Computational Approach to Micromechanical Contacts Lecture 1. Introduction to the Finite Element Method

Vladislav A. Yastrebov

MINES ParisTech, PSL Research University, Centre des Matériaux, CNRS UMR 7633, Evry, France

> @ Centre des Matériaux September 2017

Outline

- **1** Elements of tensor algebra
- **2** Continuum mechanics: recall

3 Finite element method

- 1 Main idea of the FEM
- 2 Finite element and shape functions
- 3 Strain tensor
- 4 Stress tensor
- 5 Reactions
- 6 Boundary conditions
- 7 Balance of virtual work
- 8 Integration
- 9 Solver types
- 10 Example
- 11 References

Elements of tensor algebra

Tensor notations

Scalars
$$\in \mathbb{R}$$
:
 a, α, C

Component notations

• Scalars $\in \mathbb{R}$: a, α, C

Tensor notations

Scalars $\in \mathbb{R}$: a, α, C

• Vectors $\in \mathbb{V}_{dim}$: $\underline{a}, \underline{\tau}$

Component notations

- Scalars $\in \mathbb{R}$: a, α, C
- Vectors^{*} $\in \mathbb{R}^{\dim}$: a_i, τ_j with $a = a_i e^i$ and $a_i = e^i \cdot a$

*Component notations require introducing a basis \underline{e}^i , $i = 1 \dots \dim$ and a dual basis \underline{e}_j such that $\underline{e}_j \cdot \underline{e}^i = \delta^i_j$, where $\delta^i_j = 0$ if $i \neq j$ and $\delta^i_j = 1$ if i = j.

Tensor notations

- Scalars $\in \mathbb{R}$: a, α, C
- Vectors $\in \mathbb{V}_{\text{dim}}$: $\underline{a}, \underline{\tau}$
- Second-order tensors $\in \mathbb{T}^2_{\dim}$: $\underline{\underline{A}}, \underline{\underline{\sigma}}$

Component notations

- Scalars $\in \mathbb{R}$: a, α, C
- Vectors^{*} $\in \mathbb{R}^{\dim}$: a_i, τ_j with $a = a_i e^i$ and $a_i = e^i \cdot a$
- Second-order tensors $\in \mathbb{R}^{\dim} \times \mathbb{R}^{\dim}$: A_{ij}, σ_{kl}

with
$$\underline{\underline{A}} = A_{ij}\underline{\underline{e}}^i \otimes \underline{\underline{e}}^j$$
 and $A_{ij} = \underline{\underline{e}}_i \cdot \underline{\underline{A}} \cdot \underline{\underline{e}}_j$

*Component notations require introducing a basis \underline{e}^i , $i = 1 \dots$ dim and a dual basis \underline{e}_j such that $\underline{e}_j \cdot \underline{e}^i = \delta^i_j$, where $\delta^i_j = 0$ if $i \neq j$ and $\delta^i_j = 1$ if i = j.

Tensor notations

- Scalars $\in \mathbb{R}$: a, α, C
- Vectors $\in \mathbb{V}_{\text{dim}}$: $\underline{a}, \underline{\tau}$
- Second-order tensors $\in \mathbb{T}^2_{\dim}$: $\underline{\underline{A}}, \underline{\underline{\sigma}}$
- Forth-order tensors $\in \mathbb{T}^4_{\dim}$:

Component notations

- Scalars $\in \mathbb{R}$: a, α, C
- Vectors^{*} $\in \mathbb{R}^{\dim}$: a_i, τ_j with $a = a_i e^i$ and $a_i = e^i \cdot a$
- Second-order tensors $\in \mathbb{R}^{\dim} \times \mathbb{R}^{\dim}$: A_{ij}, σ_{kl}

with $\underline{\underline{A}} = A_{ij}\underline{\underline{e}}^i \otimes \underline{\underline{e}}^j$ and $A_{ij} = \underline{\underline{e}}_i \cdot \underline{\underline{A}} \cdot \underline{\underline{e}}_j$

■ Forth-order tensors $\in \mathbb{R}^{\dim} \times \cdots \times \mathbb{R}^{\dim}$: C_{ijkl} with ${}^{4}\underline{C} = C_{ijkl}\underline{e}^{i} \otimes \underline{e}^{j} \otimes \underline{e}^{k} \otimes \underline{e}^{l}$ and $C_{ijkl} = \underline{e}_{l} \cdot (\underline{e}_{k} \cdot (\underline{e}_{j} \cdot (\underline{e}_{i} \cdot {}^{4}\underline{C})))$

*Component notations require introducing a basis \underline{e}^i , $i = 1 \dots$ dim and a dual basis \underline{e}_j such that $\underline{e}_j \cdot \underline{e}^i = \delta^i_j$, where $\delta^i_j = 0$ if $i \neq j$ and $\delta^i_j = 1$ if i = j.

V.A. Yastrebov

 ${}^{4}\underline{C}$

Lecture 1

Tensor notations

- Transposition $\underline{C} = \underline{D}^{\mathsf{T}}, \left(\underline{A} \cdot \underline{B}\right)^{\mathsf{T}} = \underline{B}^{\mathsf{T}} \cdot \underline{A}^{\mathsf{T}}$
- Symmetric tensor $A^{\mathsf{T}} = A$
- Antisymmetric* tensor $B^{\mathsf{T}} = -B$
- Tensor decomposition $\underline{C} = \underline{C}^{S} + \underline{C}^{A}$ with

Component notations

Transposition

 $C_{ii} = D_{ii}$

- Symmetric tensor $A_{ii} = A_{ii}$
- Antisymmetric tensor $B_{ii} = -B_{ii}$
- Tensor decomposition $C_{ij} = C_{ii}^S + C_{ii}^A$ with $\underline{C}^{S} = \frac{1}{2} (\underline{C} + \underline{C}^{\mathsf{T}}), \ \underline{C}^{A} = \frac{1}{2} (\underline{C} - \underline{C}^{\mathsf{T}}) \qquad C_{ii}^{S} = \frac{1}{2} (C_{ii} + C_{ji}), \ C_{ii}^{A} = \frac{1}{2} (C_{ij} - C_{ji})$

Examples

- Identity tensor (symmetric) $\underline{I} = \delta^{ij} \underline{e}_i \otimes \underline{e}_i = \underline{e}_i \otimes \underline{e}_i$
- Rotation tensor (asymmetric = symmetric($\neq 0$) + antisymmetric($\neq 0$)):

	$\cos(\phi)$	$\sin(\phi)$	[0	$\left[\cos(\phi)\right]$	0	[0	[0	$\sin(\phi)$	[0
<i>Q</i> ∼	$-\sin(\phi)$	$\cos(\phi)$	0 =	0	$\cos(\phi)$	0	$+ - \sin(\phi)$	0	0
	0	0	1]	0	0	1]	0	0	1]

*Antisymmetric \equiv skew-symmetric

V.A. Yastreboy

Lecture 1

Tensor algebra: products

Tensor notations

- Mutliplication by a scalar $\alpha \underline{A} = \underline{A} \alpha$
- Scalar product*
 - $a \cdot b = c$ $a \cdot \underline{A} = b$ $\underline{A} \cdot \underline{B} = \underline{C}$
- Tensor contraction
 - $\underline{A} : \underline{B} = c$ $\underline{A} \cdot \cdot \underline{B} = d$

- **Component notations**
 - Mutliplication by a scalar $\alpha A_{ii} = A_{ii}\alpha$
 - Scalar (dot) product**

 $a_i b^i = c$

 $a_i A^{ij} = b^j$

 $A_{ii}B^{jk} = C_i^k$

- Tensor contraction
- $A_{ij}B_{ij} = c$ $A_{ii}B_{ii} = d$
- Remark:

$$\underline{\underline{A}} : \underline{\underline{B}} = \underline{\underline{A}}^{S} : \underline{\underline{B}}^{S} + \underline{\underline{A}}^{A} : \underline{\underline{B}}^{A} \text{ and } \underline{\underline{A}}^{S} : \underline{\underline{B}}^{A} = \underline{\underline{A}}^{A} : \underline{\underline{B}}^{S} = 0$$
$$\underline{\underline{A}} \cdot \cdot \underline{\underline{B}} = \underline{\underline{A}}^{S} \cdot \cdot \underline{\underline{B}}^{S} + \underline{\underline{A}}^{A} \cdot \cdot \underline{\underline{B}}^{A} \text{ and } \underline{\underline{A}}^{S} \cdot \cdot \underline{\underline{B}}^{A} = \underline{\underline{A}}^{A} \cdot \cdot \underline{\underline{B}}^{S} = 0$$

**Scalar product* \equiv *dot product* \equiv *inner product*.

** We assume Einstein summation by repeating index, i.e. $a_i A^{ij} = \sum_{i=1}^{\dim} a_i A^{ij}$.

Tensor algebra: products II & invariants

Tensor notations

• Vector product* $\underline{a} \times \underline{b} = \underline{c}$

such that $\underline{c} \cdot \underline{a} = 0$, $\underline{c} \cdot \underline{b} = 0$

- Tensor product**
 - $\underline{a} \otimes \underline{b} = \underline{\underline{C}}$ $\underline{\underline{A}} \otimes \underline{\underline{B}} = {}^{4}\underline{\underline{C}}$
- Invariants: $I_1(\underline{\underline{A}}) = \operatorname{tr}(\underline{\underline{A}}) = \underline{\underline{I}} : \underline{\underline{A}}$ $I_2(\underline{\underline{A}}) = \frac{1}{2} \left[\operatorname{tr}(\underline{\underline{A}})^2 - \operatorname{tr}(\underline{\underline{A}}^2) \right]$ $I_3(\underline{\underline{A}}) = \operatorname{det}(\underline{\underline{A}})$

Component notations

Vector product*

$$c^i = \epsilon_{ijk} a^j b^k$$

with ϵ_{ijk} Levi-Civita symbol

$$\epsilon_{ijk} = \begin{cases} 1, & \text{if } (i, j, k) = (1, 2, 3) \text{ or } (2, 3, 1) \text{ or } (3, 1, 2) \\ -1, & \text{if } (i, j, k) = (2, 1, 3) \text{ or } (1, 3, 2) \text{ or } (3, 2, 1) \end{cases}$$

0, otherwise.

Tensor product

$$a_i b_j = C_{ij}$$

 $A_{ij}B_{kl}=C_{ijkl}$

Invariants: $I_1(\underline{\underline{A}}) = A_{ii} = A_{11} + A_{22} + A_{33}$

$$I_2(\underline{\underline{A}}) = \dots$$
$$I_3(\underline{\underline{A}}) = \dots$$

*Defined only for dim = 3, also called cross product. **Also called outer product.

Tensor algebra: deviatoric & spherical parts

Tensor notations

- Spherical part of tensor <u>A</u>
 - $\operatorname{Sp}(\underline{\underline{A}}) = \frac{1}{3}\operatorname{tr}(\underline{\underline{A}})\underline{\underline{I}}$
- Deviatoric part of tensor <u>A</u>

 $\mathrm{Dv}(\underline{\underline{A}}) = \underline{\underline{A}} - \frac{1}{3}\mathrm{tr}(\underline{\underline{A}})\underline{\underline{I}}$

Component notations

- Spherical part of tensor <u>A</u>
 - $\operatorname{Sp}(\underline{\underline{A}}) = \frac{1}{3}(A_{kk})\delta_{ij}$
- Deviatoric part of tensor <u>A</u>

$$\mathrm{Dv}(\underline{\underline{A}}) = A_{ij} - \frac{1}{3}(A_{kk})\delta_{ij}$$

Tensor decomposition

$$\underline{\underline{A}} = \operatorname{Sp}(\underline{\underline{A}}) + \operatorname{Dv}(\underline{\underline{A}})$$

Remark: for an antisymmetric tensor <u>B</u>^A

$$\operatorname{Sp}(\underline{\underline{B}}^{A}) = 0 \implies \underline{\underline{B}}^{A} = \operatorname{Dv}(\underline{\underline{B}}^{A})$$

Tensor algebra: principal values

■ Principal values of a linear operator <u>A</u>:

$$\underline{\underline{A}} \cdot \underline{\underline{u}} = \lambda \underline{\underline{u}} \quad \Leftrightarrow \quad \left(\underline{\underline{A}} - \lambda \underline{\underline{I}}\right) \cdot \underline{\underline{u}} = 0$$

If $\underline{\underline{A}} = \underline{\underline{A}}^{S}$ for dim = 3 then exist three real λ_{i} and corresponding $\underline{\underline{u}}_{i}$ called eigen values and eigen vectors of operator $\underline{\underline{A}}$, respectively. Moreover, for $i \neq j$, $\underline{\underline{u}}_{i} \cdot \underline{\underline{u}}_{j} = 0$.

To find λ_i we solve

$$I_{3}(\underline{\underline{A}}) - I_{2}(\underline{\underline{A}})\lambda + I_{1}(\underline{\underline{A}})\lambda^{2} - \lambda^{3} = 0$$

Then tensor can be rewritten in its eigen basis:

$$\underline{\underline{A}} = \lambda_1 \underline{\underline{u}}_1 \otimes \underline{\underline{u}}_1 + \lambda_2 \underline{\underline{u}}_2 \otimes \underline{\underline{u}}_2 + \lambda_3 \underline{\underline{u}}_3 \otimes \underline{\underline{u}}_3$$

and $\operatorname{tr}(\underline{A}) = \lambda_i |\underline{u}_i|^2$.

Continuum Mechanics: Recall

Deformable medium

- Consider change in positions of points with time t
- Consider two states: $t = t_0$ (reference) and $t = t_1$ (current configurations)
- Point \underline{X} from the reference configuration is labeled \underline{x} in the current configuration
- Displacement vector between t_0 and t_1 is $\underline{u} = \underline{x} \underline{X}$

Deformable medium

- Consider change in positions of points with time t
- Consider two states: $t = t_0$ (reference) and $t = t_1$ (current configurations)
- Point \underline{X} from the reference configuration is labeled \underline{x} in the current configuration
- Displacement vector between t_0 and t_1 is $\underline{u} = \underline{x} \underline{X}$

Deformable medium

- Consider change in positions of points with time t
- Consider two states: $t = t_0$ (reference) and $t = t_1$ (current configurations)
- Point \underline{X} from the reference configuration is labeled \underline{x} in the current configuration
- Displacement vector between t_0 and t_1 is $\underline{u} = \underline{x} \underline{X}$

Deformation tensor

- Transformation gradient $\underline{F} = \frac{\partial \underline{x}}{\partial X} = \frac{\partial (\underline{X} + \underline{u})}{\partial X} = \underline{I} + \frac{\partial \underline{u}}{\partial X} = \underline{I} + \underline{H}$
- Cauchy-Green right tensor $\underline{\underline{C}} = \underline{\underline{E}}^{\mathsf{T}} \cdot \underline{\underline{E}}$
- Green-Lagrange deformation tensor $\underline{\underline{E}} = \frac{1}{2} \left(\underline{\underline{C}} \underline{\underline{I}} \right) = \underline{\underline{H}}^{S} + \frac{1}{2} \underline{\underline{H}}^{\mathsf{T}} \cdot \underline{\underline{H}}$

• For $H_{ij} \ll 1$, $\underline{\underline{E}} \approx \underline{\underline{\underline{H}}}^{S}$ and we obtain a tensor of small deformations

$$\underline{\underline{\varepsilon}} = \underline{\underline{H}}^{S} = \frac{1}{2} \left[\frac{\partial \underline{u}}{\partial \underline{X}} + \left(\frac{\partial \underline{u}}{\partial \underline{X}} \right)^{\mathsf{T}} \right] = \frac{1}{2} \left(\nabla \underline{u} + \left(\nabla \underline{u} \right)^{\mathsf{T}} \right)^{\mathsf{T}}$$

V.A. Yastrebov

Lecture 1

Stress tensor and Hooke's law

Hooke's law in uniaxial test:

$$\sigma_{xx} = E\varepsilon_{xx}$$

$$F = ku \quad \Leftrightarrow \quad \sigma_{xx}A = \frac{EA}{L_0}u = EA\frac{L - L_0}{L_0}$$

 In general case stress and strain are related through a linear operator (fourth-order elasticity tensor ⁴C):

$$\underline{\underline{\sigma}} = {}^{4}\underline{\underline{C}} : \underline{\underline{\varepsilon}}$$

Inversely the strain can be found through a stiffness tensor ⁴<u>S</u>:

$$\underline{\underline{\varepsilon}} = {}^{4}\underline{\underline{S}} : \underline{\underline{\sigma}}$$

Hooke's law for isotropic solids: stress

In the case of isotropic material the Hooke's law reduces to:

 $\underline{\underline{\sigma}} = \lambda \operatorname{tr}(\underline{\underline{\varepsilon}})\underline{\underline{I}} + 2\mu \underline{\underline{\varepsilon}},$

with λ , μ being Lamé coefficients:

$$\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}, \quad \mu = \frac{E}{2(1+\nu)}$$

with Young's modulus *E* and Poisson's ratio ν .

In the component form it reads:

 $\sigma_{ij} = \lambda(\varepsilon_{kk})\delta_{ij} + 2\mu\varepsilon_{ij}$

In the matrix form:

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{bmatrix} = 2\mu \begin{bmatrix} \lambda \operatorname{tr}(\underline{\varepsilon})/(2\mu) + \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{12} & \lambda \operatorname{tr}(\underline{\varepsilon})/(2\mu) + \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{13} & \varepsilon_{23} & \lambda \operatorname{tr}(\underline{\varepsilon})/(2\mu) + \varepsilon_{33} \end{bmatrix}$$
V.A. Yastreboy Lecture 1 19/

Hooke's law for isotropic solids: stress

In the case of isotropic material the Hooke's law reduces to:

 $\underline{\underline{\sigma}} = \lambda \mathrm{tr}(\underline{\underline{\varepsilon}}) \underline{\underline{I}} + 2\mu \underline{\underline{\varepsilon}},$

with λ , μ being Lamé coefficients:

$$\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}, \quad \mu = \frac{E}{2(1+\nu)}$$

with Young's modulus *E* and Poisson's ratio ν .

In the component form it reads:

 $\sigma_{ij} = \lambda(\varepsilon_{kk})\delta_{ij} + 2\mu\varepsilon_{ij}$

In the matrix form:

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{bmatrix} = 2\mu \begin{bmatrix} v \operatorname{tr}(\underline{\varepsilon})/(1-2\nu) + \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{12} & v \operatorname{tr}(\underline{\varepsilon})/(1-2\nu) + \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{13} & \varepsilon_{23} & v \operatorname{tr}(\underline{\varepsilon})/(1-2\nu) + \varepsilon_{33} \end{bmatrix}$$
strebov Lecture 1 2076

Hooke's law for isotropic solids: strain

Strain as a function of stress:

$$\underline{\underline{\varepsilon}} = \frac{1+\nu}{E} \underline{\underline{\sigma}} - \frac{\nu}{E} \operatorname{tr}(\underline{\underline{\sigma}}) \underline{\underline{I}} \,.$$

In the component form it reads:

$$\varepsilon_{ij} = \frac{1+\nu}{E}\sigma_{ij} - \frac{\nu}{E}\sigma_{kk}\delta_{ij}$$

In the matrix form:

$$\begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{12} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{13} & \varepsilon_{23} & \varepsilon_{33} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} (1+\nu)\sigma_{11} - \nu \text{tr}(\underline{\sigma}) & (1+\nu)\sigma_{12} & (1+\nu)\sigma_{13} \\ (1+\nu)\sigma_{12} & (1+\nu)\sigma_{22} - \nu \text{tr}(\underline{\sigma}) & (1+\nu)\sigma_{23} \\ (1+\nu)\sigma_{13} & (1+\nu)\sigma_{23} & (1+\nu)\sigma_{33} - \nu \text{tr}(\underline{\sigma}) \end{bmatrix}$$

Hooke's law for isotropic solids: strain

Strain as a function of stress:

$$\underline{\underline{\varepsilon}} = \frac{1+\nu}{E} \underline{\underline{\sigma}} - \frac{\nu}{E} \operatorname{tr}(\underline{\underline{\sigma}}) \underline{\underline{I}} \,.$$

In the component form it reads:

$$\varepsilon_{ij} = \frac{1+\nu}{E}\sigma_{ij} - \frac{\nu}{E}\sigma_{kk}\delta_{ij}$$

In the matrix form:

$$\begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{12} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{13} & \varepsilon_{23} & \varepsilon_{33} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} (1+\nu)\sigma_{11} - \nu \text{tr}(\underline{\sigma}) & (1+\nu)\sigma_{12} & (1+\nu)\sigma_{13} \\ (1+\nu)\sigma_{12} & (1+\nu)\sigma_{22} - \nu \text{tr}(\underline{\sigma}) & (1+\nu)\sigma_{23} \\ (1+\nu)\sigma_{13} & (1+\nu)\sigma_{23} & (1+\nu)\sigma_{33} - \nu \text{tr}(\underline{\sigma}) \end{bmatrix}$$
$$= \frac{1}{E} \begin{bmatrix} \sigma_{11} - \nu(\sigma_{22} + \sigma_{33}) & (1+\nu)\sigma_{12} & (1+\nu)\sigma_{13} \\ (1+\nu)\sigma_{12} & \sigma_{22} - \nu(\sigma_{11} + \sigma_{33}) & (1+\nu)\sigma_{23} \\ (1+\nu)\sigma_{13} & (1+\nu)\sigma_{23} & \sigma_{33} - \nu(\sigma_{11} + \sigma_{22}) \end{bmatrix}$$

V.A. Yastrebov

22/76

Equilibrium of an infinitesimal element

 Infinitesimal strain tensor is symmetric and satisfies the compatibility conditions*:

 $\nabla \times \left(\nabla \times \underline{\underline{\varepsilon}} \right) = 0$

Stress tensor <u>g</u> should ensure equilibrium of infinitesimal element**:

Force balance: $\int_{S} \underline{n} \cdot \underline{\underline{\sigma}} dS = 0$

Momentum balance: $\int_{C} \underline{r} \times (\underline{n} \cdot \underline{\sigma}) dS = 0$

Following Gauss-Ostrogradsky theorem:

 $\int_{S} \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \, dS = \int_{V} \nabla \cdot \underline{\underline{\sigma}} \, dV = 0$ Since volume *V* can be arbitrary chosen, then

 $\nabla \cdot \underline{\underline{\sigma}} = 0$ everywhere in *V*.

*In case of a simply-connected solid. **In absence of volumetric forces.

Equilibrium of an infinitesimal element II

Second Newton's law:

 $m\underline{\ddot{u}} = \underline{f} \implies \rho\underline{\ddot{u}} = \frac{1}{V}\underline{f}$

 In presence of volumetric forces with density f_v the total force is given by:

 $\underline{f} = \int_{V} \underline{f}_{-V} dV + \int_{S} \underline{n} \cdot \underline{\underline{\sigma}} dS$

Then using the second Newton's law and Gauss-Ostrogradsky's theorem:

 $\int_{V} \left(\nabla \cdot \underline{\underline{\sigma}} + \underline{f}_{V} \right) dV = \int_{V} \rho \underline{\underline{u}} \, dV$

Since it is right for arbitrary *V*, then in every point of *V*:

$$\nabla \cdot \underline{\underline{\sigma}} + \underline{\underline{f}}_{V} = \rho \underline{\underline{\ddot{u}}}$$

Equilibrium of an infinitesimal element II

Equilibrium (3 equations):

 $\nabla \cdot \underline{\underline{\sigma}} + \underline{f}_{V} = \rho \underline{\underline{u}}$

In component form:

$$\begin{array}{l} \displaystyle \frac{\partial\sigma_{11}}{\partial x} + \frac{\partial\sigma_{12}}{\partial y} + \frac{\partial\sigma_{13}}{\partial z} + f_{V_x} = \rho\ddot{u}_x \\ \displaystyle \frac{\partial\sigma_{12}}{\partial x} + \frac{\partial\sigma_{22}}{\partial y} + \frac{\partial\sigma_{23}}{\partial z} + f_{V_y} = \rho\ddot{u}_y \\ \displaystyle \frac{\partial\sigma_{13}}{\partial x} + \frac{\partial\sigma_{23}}{\partial y} + \frac{\partial\sigma_{33}}{\partial z} + f_{V_z} = \rho\ddot{u}_z \end{array}$$

Deformable solid and boundary conditions

Notations:

- Consider a solid Ω with boundary ∂Ω
- Boundary is split into Γ_u and Γ_f : $\partial \Omega = \Gamma_u \cup \Gamma_f$
- At Γ_u displacements <u>u</u>₀(t, <u>X</u>) are prescribed (Dirichlet boundary conditions [BC]):

 $\underline{u} = \underline{u}_0$ at Γ_u

At Γ_f tractions <u>t</u>₀(t, <u>X</u>) are prescribed (Neumann BC):

 $\underline{\underline{\sigma}} \cdot \underline{\underline{n}} = \underline{\underline{t}}_0 \text{ at } \Gamma_f$ $\underline{\underline{\sigma}} \cdot \underline{\underline{n}} = 0 \text{ at } \Gamma_f^0$

Deformable solid and boundary conditions

Notations:

- Consider a solid Ω with boundary ∂Ω
- Boundary is split into Γ_u and Γ_f : $\partial \Omega = \Gamma_u \cup \Gamma_f$
- At Γ_u displacements <u>u</u>₀(t, <u>X</u>) are prescribed (Dirichlet boundary conditions [BC]):

 $\underline{u} = \underline{u}_0$ at Γ_u

At Γ_f tractions <u>t</u>₀(t, <u>X</u>) are prescribed (Neumann BC):

$$\underline{\underline{\sigma}} \cdot \underline{\underline{n}} = \underline{\underline{t}}_0 \text{ at } \Gamma_f$$
$$\underline{\underline{\sigma}} \cdot \underline{\underline{n}} = 0 \text{ at } \Gamma_f^0$$

Remarks:

- on the same boundary both BCs can be prescribed if they are orthogonal one to each other, i.e. $\underline{u}_0 \cdot \underline{t}_0 = 0$ (*ex.*: friction);
- a relationship between these BCs can be prescribed (Robin BC): $\underline{u}_0 = \underline{U} - k\underline{t}_0$ (*ex.*: Winkler's foundation).

Lecture 1

Elastic and quasistatic problem set-up

Equilibrium in absence of inertial forces

 $\nabla \cdot \underline{\underline{\sigma}} + \underline{f}_{-V} = 0 \quad (*)$

Consistutive relation:

 $\underline{\underline{\sigma}} = {}^{4} \underline{\underline{C}} : \underline{\underline{\varepsilon}}$

Strain tensor:

$$\underline{\underline{\varepsilon}} = \frac{1}{2} \left(\nabla \underline{u} + (\nabla \underline{u})^{\mathsf{T}} \right)$$

Boundary conditions:

$$\underline{\underline{u}} = \underline{\underline{u}}_0 \text{ at } \Gamma_u$$

$$\underline{\underline{\sigma}} \cdot \underline{\underline{n}} = \underline{\underline{t}}_0 \text{ at } \Gamma_f$$

$$\underline{\underline{\sigma}} \cdot \underline{\underline{n}} = 0 \text{ at } \Gamma_f^0$$

Problem:

find such field \underline{u} in Ω that satisfies equilibrium Eq. (*) and boundary conditions.

Finite Element Method

Main idea

- From continuous to discrete problem
- Split solid into finite elements $\Omega \to \Omega^h$ with $\Omega^h = \sum_a \Omega^h_e$
- All quantities are associated with this discretization: $\underline{u} \rightarrow \underline{u}^h, \underline{\sigma} \rightarrow \underline{\sigma}^h, \Gamma_f \rightarrow \Gamma_f^h, \underline{t}_0 \rightarrow \underline{t}_0^h, \dots$
- Search for <u>u^h</u> only in a finite number of points (nodes)
- Interpolate in between (within elements)
- Ensure (1) equilibrium of every element and (2) satisfaction of boundary conditions

(1)
$$\nabla \cdot \underline{\underline{g}}^{h} + \underline{f}^{h}_{-\nu} = 0$$
 in $\Omega_{e^{t}}^{h}, \forall e^{t}$
(2.a) $\underline{\underline{g}}^{h} \cdot \underline{\underline{n}}^{h} = \underline{\underline{t}}^{h}_{0}$ at Γ_{f}^{h}
(2.b) $\underline{\underline{u}}^{h} = \underline{\underline{u}}^{h}_{0}$ at Γ_{u}^{h}

Main idea

- From continuous to discrete problem
- Split solid into finite elements $\Omega \to \Omega^h$ with $\Omega^h = \sum_a \Omega^h_e$
- All quantities are associated with this discretization: $\underline{u} \rightarrow \underline{u}^h, \underline{\sigma} \rightarrow \underline{\sigma}^h, \Gamma_f \rightarrow \Gamma_f^h, \underline{t}_0 \rightarrow \underline{t}_0^h, \dots$
- Search for <u>u^h</u> only in a finite number of points (nodes)
- Interpolate in between (within elements)
- Ensure (1) equilibrium of every element and (2) satisfaction of boundary conditions

(1)
$$\nabla \cdot \underline{\underline{g}}^{h} + \underline{f}_{-v}^{h} = 0 \text{ in } \Omega_{e}^{h}, \forall e$$

(2.a) $\underline{\underline{g}}^{h} \cdot \underline{\underline{n}}^{h} = \underline{\underline{t}}_{0}^{h} \text{ at } \Gamma_{f}^{h}$
(2.b) $\underline{\underline{u}}^{h} = \underline{\underline{u}}_{0}^{h} \text{ at } \Gamma_{u}^{h}$

- Existence and uniqueness of the solution <u>u</u>^h_{*}
- When discretization-size tends to zero $h \rightarrow 0$, convergence to the solution of the continuum problem: $\underline{u}_{+}^{h} \xrightarrow{h \rightarrow 0} \underline{u}_{+}^{h}$

Standard discrete system

1 For any discrete system the quantities of interest [q] depend on system parameters [p] and on locally acting external parameters [e]

 $[\mathbf{q}]_i = [\mathbf{q}]_i \left([\mathbf{p}]_j, [\mathbf{e}]_i \right)$

2 In the first approximation this dependence is linear

$$q_{1} = K_{11}p_{1} + K_{12}p_{2} + \dots + K_{1N}p_{N} + A_{11}e_{1}$$

$$q_{2} = K_{21}p_{1} + K_{22}p_{2} + \dots + K_{2N}p_{N} + A_{22}e_{2}$$

$$\dots$$

$$q_{N} = K_{21}p_{1} + K_{22}p_{2} + \dots + K_{2N}p_{N} + A_{NN}e_{N}$$
3 In matrix form

$$[q]_i = [K]_{ij} [p]_j + [A]_{ii} [e]_i$$

4 Assuming that external parameters are of the same nature as quantities of interest ([A]_{ij} = [I]_{ij})

$$[\mathbf{q}]_i = [\mathbf{K}]_{ij} [\mathbf{p}]_j + [\mathbf{e}]_i$$

Discrete system in structural mechanics

Main quantities

- Quantities of interest [q] are, in general, forces [f]
- System parameters [p] are, in general, displacements [u]
- External parameters [e] are, in general, external forces [f]^{ext}

Main steps

1 Construct *stiffness matrix* and *nodal loads* vector

 $[\mathbf{K}]_{ij}^k, [\mathbf{f}]_i^k, \quad i, j \in 1, NN^k; k \in NE,$

where NN^k is the number of nodes of *k*-th element, NE is the number of elements.

2 Assemble them into the global stiffness matrix and global load vector

 $[\mathbf{K}]_{ij}, [\mathbf{f}]_i, \quad i, j \in 1, NN,$

where NN is the total number of nodes.

3 Add boundary conditions (for example Dirichlet and Neumann)

 $[\mathbf{f}]_k^{ext}, k \in BC_f; [\mathbf{u}]_l^0, l \in BC_u$

4 Solve linear system of equations

$$[\mathbf{K}]_{ij} [\mathbf{u}]_j = [\mathbf{f}]_i - [\mathbf{f}]_i^{ext} \quad \rightarrow \quad [\mathbf{u}]_{j*}$$

V.A. Yastrebov

Lecture 1

Shape functions

- Displacements are known at nodes: \underline{u}_{i}^{h} , i = 1, 4
- We need to know them inside the element
- Parametrize the inside with parameters $\{\xi, \eta\} \in [-1, 1]$
- Use *interpolation* or *shape* functions N_i(ξ, η) for position X

$$\underline{X}^{h}(\xi,\eta) = \sum_{i} \underline{X}^{h}_{i} N_{i}(\xi,\eta)$$

and displacement *u*:

 $\underline{\boldsymbol{u}}^{h}(\boldsymbol{\xi},\boldsymbol{\eta}) = \sum_{i} \underline{\boldsymbol{u}}_{i}^{h} N_{i}(\boldsymbol{\xi},\boldsymbol{\eta})$

 Remark: Find {ξ, η} from X is not always straigthforward (may result in a system of non-linear equations)

Shape functions

- Displacements are known at nodes: \underline{u}_{i}^{h} , i = 1, 4
- We need to know them inside the element
- Parametrize the inside with parameters $\{\xi, \eta\} \in [-1, 1]$
- Use *interpolation* or *shape* functions N_i(ξ, η) for position <u>X</u>

$$\underline{X}^{h}(\xi,\eta) = \sum_{i} \underline{X}^{h}_{i} N_{i}(\xi,\eta)$$

and displacement *u*:

 $\underline{\boldsymbol{u}}^{h}(\boldsymbol{\xi},\boldsymbol{\eta}) = \sum_{i} \underline{\boldsymbol{u}}_{i}^{h} N_{i}(\boldsymbol{\xi},\boldsymbol{\eta})$

 Remark: Find {ξ, η} from X is not always straigthforward (may result in a system of non-linear equations)

Shape functions II

Rules

- Node *i* has coordinates $\{\xi_i, \eta_i\}$
- Then $N_i(\xi_j, \eta_j) = \delta_{ij}$
- Partition of unity:

 $\forall \xi, \eta, : \sum_{i} N_i(\xi, \eta) = 1$

Types

■ Linear shape functions ∂N

$$\frac{\partial N}{\partial \xi} = \cos \theta$$

Non-linear shape functions

 $\frac{\partial N}{\partial \xi} = f(\xi)$

- Linear elements vs quadratic elements
- Higher order elements

Shape functions III

Example: bar element

Linear shape functions:

$$N_1(\xi) = \frac{1}{2}(1-\xi)$$
$$N_2(\xi) = \frac{1}{2}(1+\xi)$$

Quadratic shape functions:

$$N_1(\xi) = \frac{1}{2}\xi(\xi - 1)$$

$$N_2(\xi) = (1 - \xi^2)$$

$$N_3(\xi) = \frac{1}{2}\xi(1 + \xi)$$

Shape functions: vectors and matrices

- Displacement nodal vectors $\underline{u}_i = \underline{e}_x u_i^x + \underline{e}_y u_i^y$
- Array of nodal coordinates (size dim · *n*)

 $[\mathbf{X}] = [x_1, y_1, x_2, y_2, \dots x_n, y_n]_{2n}^{\mathsf{T}}$

■ Array of nodal displacements (size dim · *n*)

 $[\mathbf{u}] = [u_1^x, u_1^y, u_2^x, u_2^y, \dots u_n^x, u_n^y]_{2n}^{\mathsf{T}}$

■ Arrays of shape functions (size dim · *n*)

$$\begin{bmatrix} \mathbf{N}_{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} N_1, 0, N_2, 0, \dots N_n, 0 \end{bmatrix}_{2n}^{\mathsf{T}} \\ \begin{bmatrix} \mathbf{N}_{\mathbf{y}} \end{bmatrix} = \begin{bmatrix} 0, N_1, 0, N_2, \dots 0, N_n \end{bmatrix}_{2n}^{\mathsf{T}} \\ \begin{bmatrix} \mathbf{N} \end{bmatrix} = \begin{bmatrix} N_1 & 0 & N_2 & 0 & \dots & N_n & 0 \\ 0 & N_1 & 0 & N_2 & \dots & 0 & N_n \end{bmatrix}_{2n \times \mathrm{dim}}^{\mathsf{T}}$$

Then

 $x(\xi,\eta,t) = [\mathbf{N}_{\mathbf{x}}(\xi,\eta)]^{\mathsf{T}}[\mathbf{X}(\mathbf{t})], \quad y(\xi,\eta,t) = [\mathbf{N}_{\mathbf{y}}(\xi,\eta)]^{\mathsf{T}}[\mathbf{X}(\mathbf{t})]$

 $u^{x}(\xi,\eta,t) = [\mathbf{N}_{\mathbf{x}}(\xi,\eta)]^{\mathsf{T}}[\mathbf{u}(\mathbf{t})], \quad u^{y}(\xi,\eta,t) = [\mathbf{N}_{\mathbf{y}}(\xi,\eta)]^{\mathsf{T}}[\mathbf{u}(\mathbf{t})]$

Gradients and shape functions

- Need to evaluate gradients (spatial derivatives) like $\frac{\partial f}{\partial x}$
- But with shape functions $f = f(\xi, \eta)$
- Then $\frac{\partial f(\xi,\eta)}{\partial x} = \frac{\partial f}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial f}{\partial \eta} \frac{\partial \eta}{\partial x}$

• However, in general we do not have $\xi = \xi(x, y)$ but rather $x = x(\xi, \eta)$

Let's do it other way around

$$\begin{bmatrix} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} \frac{\partial x}{\partial \xi} + \frac{\partial}{\partial y} \frac{\partial y}{\partial \xi} \\ \frac{\partial}{\partial x} \frac{\partial x}{\partial \eta} + \frac{\partial}{\partial y} \frac{\partial y}{\partial \eta} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} \end{bmatrix} = \begin{bmatrix} \mathbf{J} \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} \end{bmatrix}$$

Matrix [J] is called Jacobian operator and enables to obtain

$$\begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} = \begin{bmatrix} \mathbf{J} \end{bmatrix}^{-1} \begin{bmatrix} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \end{bmatrix}$$

Jacobian operator

Jacobian operator or simply Jacobian:

$$\begin{bmatrix} \mathbf{J} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix}$$

• Using $x = [\mathbf{N}_{\mathbf{x}}]^{\mathsf{T}}[\mathbf{X}], \quad y = [\mathbf{N}_{\mathbf{y}}]^{\mathsf{T}}[\mathbf{X}]$ we get: $[\mathbf{J}] = \begin{bmatrix} [\mathbf{N}_{\mathbf{x},\xi}]^{\mathsf{T}}[\mathbf{X}] & [\mathbf{N}_{\mathbf{y},\xi}]^{\mathsf{T}}[\mathbf{X}] \\ [\mathbf{N}_{\mathbf{x},\eta}]^{\mathsf{T}}[\mathbf{X}] & [\mathbf{N}_{\mathbf{y},\eta}]^{\mathsf{T}}[\mathbf{X}] \end{bmatrix},$ where $[\mathbf{N}_{\mathbf{x},\xi}] = \begin{bmatrix} \frac{\partial N_1}{\partial \xi}, 0, \frac{\partial N_2}{\partial \xi}, 0, \dots, \frac{\partial N_n}{\partial \xi}, 0 \end{bmatrix}^{\mathsf{T}}$ etc.

Then the inverse Jacobian is given by:

$$\begin{bmatrix} \mathbf{J} \end{bmatrix}^{-1} = \frac{1}{\Delta} \begin{bmatrix} \begin{bmatrix} \mathbf{N}_{\mathbf{y},\eta} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mathbf{X} \end{bmatrix} & -\begin{bmatrix} \mathbf{N}_{\mathbf{y},\xi} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mathbf{X} \end{bmatrix} \\ -\begin{bmatrix} \mathbf{N}_{\mathbf{x},\eta} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mathbf{X} \end{bmatrix} & \begin{bmatrix} \mathbf{N}_{\mathbf{x},\xi} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mathbf{X} \end{bmatrix} \end{bmatrix},$$

with $\Delta = \det([J]) = [X]^{\mathsf{T}} \left([\mathbf{N}_{\mathbf{x},\xi}] [\mathbf{N}_{\mathbf{y},\eta}]^{\mathsf{T}} - [\mathbf{N}_{\mathbf{y},\xi}] [\mathbf{N}_{\mathbf{x},\eta}]^{\mathsf{T}} \right) [X] \neq 0$

Infinitesimal strain in 2D

- Strain tensor: $\underline{\underline{\varepsilon}} = \frac{1}{2} \left(\nabla \underline{\underline{u}} + (\nabla \underline{\underline{u}})^{\mathsf{T}} \right)$ (*)
- Interpolated displacements: $u^x = [\mathbf{N}_x]^{\mathsf{T}}[\mathbf{u}], \quad u^y = [\mathbf{N}_y]^{\mathsf{T}}[\mathbf{u}]$
- Displacement gradient:

$$\nabla \underline{u} = \underline{e}_{x} \otimes \frac{\partial \underline{u}^{h}}{\partial x} + \underline{e}_{y} \otimes \frac{\partial \underline{u}^{h}}{\partial y} = \underline{e}^{x} \otimes \underline{e}^{x} \frac{\partial u^{x}}{\partial x} + \underline{e}^{x} \otimes \underline{e}^{y} \frac{\partial u^{y}}{\partial x} + \underline{e}^{y} \otimes \underline{e}^{x} \frac{\partial u^{x}}{\partial y} + \underline{e}^{y} \otimes \underline{e}^{y} \frac{\partial u^{y}}{\partial y}$$
$$\nabla \underline{u} \sim \begin{bmatrix} \frac{\partial u^{x}}{\partial x} & \frac{\partial u^{y}}{\partial x} \\ \frac{\partial u^{x}}{\partial y} & \frac{\partial u^{y}}{\partial y} \end{bmatrix} = [\mathbf{J}]^{-1} \begin{bmatrix} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \end{bmatrix} \begin{bmatrix} u^{x} \\ u^{y} \end{bmatrix}^{\mathsf{T}} = [\mathbf{J}]^{-1} \begin{bmatrix} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \end{bmatrix} \begin{bmatrix} [\mathbf{N}_{x}]^{\mathsf{T}} [\mathbf{u}] \\ [\mathbf{N}_{y}]^{\mathsf{T}} [\mathbf{u}] \end{bmatrix}^{\mathsf{T}}$$
$$\bullet \mathbf{Finally} [\mathbf{E}] = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}^{\mathsf{T}} [\mathbf{J}]^{-1} \begin{bmatrix} \partial [\mathbf{N}_{x}]^{\mathsf{T}} / \partial \xi & \partial [\mathbf{N}_{y}]^{\mathsf{T}} / \partial \xi \\ \partial [\mathbf{N}_{x}]^{\mathsf{T}} / \partial \eta & \partial [\mathbf{N}_{y}]^{\mathsf{T}} / \partial \eta \end{bmatrix} [\mathbf{u}]$$
$$\varepsilon_{xx} = \left([\mathbf{J}]^{-1}_{11} [\mathbf{N}_{x,\xi}] + [\mathbf{J}]^{-1}_{12} [\mathbf{N}_{x,\eta}] \right)^{\mathsf{T}} [\mathbf{u}] = \frac{1}{\Delta} \left([\mathbf{N}_{y,\eta}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{x,\xi}] - [\mathbf{N}_{y,\xi}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{x,\eta}] \right)^{\mathsf{T}} [\mathbf{u}]$$
$$\varepsilon_{yy} = \left([\mathbf{J}]^{-1}_{21} [\mathbf{N}_{y,\xi}] + [\mathbf{J}]^{-1}_{22} [\mathbf{N}_{y,\eta}] \right)^{\mathsf{T}} [\mathbf{u}] = \frac{1}{\Delta} \left(-[\mathbf{N}_{x,\eta}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{y,\xi}] + [\mathbf{N}_{x,\xi}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{y,\eta}] \right)^{\mathsf{T}} [\mathbf{u}]$$

Infinitesimal strain in 2D

- Strain tensor: $\underline{\underline{\varepsilon}} = \frac{1}{2} \left(\nabla \underline{u} + (\nabla \underline{u})^{\mathsf{T}} \right)$ (*)
- Interpolated displacements: $u^x = [\mathbf{N}_x]^{\mathsf{T}}[\mathbf{u}], \quad u^y = [\mathbf{N}_y]^{\mathsf{T}}[\mathbf{u}]$
- Displacement gradient:

$$\nabla \underline{u} = \underline{e}_{x} \otimes \frac{\partial \underline{u}^{h}}{\partial x} + \underline{e}_{y} \otimes \frac{\partial \underline{u}^{h}}{\partial y} = \underline{e}^{x} \otimes \underline{e}^{x} \frac{\partial u^{x}}{\partial x} + \underline{e}^{x} \otimes \underline{e}^{y} \frac{\partial u^{y}}{\partial x} + \underline{e}^{y} \otimes \underline{e}^{x} \frac{\partial u^{x}}{\partial y} + \underline{e}^{y} \otimes \underline{e}^{y} \frac{\partial u^{y}}{\partial y}$$
$$\nabla \underline{u} \sim \begin{bmatrix} \frac{\partial u^{x}}{\partial x} & \frac{\partial u^{y}}{\partial x} \\ \frac{\partial u^{x}}{\partial y} & \frac{\partial u^{y}}{\partial y} \end{bmatrix} = [\mathbf{J}]^{-1} \begin{bmatrix} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \end{bmatrix} \begin{bmatrix} u^{x} \\ u^{y} \end{bmatrix}^{\mathsf{T}} = [\mathbf{J}]^{-1} \begin{bmatrix} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \end{bmatrix} \begin{bmatrix} [\mathbf{N}_{x}]^{\mathsf{T}} [\mathbf{u}] \end{bmatrix}^{\mathsf{T}}$$
$$\bullet \mathbf{Finally} [\mathbf{E}] = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}^{\mathsf{T}} [\mathbf{J}]^{-1} \begin{bmatrix} \partial [\mathbf{N}_{x}]^{\mathsf{T}} / \partial \xi \\ \partial [\mathbf{N}_{x}]^{\mathsf{T}} / \partial \eta & \partial [\mathbf{N}_{y}]^{\mathsf{T}} / \partial \xi \end{bmatrix} [\mathbf{u}]$$
$$\varepsilon_{xx} = ([\mathbf{J}]^{-1}_{11} [\mathbf{N}_{x,\xi}] + [\mathbf{J}]^{-1}_{12} [\mathbf{N}_{x,\eta}])^{\mathsf{T}} [\mathbf{u}] = \frac{1}{\Delta} ([\mathbf{N}_{y,\eta}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{x,\xi}] - [\mathbf{N}_{y,\xi}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{x,\eta}])^{\mathsf{T}} [\mathbf{u}]$$
$$\varepsilon_{yy} = ([\mathbf{J}]^{-1}_{21} [\mathbf{N}_{y,\xi}] + [\mathbf{J}]^{-1}_{22} [\mathbf{N}_{y,\eta}])^{\mathsf{T}} [\mathbf{u}] = \frac{1}{\Delta} (-[\mathbf{N}_{x,\eta}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{y,\xi}] + [\mathbf{N}_{x,\xi}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{y,\eta}])^{\mathsf{T}} [\mathbf{u}]$$
$$\varepsilon_{xy} = \frac{1}{2\Delta} ([\mathbf{N}_{y,\eta}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{y,\xi}] - [\mathbf{N}_{y,\xi}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{y,\eta}] - [\mathbf{N}_{x,\eta}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{x,\xi}] + [\mathbf{N}_{x,\xi}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{x,\eta}])^{\mathsf{T}} [\mathbf{u}]$$

Infinitesimal strain in 2D in matrix form

• Strain tensor: $\underline{\varepsilon} = \frac{1}{2} \left(\nabla \underline{u} + (\nabla \underline{u})^{\mathsf{T}} \right) \quad (*)$

Represent it as an array (Voigt notations):

$$\underline{\underline{\varepsilon}} \quad \Rightarrow \quad [\mathbf{E}] = \begin{bmatrix} \varepsilon_{xx}, & \varepsilon_{yy}, & \gamma_{xy} \end{bmatrix}^{\mathsf{T}}, \quad \gamma_{xy} = 2\varepsilon_{xy}$$

Then

$$[\mathbf{E}]_{3} = [\mathbf{B}]_{3\times 2n}^{\mathsf{T}} [\mathbf{u}]_{2n}$$

With [B] given by:

$$\begin{bmatrix} \mathbf{B} \end{bmatrix}^{\mathsf{T}} = \frac{1}{\Delta} \begin{bmatrix} \left([\mathbf{N}_{\mathbf{y},\eta}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{\mathbf{x},\xi}] - [\mathbf{N}_{\mathbf{y},\xi}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{\mathbf{x},\eta}] \right)^{\mathsf{T}} \\ \left(- [\mathbf{N}_{\mathbf{x},\eta}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{\mathbf{y},\xi}] + [\mathbf{N}_{\mathbf{x},\xi}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{\mathbf{y},\eta}] \right)^{\mathsf{T}} \\ \left(\left[[\mathbf{N}_{\mathbf{y},\eta}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{\mathbf{y},\xi}] - [\mathbf{N}_{\mathbf{y},\xi}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{\mathbf{y},\eta}] - [\mathbf{N}_{\mathbf{x},\eta}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{\mathbf{x},\xi}] + [\mathbf{N}_{\mathbf{x},\xi}]^{\mathsf{T}} [\mathbf{X}] [\mathbf{N}_{\mathbf{x},\eta}] \right)^{\mathsf{T}} \\ \end{bmatrix} \right]_{3 \times 2n}$$

Infinitesimal strain in 2D: example

 Consider a linear triangular element with shape functions:

 $N_1 = -\frac{1}{2}(\xi + \eta), \quad N_2 = \frac{1}{2}(1 + \xi), \quad N_3 = \frac{1}{2}(1 + \eta)$

Their derivatives are given by: $N_{1,\xi} = -1/2, \quad N_{2,\xi} = 1/2, \quad N_{3,\xi} = 0$ $N_{1,\eta} = -1/2, \quad N_{2,\eta} = 0, \quad N_{3,\eta} = 1/2$ $\Delta = \frac{1}{4}((x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1))^*$

$$\varepsilon_{xx} = \frac{1}{4\Delta} \left[(y_3 - y_1)(u_2^x - u_1^x) - (y_2 - y_1)(u_3^x - u_1^x) \right]$$

$$\varepsilon_{yy} = \frac{1}{4\Delta} \left[(x_2 - x_1)(u_3^y - u_1^y) - (x_3 - x_1)(u_2^y - u_1^y) \right]$$

$$\gamma_{xy} = \frac{1}{4\Delta} \left[(y_3 - y_1)(u_2^y - u_1^y) - (y_2 - y_1)(u_3^y - u_1^y) + (x_2 - x_1)(u_3^x - u_1^x) - (x_3 - x_1)(u_2^x - u_1^x) \right]$$

*Half of the area of the triangle.

V.A. Yastrebov

Then

Infinitesimal strain in 2D: example II

- Rectangular triangle $x_1 = x_3$, $y_1 = y_2$, $\Delta = L_x L_y/4$
- Case 1: pure tension/compression along OX iaoi $u_3^y = u_1^y, u_2^y = u_1^y, u_3^x = u_1^x$ Ex.: $u_2^x = \delta$: $\varepsilon_{xx} = \frac{1}{4\Delta}(y_3 - y_1)(u_2^x - u_1^x) = \delta/L_x$, $\varepsilon_{yy} = \gamma_{xy} = 0$

Reference configuration

Current configuration

V.A. Yastrebov

Infinitesimal strain in 2D: example II

- Rectangular triangle $x_1 = x_3$, $y_1 = y_2$, $\Delta = L_x L_y/4$
- Case 1: pure tension/compression along *OX* iaoi $u_3^y = u_1^y, u_2^y = u_1^y, u_3^x = u_1^x$ Ex.: $u_2^x = \delta$: $\varepsilon_{xx} = \frac{1}{4\Delta}(y_3 - y_1)(u_2^x - u_1^x) = \delta/L_x$, $\varepsilon_{yy} = \gamma_{xy} = 0$
- Case 2: pure tension/compression along *OY* iaoi $u_2^x = u_1^x, u_2^y = u_1^y, u_3^x = u_1^x$ Ex.: $u_3^y = \delta$: $\varepsilon_{yy} = \frac{1}{4\Delta}(x_2 - x_1)(u_3^y - u_1^y) = \delta/L_y$, $\varepsilon_{xx} = \gamma_{xy} = 0$

Reference configuration

Current configuration

V.A. Yastrebov

Infinitesimal strain in 2D: example II

- Rectangular triangle $x_1 = x_3$, $y_1 = y_2$, $\Delta = L_x L_y/4$
- Case 1: pure tension/compression along OX iaoi $u_3^y = u_1^y, u_2^y = u_1^y, u_3^x = u_1^x$ Ex.: $u_2^x = \delta$: $\varepsilon_{xx} = \frac{1}{4\Delta}(y_3 - y_1)(u_2^x - u_1^x) = \delta/L_x$, $\varepsilon_{yy} = \gamma_{xy} = 0$
- Case 2: pure tension/compression along *OY* iaoi $u_2^x = u_1^x$, $u_2^y = u_1^y$, $u_3^x = u_1^x$ Ex.: $u_3^y = \delta$: $\varepsilon_{yy} = \frac{1}{4\Delta}(x_2 - x_1)(u_3^y - u_1^y) = \delta/L_y$, $\varepsilon_{xx} = \gamma_{xy} = 0$
- Case 3: pure shear in XY iaoi $u_2^x = u_1^x$, $u_3^y = u_1^y$ Ex.: $u_2^y = \delta_y$, $u_3^x = \delta_x$: $\gamma_{xy} = \frac{1}{4\Delta} \left((y_3 - y_1)(u_2^y - u_1^y) + (x_2 - x_1)(u_3^x - u_1^x) \right) = \frac{\delta_y}{L_x} + \frac{\delta_x}{L_y}$, $\varepsilon_{xx} = \varepsilon_{yy} = 0$

Reference configuration

Current configuration

V.A. Yastrebov

In linear elasticity:

$$\underline{\underline{\sigma}} = {}^{4}\underline{\underline{C}} : (\underline{\underline{\varepsilon}} - \underline{\underline{\varepsilon}}_{0}) + \underline{\underline{\sigma}}_{0}$$

- Residual stress field <u>*σ*</u>₀
- Initial strain field <u>E</u>
- In self equilibrated system: $\underline{\underline{\sigma}}_{0} = {}^{4}\underline{\underline{C}} : \underline{\underline{\varepsilon}}_{0}$ resulting in

$$\underline{\underline{\sigma}} = {}^{4}\underline{\underline{\underline{C}}} : (\underline{\underline{\underline{\varepsilon}}} - \underline{\underline{\underline{\varepsilon}}}_{th})$$

• With thermal strain field $\underline{\varepsilon}_{=th}$:

$$\underline{\underline{\varepsilon}}_{th} = \alpha (T - T_0) \underline{\underline{I}}_{th}$$

where α is the coefficient of thermal expansion (CTE), *T* and *T*₀ are the current and reference temperature fields, respectively.

Stress: 2D isotropic elasticity

Recall stress/strain relationship:

$$\underline{\underline{\sigma}} = \frac{\nu E}{(1+\nu)(1-2\nu)} \operatorname{tr}(\underline{\underline{\varepsilon}})\underline{\underline{I}} + \frac{E}{1+\nu}\underline{\underline{\varepsilon}}$$

Stress (in Voigt notations): $\underline{\sigma} \Rightarrow [\mathbf{S}] = [\sigma_{xx}, \sigma_{yy}, \sigma_{xy}]^{\mathsf{T}}$

- In plane stress $\sigma_{zz} = 0$, $\varepsilon_{zz} = \frac{\nu}{\nu 1} (\varepsilon_{xx} + \varepsilon_{yy})$
- In plain strain $\sigma_{zz} = \nu(\sigma_{xx} + \sigma_{yy}), \epsilon_{zz} = 0$
- Stress/strain relationship: $[S]_i = [D]_{ij} [E]_j$
- Matrix [D] in plane strain $\varepsilon_{zz} = \varepsilon_{xz} = \varepsilon_{yz} = 0$:

$$[\mathbf{D}]_{ij} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & 0\\ \nu & 1-\nu & 0\\ 0 & 0 & (1-2\nu)/2^* \end{bmatrix}$$

• Matrix [D] in plane stress $\sigma_{zz} = \sigma_{yz} = \sigma_{yz} = 0$, tr($\underline{\underline{\varepsilon}}$) = $\frac{1-2\nu}{1-\nu}(\varepsilon_{xx} + \varepsilon_{yy})$:

$$[\mathbf{D}]_{ij} = \frac{E}{1 - \nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & (1 - \nu)/\mathbf{2}^* \end{bmatrix}$$

*Factor 1/2 appears because γ_{xy} was inserted in [E] instead of ε_{xy} .

V.A. Yastrebov

Stress: general case

Voigt notations in 3D case

- Stress tensor: $\underline{\sigma} \to [\mathbf{S}] = [\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \sigma_{xy}, \sigma_{yz}, \sigma_{xz}]^{\mathsf{T}}$
- Strain tensor: $\underline{\varepsilon} \rightarrow [\mathbf{E}] = [\varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{zz}, \gamma_{xy}, \gamma_{yz}, \gamma_{xz}]^{\mathsf{T}}$
- Hooke's law: **[S]** = **[D] [E]**
- Isotropic elasticity (two constants *E*, ν):

$$[\mathbf{D}]_{ij} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0\\ \nu & 1-\nu & \nu & 0 & 0 & 0\\ \nu & \nu & 1-\nu & 0 & 0 & 0\\ 0 & 0 & 0 & (1-2\nu)/2 & 0 & 0\\ 0 & 0 & 0 & 0 & (1-2\nu)/2 & 0\\ 0 & 0 & 0 & 0 & 0 & (1-2\nu)/2 \end{bmatrix}$$

• Cubic elasticity (3 constants E, ν, μ):

$$[\mathbf{D}]_{ij} = \begin{bmatrix} \mathbf{C_{11}} & \mathbf{C_{12}} & \mathbf{C_{12}} & 0 & 0 & 0\\ \mathbf{C_{12}} & \mathbf{C_{11}} & \mathbf{C_{12}} & 0 & 0 & 0\\ \mathbf{C_{12}} & \mathbf{C_{12}} & \mathbf{C_{11}} & 0 & 0 & 0\\ 0 & 0 & 0 & \mathbf{C_{44}} & 0 & 0\\ 0 & 0 & 0 & 0 & \mathbf{C_{44}} & 0\\ 0 & 0 & 0 & 0 & 0 & \mathbf{C_{44}} \end{bmatrix}$$

Stress: general case II

Voigt notations in 3D case

Transversely isotropic elasticity (5 constants E₁, E₂, ν₁, ν₂, μ₁):

$$[\mathbf{D}]_{ij} = \begin{bmatrix} \mathbf{C_{11}} & \mathbf{C_{12}} & \mathbf{C_{13}} & 0 & 0 & 0\\ \mathbf{C_{12}} & \mathbf{C_{11}} & \mathbf{C_{13}} & 0 & 0 & 0\\ \mathbf{C_{13}} & \mathbf{C_{13}} & \mathbf{C_{33}} & 0 & 0 & 0\\ 0 & 0 & 0 & \mathbf{C_{44}} & 0 & 0\\ 0 & 0 & 0 & 0 & \mathbf{C_{44}} & 0\\ 0 & 0 & 0 & 0 & 0 & (\mathbf{C_{11}} - \mathbf{C_{12}})/2 \end{bmatrix}$$

• Orthotropic elasticity (9 constants E_{xx} , E_{yy} , E_{zz} , v_{xy} , v_{yz} , v_{xz} , μ_{xy} , μ_{yz} , μ_{xz}):

$$[\mathbf{D}]_{ij} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0\\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0\\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0\\ 0 & 0 & 0 & C_{44} & 0 & 0\\ 0 & 0 & 0 & 0 & C_{55} & 0\\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix}$$

Strain/Stress: spherical part

Spherical part of a tensor = $\frac{1}{3} tr(\underline{A}) \underline{I}$

 If the strain tensor can be presented as <u>ε</u> = ¹/₃tr(<u>ε)</u><u>L</u>, then only volume change happens at this location ΔV/V₀ = tr(<u>ε</u>)

$$\underline{\underline{\varepsilon}} \sim \begin{bmatrix} \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix}$$

If the stress tensor can be presented as <u>g</u> = ¹/₃tr(<u>g</u>)<u>L</u>, then the stress state is pure hydrostatic compression under pressure p = −tr(σ)/3

$$\underline{\underline{\sigma}} \sim \begin{bmatrix} -p & 0 & 0 \\ 0 & -p & 0 \\ 0 & 0 & -p \end{bmatrix}$$

Strain/Stress: deviatoric part

Deviatoric part of a tensor = $\underline{\underline{A}} - \frac{1}{3} \operatorname{tr}(\underline{\underline{A}}) \underline{\underline{I}}$

If the strain tensor does not have spherical part $\underline{\underline{\varepsilon}} = \underline{\underline{\varepsilon}} - \frac{1}{3} \text{tr}(\underline{\underline{\varepsilon}}) \underline{\underline{I}}$, then no volume change happens at this location $\Delta V/V_0 = 0$ only the shape changes, Ex.:

$$\underline{\underline{\varepsilon}} \sim \begin{bmatrix} \varepsilon & 0 & 0 \\ 0 & -0.5\varepsilon & 0 \\ 0 & 0 & -0.5\varepsilon \end{bmatrix}, \qquad \underline{\underline{\varepsilon}} \sim \begin{bmatrix} 0 & \varepsilon & 0 \\ \varepsilon & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

If the stress tensor is presented only by deviatoric part $\underline{\underline{\sigma}} = \underline{\underline{\sigma}} - \frac{1}{3} \text{tr}(\underline{\underline{\sigma}}) \underline{\underline{I}}$, then the stress state is pure shear:

$$\underline{\boldsymbol{\sigma}} \sim \begin{bmatrix} -\sigma & 0 & 0 \\ 0 & 2\sigma & 0 \\ 0 & 0 & -\sigma \end{bmatrix}, \qquad \underline{\boldsymbol{\sigma}} \sim \begin{bmatrix} 0 & \sigma_{xy} & \sigma_{xz} \\ \sigma_{xy} & 0 & 0 \\ \sigma_{xz} & 0 & 0 \end{bmatrix}$$

In general both parts are present: $\underline{\underline{\varepsilon}} = \underline{\underline{e}} + \text{tr}(\underline{\underline{\varepsilon}})\underline{\underline{I}}/3, \underline{\underline{\sigma}} = \underline{\underline{s}} + \text{tr}(\underline{\underline{\sigma}})\underline{\underline{I}}/3$

Strain/Stress: elastic relationships

• Recall:
$$\underline{\underline{\varepsilon}} = \underline{\underline{e}} + \frac{\Delta V}{3V} \underline{\underline{I}}, \quad \underline{\underline{\sigma}} = \underline{\underline{s}} - p\underline{\underline{I}}$$

For deviatoric part in linear isotropic elasticity

$$\underline{\underline{s}} = \frac{\underline{E}}{1+\nu}\underline{\underline{e}}, \quad \underline{\underline{s}} = 2\mu\underline{\underline{e}}$$

where $\mu = \frac{E}{2(1 + \nu)}$ is called *shear modulus*.

For spherical parts

$$\operatorname{tr}(\underline{\varepsilon}) = \frac{1 - 2\nu}{E} \operatorname{tr}(\sigma) = -\frac{3(1 - 2\nu)}{E}p$$

then

$$-\frac{1}{V}\frac{dV}{dp} = \frac{3(1-2\nu)}{E} \quad \Leftrightarrow \quad -V\frac{dp}{dV} = \frac{E}{3(1-2\nu)} = K$$

where $K = \frac{E}{3(1-2\nu)}$ is called *bulk modulus*.

- Work of nodal forces on *virtual* nodal displacements = $\frac{1}{2} f_{-i} \cdot \delta \underline{\mu}_i$
- Work density of distributed volumetric forces = $\frac{1}{2} f_{-v} \cdot \delta \underline{u}_{V}$

• Corresponding density of elastic energy = $\frac{1}{2} \underline{\underline{\sigma}} : \delta \underline{\underline{\varepsilon}}$

- Work of nodal forces on *virtual* nodal displacements = $\frac{1}{2} f_{-i} \cdot \delta \underline{u}_i$
- Work density of distributed volumetric forces = $\frac{1}{2} f_{-v} \cdot \delta \underline{u}_{V}$
- Corresponding density of elastic energy = $\frac{1}{2} \underline{\underline{\sigma}} : \delta \underline{\underline{\varepsilon}}$
- Stored elastic energy equals this work:

$$\int_{V^e} \underline{\underline{\sigma}} : \underline{\underline{\varepsilon}} \, dV = \sum_i \underline{f}_i \cdot \underline{\underline{u}}_i + \int V^e \underline{f}_{-V} \cdot \delta \underline{\underline{u}} \, dV$$

- Work of nodal forces on *virtual* nodal displacements = $\frac{1}{2} f_{-i} \cdot \delta \underline{u}_i$
- Work density of distributed volumetric forces = $\frac{1}{2} f_{_{U}} \cdot \delta \underline{u}_{_{V}}$
- Corresponding density of elastic energy $=\frac{1}{2} \underline{\underline{\sigma}} : \delta \underline{\underline{\varepsilon}}$
- Stored elastic energy equals this work:

$$\int_{V^e} \underline{\underline{\sigma}} : \underline{\underline{\varepsilon}} dV = \sum_i \underline{f}_{-i} \cdot \underline{\underline{u}}_i + \int V^e \underline{f}_{-V} \cdot \delta \underline{\underline{u}} dV$$

- Elastic stress $\underline{\underline{\sigma}} = {}^{4}\underline{\underline{C}} : (\underline{\underline{\varepsilon}} \underline{\underline{\varepsilon}}_{th}) \Rightarrow [\mathbf{S}] = [\mathbf{D}]([\mathbf{E}] [\mathbf{E}_{th}])$
- Strain $\underline{\varepsilon} \sim [\mathbf{E}] = [\mathbf{B}]^{\mathsf{T}}[\mathbf{u}]$, vol. force density $f_{-v} \sim [\mathbf{f}_v] = [f_v^x, f_v^y, f_v^z]^{\mathsf{T}}$, volumetric virt. displacement $\delta \underline{u}_V \sim [\mathbf{N}]^{\mathsf{T}} \delta [\mathbf{u}]$:

$$\int_{V^c} \left\{ \left([\mathbf{D}] \left([\mathbf{E}] - [\mathbf{E}_{\text{th}}] \right) \right)^{\mathsf{T}} \boldsymbol{\delta}[\mathbf{E}] - [\mathbf{f}_{\mathbf{v}}]^{\mathsf{T}} [\mathbf{N}_{\mathbf{i}}]^{\mathsf{T}} \boldsymbol{\delta}[\mathbf{u}] \right\} dV = [\mathbf{f}]^{\mathsf{T}} \boldsymbol{\delta}[\mathbf{u}]$$

- Work of nodal forces on *virtual* nodal displacements = $\frac{1}{2} f_i \cdot \delta \underline{u}_i$
- Work density of distributed volumetric forces = $\frac{1}{2} f_{_{U}} \cdot \delta \underline{u}_{_{V}}$
- Corresponding density of elastic energy $=\frac{1}{2} \underline{\underline{\sigma}} : \delta \underline{\underline{\varepsilon}}$
- Stored elastic energy equals this work:

$$\int_{V^e} \underline{\underline{\sigma}} : \underline{\underline{\varepsilon}} dV = \sum_i \underline{f}_{-i} \cdot \underline{\underline{u}}_i + \int V^e \underline{f}_{-V} \cdot \delta \underline{\underline{u}} dV$$

- Elastic stress $\underline{\underline{\sigma}} = {}^{4}\underline{\underline{C}} : (\underline{\underline{\varepsilon}} \underline{\underline{\varepsilon}}_{th}) \Rightarrow [\mathbf{S}] = [\mathbf{D}]([\mathbf{E}] [\mathbf{E}_{th}])$
- Strain $\underline{\underline{\varepsilon}} \sim [\mathbf{E}] = [\mathbf{B}]^{\mathsf{T}}[\mathbf{u}]$, vol. force density $\underline{f}_{-v} \sim [\mathbf{f}_v] = [f_v^x, f_v^y, f_v^z]^{\mathsf{T}}$, volumetric virt. displacement $\delta \underline{u}_V \sim [\mathbf{N}]^{\mathsf{T}} \delta [\mathbf{u}]$:

$$\int_{V^{e}} \left\{ \left([\mathbf{D}] \left([\mathbf{E}] - [\mathbf{E}_{th}] \right) \right)^{\mathsf{T}} \delta[\mathbf{E}] - [\mathbf{f}_{\mathbf{v}}]^{\mathsf{T}} [\mathbf{N}_{i}]^{\mathsf{T}} \delta[\mathbf{u}] \right\} dV = [\mathbf{f}]^{\mathsf{T}} \delta[\mathbf{u}]$$
$$[\mathbf{u}] \left[\int_{V^{e}} [\mathbf{B}] [\mathbf{D}] [\mathbf{B}]^{\mathsf{T}} dV \right] \delta[\mathbf{u}] - \left[\int_{V^{e}} \left([\mathbf{f}_{\mathbf{v}}]^{\mathsf{T}} [\mathbf{N}_{i}]^{\mathsf{T}} + [\mathbf{E}_{th}]^{\mathsf{T}} [\mathbf{D}] [\mathbf{B}]^{\mathsf{T}} \right) dV \right] \delta[\mathbf{u}] = [\mathbf{f}]^{\mathsf{T}} \delta[\mathbf{u}]$$

V.A. Yastrebov

Balance of virtual work for a single element:

$$[\mathbf{u}] \left[\int_{V^e} [\mathbf{B}] [\mathbf{D}] [\mathbf{B}]^{\mathsf{T}} dV \right] \delta[\mathbf{u}] - \left[\int_{V^e} ([\mathbf{f}_{\mathbf{v}}]^{\mathsf{T}} [\mathbf{N}_i]^{\mathsf{T}} + [\mathbf{E}_{th}]^{\mathsf{T}} [\mathbf{D}] [\mathbf{B}]^{\mathsf{T}}) dV \right] \delta[\mathbf{u}] = [\mathbf{f}]^{\mathsf{T}} \delta[\mathbf{u}]$$

For arbitrary virtual displacements δ[u]:

$$\underbrace{\left[\int_{V^e} [\mathbf{B}]^{\mathsf{T}} [\mathbf{D}] [\mathbf{B}] dV\right]}_{[\mathbf{K}^e]} [\mathbf{u}] + \underbrace{\left[\int_{V^e} \left(-[\mathbf{f}_v]^{\mathsf{T}} [\mathbf{N}_i] - [\mathbf{B}] [\mathbf{D}] [\mathbf{E}_{th}]\right) dV\right]}_{[\mathbf{f}^e_{ext}]} = \underbrace{[\mathbf{f}]}_{[\mathbf{f}^e_{ext}]}$$

System of equations linking displacements and reactions:

$$[K^e][u^e] + [f^e_{int}] = [f^e_{ext}]$$

• At every internal node the total force should be zero:

$$\sum_{e} [\mathbf{f}_{ext}^{e}] = 0$$

summation over all elements *e* attached to this node.

Summation over all nodes gives:

 $[\mathbf{K}] \, [\mathbf{u}] + [\mathbf{f}_{int}] = 0$

Dirichlet boundary conditions

Dirichlet BC

- Use penalty method to enforce prescribed displacements: array $[\mathbf{u}_0] = [0 \dots 0 \ u_{i0} \ 0 \dots 0 \ u_{j0} \ 0]$
- Diagonal selection matrix [I^s] with ones at prescribed degrees of freedom (DOFs):

$$[\mathbf{I}^{\mathbf{s}}] = \begin{bmatrix} & & & & & & & & \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 & 0 & \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 & 0 & \\ \vdots & & \vdots & \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 & 0 & \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 & 0 & \\ \vdots & & \vdots & \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 & 0 & \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 & 1 & 0 & \} j \end{bmatrix}$$

Then the system is changed to

 $([\mathbf{K}] + \epsilon [\mathbf{I}^s]) [\mathbf{u}] = ([\mathbf{I}] - [\mathbf{I}^s]) ([\mathbf{f}_{ext}] - [\mathbf{f}_{int}]) + \epsilon [\mathbf{u}_0]$ where ϵ is the penalty coefficient such that $\epsilon \gg \max(K_{ij})$, and [I] is the identity matrix.

V.A. Yastrebov

Neumann boundary conditions

Neumann BC

- Surface traction \underline{t}_0 at Γ_f
- Virtual work of surface traction over one element:

$$\int_{\Gamma_f^e} \underline{t}_0 \cdot \delta \underline{u} \, d\Gamma = \underline{f}_{ext}^i \cdot \delta \underline{u}_i^e$$

Then

$$[\mathbf{f}_{\text{ext}}^{\text{i}}] = \int_{\Gamma_{f}^{e}} [\mathbf{t}_{0}]^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} d\Gamma$$

Discrete system of equations

Balance of virtual work for the whole body:

$$\underbrace{\int_{V} [\mathbf{B}]^{\mathsf{T}} [\mathbf{D}] [\mathbf{B}] dV}_{[\mathbf{K}]} [\mathbf{u}] = \underbrace{\int_{\Gamma_{f}} [\mathbf{t}_{0}]^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} d\Gamma}_{[\mathbf{f}_{\mathsf{ext}}]} + \underbrace{\left[\int_{V} \left([\mathbf{f}_{\mathsf{v}}]^{\mathsf{T}} [\mathbf{N}_{\mathsf{i}}] + [\mathbf{B}] [\mathbf{D}] [\mathbf{E}_{\mathsf{th}}] \right) dV}_{-[\mathbf{f}_{\mathsf{int}}]} \right]$$

System of equations linking displacements and reactions:

$$[K][u] = [f_{ext}] - [f_{int}]$$

- Stiffness matrix [K]
- Vector of degrees of freedom (DOFs) [u]
- Right hand term (vector of forces) [f_{ext}] [f_{int}]

Different approach: virtual work formulation I

- Arbitrary virtual displacements $\delta \underline{u}$
- Strong form: $\nabla \cdot \underline{\underline{\sigma}} + \underline{f}_{-V} = 0 + BCs$
- Take a product with virtual displacements and integrate over Ω:

$$\int_{\Omega} \left(\nabla \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\underline{u}} + \underline{f}_{\underline{V}} \cdot \delta \underline{\underline{u}} \right) dV = 0$$

- **Replacement:** $\nabla \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\underline{u}} = \nabla \cdot (\underline{\underline{\sigma}} \cdot \delta \underline{\underline{u}}) \underline{\underline{\sigma}} : \nabla \delta \underline{\underline{u}}$
- Following Gauss-Ostrogradsky theorem: $\int_{V} \nabla \cdot (\bullet) \, dV = \int_{S} \underline{n} \cdot (\bullet) \, dS$

$$\int_{\partial\Omega} \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot \underline{\delta} \underline{\underline{u}} \, dS + \int_{\Omega} \left(\underbrace{f}_{-V} \cdot \underline{\delta} \underline{\underline{u}} - \underline{\underline{\sigma}} : \underline{\delta} \underline{\underline{\varepsilon}} \right) dV = 0$$

V.A. Yastrebov

So

Different approach: virtual work formulation II

continue...

■ **Remark I:** in the strong form \underline{u} should be C^2 -smooth, in the weak form \underline{u} should be only square-integrable as well as its first derivative, thus $\underline{u} \in \mathbb{H}^1$, i.e. from Sobolev's functional space of the first order. In addition $\underline{u} = \underline{u}_0$ at Γ_u

Remark II: for linear elasticity, the stress tensor^{*} $\underline{\underline{\sigma}} = {}^{4}\underline{\underline{C}} : (\underline{\underline{\varepsilon}} - \underline{\underline{\varepsilon}}_{th})$

$$\int_{\Omega} \underline{\underline{\varepsilon}} : {}^{4}\underline{\underline{C}} : \delta \underline{\underline{\varepsilon}} dV = \int_{\Gamma_{f}} \underline{\underline{t}}_{0} \cdot \delta \underline{\underline{u}} dS + \int_{\Omega} \left(\underline{\underline{f}}_{-V} + {}^{4}\underline{\underline{C}} : \underline{\underline{\varepsilon}}_{th} \right) \cdot \delta \underline{\underline{u}} dV$$

V.A. Yastrebov

č

Different approach II: potential energy

Remark III:

- If the system remains linear (boundary conditions, linear elasticity)
- The principle of virtual work is equivalent to the minimum of the total potential energy
- {Potential energy} = {Internal energy} {Work of all forces}

$$\Pi(\underline{u}, \underline{t}_0, \underline{u}_0) = \frac{1}{2} \int_{\Omega} \underline{\underline{\sigma}} : \underline{\underline{\varepsilon}} dV - \int_{\Gamma_f} \underline{t}_0 \cdot \underline{u} d\Gamma - \int_{\Omega} f_{-V} \cdot \underline{u} dV$$

Stationary point of the total potential energy $\frac{\partial \Pi}{\partial \underline{u}} = 0$ for given loads $\underline{t}_{0}, \underline{u}_{0}$:

$$\frac{\partial \Pi}{\partial \underline{u}} = \int_{\Omega} \underline{\underline{\varepsilon}} : {}^{4} \underline{\underline{C}} : \frac{\partial \underline{\underline{\varepsilon}}}{\partial \underline{\underline{u}}} dV - \int_{\Gamma_{f}} \underline{\underline{t}}_{0} d\Gamma - \int_{\Omega} \underline{f}_{-V} dV = 0$$

The same equation

Evaluation of the integrals

• Weak form (recall):

$$\underbrace{\left[\bigcup_{V} [\mathbf{B}]^{\mathsf{T}} [\mathbf{D}] [\mathbf{B}] dV\right]}_{[\mathbf{K}]} [\mathbf{u}] = \underbrace{\int_{\Gamma_{f}} [\mathbf{t}_{0}]^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} d\Gamma}_{[\mathbf{f}_{ext}]} + \underbrace{\left[\bigcup_{V} \left([\mathbf{f}_{v}]^{\mathsf{T}} [\mathbf{N}_{i}] + [\mathbf{B}] [\mathbf{D}] [\mathbf{E}_{th}]\right) dV\right]}_{-[\mathbf{f}_{int}]}$$

• Exact integration: $\int_{a}^{b} f(x)dx = F(b) - F(a)$ (not always possible)

Approximate integration (trapezoidal rule, Simpson's rule)

• Gauss quadrature:
$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{N_{GP}} w_i f(x_i)$$

- Gauss points x_i with $i = 1, N_{GP}$
- Integration is exact for polynomials of order 2N_{GP} − 1
- Tabulated data for *x_i*, *w_i* (1D, 2D, 3D integration)

Evaluation of the integrals: example

Function f(x) = cos(πx²/2)
 N_{GP} = 1: error ≈ 28.22 %

- $N_{GP} = 2$: error ≈ 11.04 %
- $N_{GP} = 3$: error ≈ 1.14 %
- $N_{GP} = 4$: error ≈ 0.14 %
- $N_{GP} = 5$: error ≈ 0.01 %

• Function $f(x) = x \sin(\pi x)$

■
$$N_{GP} = 1$$
: error ≈ 100.00 %
■ $N_{GP} = 2$: error ≈ 76.05 %
■ $N_{GP} = 3$: error ≈ 12.07 %
■ $N_{GP} = 4$: error ≈ 0.80 %
■ $N_{GP} = 5$: error ≈ 0.03 %

Evaluation of the integrals II

• Consider:
$$\int_{V} [\mathbf{B}]^{\mathsf{T}} [\mathbf{D}] [\mathbf{B}] dV = \sum_{e=1}^{N_e} \int_{V_e} [\mathbf{B}]^{\mathsf{T}} [\mathbf{D}] [\mathbf{B}] dV$$

Transpose to the parametric space (2D example)

$$\int_{V_e} \left[\mathbf{B}(\xi,\eta) \right]^{\mathsf{T}} \left[\mathbf{D} \right] \left[\mathbf{B}(\xi,\eta) \right] dV = \int_{-1}^{1} \int_{-1}^{1} \left[\mathbf{B}(\xi,\eta) \right]^{\mathsf{T}} \left[\mathbf{D} \right] \left[\mathbf{B}(\xi,\eta) \right] \det([\mathsf{J}]) d\xi d\eta$$

Finally:

 $[\mathbf{K}] = \int_{V} [\mathbf{B}]^{\mathsf{T}} [\mathbf{D}] [\mathbf{B}] dV = \sum_{e=1}^{N_e} \sum_{GP=1}^{N_{GP}} [\mathbf{B}^{\mathbf{e}}(\xi_{GP}, \eta_{GP})]^{\mathsf{T}} [\mathbf{D}] [\mathbf{B}^{\mathbf{e}}(\xi_{GP}, \eta_{GP})] \det([J^e(xi_{GP}, \eta_{GP})]) w_{GP}$

- If $N(\xi, \eta) = P_p$ is a polynomial of order p, then $[J] = P_{\dim(p-1)}$, $[\mathbf{B}] = \frac{P_{2(p-1)}}{Q_{\dim(p-1)}}$
- **Remark I:** Gauss quadrature is exact for p = 1 and approximate if p > 1.
- **Remark II:** Stress and strains are exactly evaluated only in Gauss points, in all other points they are extrapolated/interpolated
- **Remark III:** 1 GP for linear triangle, 3 GP for quadratic triangle, 4 GP for bilinear quadrilateral element, 9 GP for quadratic quadrilateral, etc.
- Remark IV: Underintegration may lead to zero-energy deformation modes (which are often stabilized in FE software)

Evaluation of the integrals: quadrilateral 2D element

Shape functions:

$$N_1 = \frac{1}{4}(1-\xi)(1-\eta), \quad N_2 = \frac{1}{4}(1+\xi)(1-\eta)$$
$$N_3 = \frac{1}{4}(1+\xi)(1+\eta), \quad N_4 = \frac{1}{4}(1-\xi)(1+\eta)$$

Shape function derivatives:

$$\begin{split} N_{1,\xi} &= -\frac{1}{4}(1-\eta), \quad N_{2,\xi} &= \frac{1}{4}(1-\eta) \\ N_{3,\xi} &= \frac{1}{4}(1+\eta), \quad N_{4,\xi} &= -\frac{1}{4}(1+\eta) \\ N_{1,\eta} &= -\frac{1}{4}(1-\xi), \quad N_{2,\eta} &= -\frac{1}{4}(1+\xi) \\ N_{3,\eta} &= \frac{1}{4}(1+\xi), \quad N_{4,\eta} &= \frac{1}{4}(1-\xi) \end{split}$$

Parameteric space

Physical space

• Determinant of Jacobian ($dA = \det [J] d\xi d\eta$):

$$\begin{aligned} &\det([J]) = \\ &\frac{1}{16} \left[((1-\eta)(x_2-x_1) + (1+\eta)(x_3-x_4))((1+\xi)(y_3-y_2) + (1-\xi)(y_4-y_1)) - \right. \\ &- ((1-\eta)(y_2-y_1) + (1+\eta)(y_3-y_4))((1+\xi)(x_3-x_2) + (1-\xi)(x_4-x_1)) \right] \end{aligned}$$

Evaluation of the integrals: quadrilateral 2D element

Shape functions:

$$N_1 = \frac{1}{4}(1-\xi)(1-\eta), \quad N_2 = \frac{1}{4}(1+\xi)(1-\eta)$$
$$N_3 = \frac{1}{4}(1+\xi)(1+\eta), \quad N_4 = \frac{1}{4}(1-\xi)(1+\eta)$$

Shape function derivatives:

$$\begin{split} N_{1,\xi} &= -\frac{1}{4}(1-\eta), \quad N_{2,\xi} &= \frac{1}{4}(1-\eta) \\ N_{3,\xi} &= \frac{1}{4}(1+\eta), \quad N_{4,\xi} &= -\frac{1}{4}(1+\eta) \\ N_{1,\eta} &= -\frac{1}{4}(1-\xi), \quad N_{2,\eta} &= -\frac{1}{4}(1+\xi) \\ N_{3,\eta} &= \frac{1}{4}(1+\xi), \quad N_{4,\eta} &= \frac{1}{4}(1-\xi) \end{split}$$

Parameteric space

Physical space

• Determinant of Jacobian ($dA = \det [\mathbf{J}] d\xi d\eta$):

$$\begin{split} \det([J]) &= \\ &\frac{1}{16} \left[((1-\eta)(x_2-x_1)+(1+\eta)(x_3-x_4))((1+\xi)(y_3-y_2)+(1-\xi)(y_4-y_1)) - \\ &- ((1-\eta)(y_2-y_1)+(1+\eta)(y_3-y_4))((1+\xi)(x_3-x_2)+(1-\xi)(x_4-x_1)) \right] \end{split}$$

■ Warning: to ensure det([J]) > 0 the element should remain convex

Problem: Find $[\mathbf{u}]$ such that $[\mathbf{K}] [\mathbf{u}] = [\mathbf{f}]$, i.e. $[\mathbf{u}] = [\mathbf{K}]^{-1} [\mathbf{f}]$

Iterative solvers

The solution is approached iteratively, does not require much memory, restrictions to matrix type, sensitive to matrix conditioning, a preconditioner is often needed.

- Gauss-Seidel method (GS)
- Conjugate gradient method (CG)
- Generalized minimum residual method (GMRES)
- • •

Direct solvers

The solution is provided directly, no restrictions on matrix type, less sensitive to matrix conditioning, based on LU or Cholesky decomposition

- Frontal
- Sparse direct
- ...

Example

- 3 bars in 2D
- 3 elements, 3 nodes, 6 dofs

- O.C. Zienkiewicz & R.L. Taylor. The Finite Element Method: vol 1. The Basis, vol 2. Solid Mechanics, Butterworth-Heinemann (2000)
- O.C. Zienkiewicz, & R.L. Taylor. The finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann (2005)
- K.J. Bathe. Finite Element Procedures, Prentice Hall (1996)
- P. Wriggers. Nonlinear Finite Element Methods. Springer (2008)
- M.A. Crisfield. Non-linear Finite Element Analysis of Solids and Structures. Vol 1 & 2, Wiley (1991)

Thank you for your attention!