Computational Approach to Micromechanical Contacts Lecture 6. Contact of rough surfaces

Vladislav A. Yastrebov

MINES ParisTech, PSL Research University, Centre des Matériaux, CNRS UMR 7633, Evry, France

@ Centre des Matériaux September 2017

Problem statement & methods

Problem

- Solve contact problem for two elastic half-spaces E_1 , v_1 and E_2 , v_2
- With surface roughnesses $z_1(x, y)$ and $z_2(x, y)$
- Balance of momentum $\nabla \cdot \underline{\sigma} = 0$,
- Boundary conditions $-\sigma_z^{\infty} = p_0$
- Contact constraints $g \ge 0$, $p \ge 0$, g p = 0, where g(x, y) is the gap between surfaces, $p = -\underline{n} \cdot \underline{\sigma} \cdot \underline{n}$ is the contact pressure.

Methods

Finite element method

[1] Yastrebov, Wiley/ISTE (2013)

Boundary element method

Mapping

• Flat elastic^[1] half-space with $E^* = \frac{E_1 E_2}{E_2 (1 - v_1^2) + E_1 (1 - v_2^2)}$

Rough rigid^[1] surface with $z^* = z_2 - z_1$

■ Optimization problem^[2]: min *F*

under constraints $p \ge 0$ and $\frac{1}{A_0} \int_A p dA = p_0$, with $\mathcal{F} = \int_A p[u_z/2 + g] dA$

V.A. Yastrebov

Barber, Bounds on the electrical resistance between contacting elastic rough bodies, PRSL A 459 (2003)
 Kalker, Variational Principles of Contact Elastostatics, J Inst Maths Applics (1977)

Mapping

• Flat elastic^[1] half-space with $E^* = \frac{E_1 E_2}{E_2 (1 - v_1^2) + E_1 (1 - v_2^2)}$

Rough rigid^[1] surface with $z^* = z_2 - z_1$

■ Optimization problem^[2]: min *F*

under constraints $p \ge 0$ and $\frac{1}{A_0} \int_A p dA = p_0$, with $\mathcal{F} = \int_A p[u_z/2 + g] dA$

V.A. Yastrebov

Barber, Bounds on the electrical resistance between contacting elastic rough bodies, PRSL A 459 (2003)
 Kalker, Variational Principles of Contact Elastostatics, J Inst Maths Applics (1977)

Analytical models

Asperity based models

[1] Greenwood, Williamson. P Roy Soc Lond A Mat (1966) [2] Bush, Gibson, Thomas. Wear (1975) [3] Mc Cool. Wear (1986) [4] Thomas. Rough Surfaces (1999) [5] Greenwood. Wear (2006) [6] Carbone. J. Mech. Phys. Solids (2009) [7] Ciavarella, Greenwood, Paggi. Wear (2008)

Persson's model

[8] Persson. J. Chem. Phys. (2001) [9] Persson. Phys. Rev. Lett. (2001) [10] Persson, Bucher, Chiaia. Phys. Rev. B (2002) [11] Müser. Phys. Rev. Lett. (2008)

Cross-link studies

[12] Manners, Greenwood. Wear (2006) [13] Carbone, Bottiglione. J. Mech. Phys. Solids (2008) [14] Paggi, Ciavarella. Wear (2010)

Fig. Asperity based models

Analytical models

Asperity based models

Greenwood, Williamson. P Roy Soc Lond A Mat (1966)
 Bush, Gibson, Thomas. Wear (1975)
 Mc Cool. Wear (1986)
 Thomas. Rough Surfaces (1999)
 Greenwood. Wear (2006)
 Carbone. J. Mech. Phys. Solids (2009)
 Ciavaella, Greenwood, Paggi. Wear (2008)

Persson's model

[8] Persson. J. Chem. Phys. (2001)
[9] Persson. Phys. Rev. Lett. (2001)
[10] Persson, Bucher, Chiaia. Phys. Rev. B (2002)
[11] Müser. Phys. Rev. Lett. (2008)

Cross-link studies

[12] Manners, Greenwood. Wear (2006)
[13] Carbone, Bottiglione. J. Mech. Phys. Solids (2008)
[14] Paggi, Ciavarella. Wear (2010)

Comparison of models

Asperity based models

Persson's model

1. Evolution of the real contact area $A(p_0)$ for $A/A_0 \rightarrow 0$

 $\kappa_{BGT} = \sqrt{2\pi} \approx 2.5$ according to [2-5]

 $\kappa_{\rm P} = \sqrt{8/\pi} \approx 1.6$ according to [6-7]

2. Evolution of the real contact area $A(p_0)$ for $\forall A/A_0$

 $\frac{A}{A_0} = A(p_0, \alpha)/A_0$ according to [2-5]

$$\frac{A}{A_0} = \operatorname{erf}\left(\sqrt{\frac{2}{\langle |\nabla z|^2 \rangle}} \frac{p_0}{E^*}\right) according \text{ to [6-7]}$$

[1] Greenwood, Williamson, P Roy Soc Lond A Mat 295 (1966)

[2] Bush, Gibson, Thomas, Wear 35 (1975)

[3] Mc Cool, Wear 107 (1986)

[4] Thomas, Rough Surfaces (1999)

[5] Greenwood, Wear 261 (2006)

[6] Persson, J. Chem. Phys. 115 (2001)
[7] Persson, Phys. Rev. Lett. 87 (2001)
[8] Persson, Bucher, Chiaia, Phys. Rev. B 65 (2002)
[9] Müser, Phys. Rev. Lett. 100, (2008)

Simulations set-up

- Cut-off parameters: $L/\lambda_l \otimes L/\lambda_s = \{1, 2, 4, 8, 16\} \otimes \{32, 64, 128, 256, 512\}$
- Hurst exponent $H = \{0.4, 0.8\}$
- 10 random surface realizations per combination of parameters
- Discretization: $\{L/\Delta x\} \times \{L/\Delta x\} = 2048 \times 2048$
- Search for contact area A', gap field g(x, y) and gap PDF P(g)

[1] Bush, Gibson, Thomas, Wear 35 (1975), [2] Carbone, Bottiglione. J. Mech. Phys. Solids (2008), [3] Persson. J. Chem. Phys. (2001)

[1] Bush, Gibson, Thomas, Wear 35 (1975), [2] Carbone, Bottiglione. J. Mech. Phys. Solids (2008), [3] Persson. J. Chem. Phys. (2001)

Simulations VS analytical models: Persson's model^[1] and simplified elliptic model^[2] [1] Persson. J. Chem. Phys. (2001), [2] Greenwood. Wear (2006)

Simulations VS analytical models: Persson's model^[1] and simplified elliptic model^[2] [1] Persson. J. Chem. Phys. (2001), [2] Greenwood. Wear (2006)

Simulations VS analytical models: Persson's model^[1] and simplified elliptic model^[2] [1] Persson. J. Chem. Phys. (2001), [2] Greenwood. Wear (2006)

Simulations VS analytical models: Persson's model^[1] and simplified elliptic model^[2] [1] Persson. J. Chem. Phys. (2001), [2] Greenwood. Wear (2006)

[2] Yastrebov, Anciaux, Molinari, J Mech Phys Solids 107 (2017)

Lecture 6

Yastrebov, Anciaux, Molinari, Iribol. Int. 114 (2017)
 Yastrebov, Anciaux, Molinari, J Mech Phys Solids 107 (2017)

 $A_{\text{sim}} > A_*$

Contact area is overestimated in simulations:

 $A_{\rm sim}$

Contact area is overestimated in simulations:

 $A_{\rm sim} > A_*$

The overestimation is localized at boundary nodes:

 $A_{\rm sim} > A_* > A_{\rm sim}^{\rm int}$

Contact area is overestimated in simulations:

 $A_{\rm sim} > A_*$

The overestimation is localized at boundary nodes:

 $A_{\rm sim} > A_* > A_{\rm sim}^{\rm int}$

■ Boundary area ~ perimeter *S*_d:

 $A_{\rm sim} - A_{\rm sim}^{\rm int} = S_d \Delta x$

Contact area is overestimated in simulations:

 $A_{\rm sim} > A_*$

The overestimation is localized at boundary nodes:

 $A_{\rm sim} > A_* > A_{\rm sim}^{\rm int}$

■ Boundary area ~ perimeter *S*_d:

 $A_{\rm sim} - A_{\rm sim}^{\rm int} = S_d \Delta x$

Manhattan S_d vs Euclidean metric S:

 $\langle S \rangle = \frac{\pi}{4} \langle S_d \rangle$

Contact area is overestimated in simulations:

 $A_{\rm sim} > A_*$

The overestimation is localized at boundary nodes:

 $A_{\rm sim} > A_* > A_{\rm sim}^{\rm int}$

■ Boundary area ~ perimeter *S*_d:

 $A_{\rm sim} - A_{\rm sim}^{\rm int} = S_d \Delta x$

Manhattan S_d vs Euclidean metric S:

$$\langle S \rangle = \frac{\pi}{4} \langle S_d \rangle$$

True contact area estimation:

$$A_* \approx A_{\rm sim} - \frac{\beta}{4} \frac{\pi}{4} S_d \Delta x$$

Numerical error correction: corrective factor

Numerical error correction: convergence study

[1] Yastrebov, Anciaux, Molinari, Tribol Int 114 (2017)

Lecture 6

Numerical error correction: convergence study

[1] Yastrebov, Anciaux, Molinari, Tribol Int 114 (2017)

Lecture 6

Morphological correction

• Morphology of contact clusters

N=128, raw

N=2048, raw

Morphological correction

• Morphology of contact clusters

N=128, raw

N=128, smoothed

N=2048, raw

Topologically preserving smoothing results in realistic cluster geometry [1] Couprie & Bertrand, J Electr Imag 13 (2004)

Raw data

[1] Yastrebov, Anciaux, Molinari, Int J Solids Struct 52 (2015)

Corrected data

[2] Yastrebov, Anciaux, Molinari, J Mech Phys Solids 107 (2017)

Corrected data

[2] Yastrebov, Anciaux, Molinari, J Mech Phys Solids 107 (2017)

Corrected data

[2] Yastrebov, Anciaux, Molinari, J Mech Phys Solids 107 (2017)

Numerical results: [1] Yastrebov, Anciaux, Molinari, J Mech Phys Solids 107 (2017)

Simplified elliptic model: [2] Greenwood, Wear (2006)

Lecture 6

Lecture 6

Phenomenological relationship

■ Contact area *A* grows with applied pressure *p*₀ as

$$\frac{A}{A_0} = a(\alpha) \frac{p_0}{E^* \sqrt{2m_2}} - b(\alpha) \left[\frac{p_0}{E^* \sqrt{2m_2}} \right]^2$$

■ Contact area fraction A' = A/A₀ grows with normalized applied pressure p' = p₀/E* √2m₂

 $A' = a(\alpha)p' - b(\alpha)p'^2$

■ With ≈universal adimensional constants:

$$a(\alpha) = 2.35 - 0.057 \ln(\alpha - 1.5)$$

$$b(\alpha) = 2.85 - 0.24 \ln(\alpha - 1.5)$$

Pressure dependent friction coefficient:

$$\mu(p') = \mu_0 \left[1 - \frac{b(\alpha)}{a(\alpha)} p' \right]$$

with $\mu_0 = a(\alpha) \tau_{\max} / E^* \sqrt{2m_2}$,

 $\tau_{\rm max}$ is the maximum shear traction the contact interface can bear.

Contact area depends weakly on Nayak parameter $\alpha = m_0 m_4 / m_2^2$

 $A' = a(\alpha)p' - b(\alpha)p'^2$

with $a(\alpha) = 2.35 - 0.057 \ln(\alpha - 1.5)$, $b(\alpha) = 2.85 - 0.24 \ln(\alpha - 1.5)$

- No effect of fractal dimension D_f per se on the contact area it affects the contact area only through the Nayak parameter
- Using the area correction technique we could go to magnifications up to 600

$$\zeta = \frac{\lambda_l}{\lambda_s} = \frac{k_s}{k_l} = \frac{q_2}{q_1} < 600$$

Need a wider interval of Nayak parameter to be studied May be there is a hidden dependence on the fractal dimension?

Thank you for your attention!

 \odot