking displacements and reactions:

(K] [u®] + [, ] = [fex]
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Assembly

m At every internal node the total force should be zero:

Y lE] =0

summation over all elements ¢ attached to this node.

m Summation over all nodes gives:

(K] [u] + [fine] = 0
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Dirichlet boundary conditions

Dirichlet BC

m Use penalty method to enforce prescribed displacements: array
[uo] = [00 Ujo 0...0 Ujo 0]
m Diagonal selection matrix [I°] with ones at prescribed degrees of

freedom (DOFs):
[ i j
—_ ——

0 ... 0 0 0 ... 0 0 0
0 0 0 0

1] =10 0 1 0 0 0 0 )i
0 0 0 0
0 ... 0 0 0 ... 0 0 0
0 ... 0 0 0 ... 0 1 0 I
0 ... 0 0 0 ... 0 0 0

m Then the system is changed to
([K] + € [I°]) [u] = (] = [I°]) ([fext] — [fine]) + €[uo]
where ¢ is the penalty coefficient such that € > max(Kjj), and [I] is the
identity matrix.
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Neumann boundary conditions

Neumann BC
m Surface traction £, at Iy

m Virtual work of surface traction
over one element:

l"‘/.

m Then

[£,] = f [t,]'[N]" dT

T
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Discrete system of equations

m Balance of virtual work for the whole body:

[1er i1 f[to] NJ' dr+

f (I61'[N:] + [B][D] [Ews]) 4V

S —

v
— [ —
(K] [foxe] ~[fine]
m System of equations linking displacements and reactions:

K] [u] = [fex] — [find |

m Stiffness matrix [K]
m Vector of degrees of freedom (DOFs) [u]
m Right hand term (vector of forces) [fex] — [fint
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Different approach: virtual work formulation I

m Arbitrary virtual displacements
ou

m Strong form: V- ¢ +fV =0+BCs

m Take a product with virtual
displacements and integrate
over ()

f(V~g~(5g+fv~5g)d\/:0

Q

m Replacement: V-g-ou=V- (g . oy) —g:Vou

m Following Gauss-Ostrogradsky theorem: f V- (e)dV = f n-(e)dS
v

S

fg~g~bgd5+f(fv-by—c:r:bg)dl/:()

Q) Q

m So
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Different approach: virtual work formulation II

continue. . .

m Weak form

fﬂ.g.(‘igL15+f(f\/ ou-g: 62) dv =0

Q Q

m Non-trivial Neumann boundary
conditions at I's

oQ
fg:(‘ing:ftU-<‘)'udS+ff oudVv
= = =0 "= Ly —
0

Q I,

m Remark I: in the strong form u should be C?>-smooth, in the weak form u
should be only square-integrable as well as its first derivative, thus
u € H', i.e. from Sobolev’s functional space of the first order. In
addition u = u, at T,

= Remark II: for linear elasticity, the stress tensor” o = =* C:e—¢ H)

f£:4(:3:b£d\/:f§o-0gd5+f(f ‘Cie, ) oudv
Q

Q Iy
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Different approach II: potential energy

Remark III:
m If the system remains linear (boundary conditions, linear elasticity)

m The principle of virtual work is equivalent to the minimum of the total
potential energy

m (Potential energy} = {Internal energy} - {Work of all forces}

M, ty, uy) = %fg:g‘dv—ft(yydf—f[v-zd\/
Q

Q I

I1
m Stationary point of the total potential energy % = 0 for given loads

t
on_ [ . 9 _
W) (:Z.a—dV—ftodr—fjjvdV_O
3 Q

207
u
Q Iy

Uy:

m The same equation
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Evaluation of the integrals

m Weak form (recall):

f[B]T [D][B]dV
v

[u] = f[tolT[N]Terr
Iy

f( [£,]"[Ni] + [B][D][Een]) 4V
v

[ —
[ —

(K] [Fext] —[fint]

b
m Exact integration: f f(x)dx = F(b) — F(a) (not always possible)

a
m Approximate integration (trapezoidal rule, Simpson’s rule)

4 Ngp
m Gauss quadrature: j fx)dx = ZI wif (x7)
=1

m Gauss points x; with 7 = 1, Ngp
m Integration is exact for polynomials of order 2N¢p — 1
m Tabulated data for x;, w; (1D, 2D, 3D integration)
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Evaluation of the integrals: example

m Function f(x) = cos(rx?/2)

—  cos(na® /2)
B Ngp = 1: error ~ 28.22 % — =sinfra)
B Ngp = 2: error ~ 11.04 % 9
B Ngp =3: error = 1.14 %
B Ngp =4: error = 0.14 % 0.8
B Ngp = 5: error = 0.01 %

m Function f(x) = x sin(7x)

N¢p = 1: error = 100.00 %
Ngp = 2: error = 76.05 %

N¢p = 3: error = 12.07 % 02
Ngp = 4: error = 0.80 %
N¢p = 5: error = 0.03 %

0.4]
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Evaluation of the integrals II

m Consider: f[B] [D][B]dV = f[B [D][B]d

m Transpose to the parametric space (2D example)

1 1
f [B(&, )" [D][B(E, m]dV = f f [B(&, )" [D][B(E, )] det([J ) dédn
Ve

-1 -1
m Finally:

. N. Ngp
K] = _I[B]T [D][B]dV = Zl CI/V_“II[B"(;?CP,r)GI,)]T [D1[B®(Ep, Ngp)] det([ Jé(xXigp, n6p) Dwg,p
v e=1GP=

V.A. Yastrebov Lecture 1 69/76



Evaluation of the integrals III

m If N(E, zlz) = P, is a polynomial of order p, then [J | = Pgim(y-1),
[B] _ 2(p-1)

 Qdim(p-1)
m Remark I: Gauss quadrature is exact for p = 1 and approximate if p > 1.

m Remark II: Stress and strains are exactly evaluated only in Gauss
points, in all other points they are extrapolated/interpolated

m Remark III: 1 GP for linear triangle, 3 GP for quadratic triangle, 4 GP
for bilinear quadrilateral element, 9 GP for quadratic quadrilateral, etc.

m Remark I'V: Underintegration may lead to zero-energy deformation
modes (which are often stabilized in FE software)
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Evaluation of the integrals: quadrilateral 2D element

m Shape functions: Parameteric space

Ni=3(1-91-1n), Ny=31+&1-n) n

Ny=la+oa+n, N=ta-oa+p AP
m Shape function derivatives:

NLé:*i(l*U)r N2,¢:%(1*7]) 3 T

N3e=3(1+17), Nye=-31+n)

Niy=-11-8), Nyy=-3(1+9)

Nyy=10+8), Niy=11-¢8) CHEEE e
m Determinant of Jacobian (dA = det[] |d&dn): Physical space

det([J]) =
15 [ =2 = x1) + (1 + (3 = )N+ E)y3 —y2) + (1= O)ya —y1))—

(T =m2 —y1) + @+ Yz = ya) (1 + E)(x3 = x0) + (1 = E)xg — x7))]

@
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Evaluation of the integrals: quadrilateral 2D element

m Shape functions: Parameteric space

Ni=3(1-91-1n), Ny=31+&1-n)

Ny=la+oa+n, N=ta-oa+p AP
m Shape function derivatives:

Né:,,(l,n) N2,¢:%(1*7]) 3 T

N = Jt(l +1), Nyz=-3(1+71)

Niy=-31-8), Npy=-3(1+8)

Nyy=10+8), Niy=11-¢8) CHEEE e
m Determinant of Jacobian (dA = det[] |d&dn): Physical space

det([J]) =

= (=M = x1) + A+ s = x))((1+E)Y3 — y2) + (1 = E)ya = y1))—
= (A =ny2 —y1) + A+ Yz =y + 3 — x2) + (1 = )(xg — x7))]
m Warning: to ensure det([ ] |) > 0 the element
should remain convex
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Problem: Find [u] such that | [K] [u] = [f] |, i.e. [u] = [K] ' []

m Iterative solvers
The solution is approached iteratively, does not require much memory,
restrictions to matrix type, sensitive to matrix conditioning, a preconditioner is
often needed.

m Gauss-Seidel method (GS)

m Conjugate gradient method (CG)

m Generalized minimum residual method (GMRES)
]

m Direct solvers
The solution is provided directly, no restrictions on matrix type, less sensitive
to matrix conditioning, based on LU or Cholesky decomposition

m Frontal
m Sparse direct
...
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m 3 barsin 2D

m 3 elements, 3 nodes, 6 dofs

V.A. Yastrebov Lecture 1 74/76



References

m O.C. Zienkiewicz & R.L. Taylor. The Finite Element Method: vol 1. The
Basis, vol 2. Solid Mechanics, Butterworth-Heinemann (2000)

m O.C. Zienkiewicz, & R.L. Taylor. The finite Element Method for Solid
and Structural Mechanics. Butterworth-Heinemann (2005)

m KJ. Bathe. Finite Element Procedures, Prentice Hall (1996)
m P. Wriggers. Nonlinear Finite Element Methods. Springer (2008)

m M.A. Crisfield. Non-linear Finite Element Analysis of Solids and
Structures. Vol 1 & 2, Wiley (1991)

V.A. Yastrebov Lecture 1 75/76



Thank you for your attention!






