Computational Approach to Micromechanical Contacts Lecture 7. Elastodynamic friction between dissimilar materials

Vladislav A. Yastrebov

MINES ParisTech, PSL Research University, Centre des Matériaux, CNRS UMR 7633, Evry, France

@ Centre des Matériaux September 2017

Applications

Relevant applications & phenomena

- 1 Interface cracks in mixed mode
- 2 Touch interfaces
- 3 Brake systems

scale gap

- 4 Glacier basal slip
- 5 Slip in faults

Applications

Relevant applications & phenomena

- 1 Interface cracks in mixed mode
- 2 Touch interfaces
- 3 Brake systems

scale gap

- 4 Glacier basal slip
- 5 Slip in faults

Scalable phenomena

1 Earthquakes can be reproduced in laboratory

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state

Coulomb-Amontons law

$$\begin{cases} |\mathbf{\tau}| < f|\sigma|, & |\dot{u}| = 0\\ |\mathbf{\tau}| = f|\sigma|, & |\dot{u}| > 0 \end{cases}$$

- τ tangential traction,
- σ contact pressure,
- *u* slip velocity,
- f coefficient of friction.

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

$$f_{loc} = \max(|\tau / \sigma|)$$

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

$$f_{loc} = \max(|\tau / \sigma|)$$

 Local friction depends on materials surfaces environment stress state y_{\dagger} Global friction depends on scale local global loads geometry $T = \Sigma F_{\chi}, N = \Sigma F_{V}$ τ, σ Local vs global friction $f_{al} = \max(|T/N|)$ $f_{loc} = \max(|\tau / \sigma|)$ pdf

 f_{loc}

 Local friction depends on materials surfaces environment stress state y_{\dagger} Global friction depends on scale local global loads geometry $T = \Sigma F_{\chi}, N = \Sigma F_{V}$ τ, σ Local vs global friction $f_{loc} = \max(|\tau / \sigma|)$ $f_{al} = \max(|T/N|)$ pdf pdf f_{loc} f_{gl}

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

friction

(Weertman, 1980) Unstable slippage across a fault that separates elastic media of different elastic constants, J Geo Research

(Adams, 1995) Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction, J Appl Mech

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

friction

(Adams, 2000) Radiation of body waves induced by the sliding of an elastic half-space against a rigid surface, J Appl Mech

(Moirot, Nguyen, Oueslati, 2002) An example of stick-slip and stick-slipseparation waves, *Europ J Mech A Solids*

- What are the relevant local friction laws?
- How does the dynamics affect the frictional slip?
- How can it be used for practice?

Problem: Elastic layer sliding on a rigid flat under Coulomb friction.

Problem: Elastic layer sliding on a rigid flat under Coulomb friction.

• **Problem:** Elastic layer sliding on a rigid flat under Coulomb friction.

Parameters: Poisson's ratio ν , friction f and sliding velocity V_0 .

• **Problem:** Elastic layer sliding on a rigid flat under Coulomb friction.

- **Parameters:** Poisson's ratio *v*, friction *f* and sliding velocity *V*₀.
- Methods: Implicit dynamic finite element simulation, α-method HHT^[1], direct method to solve frictional contact^[2,3].

FE mesh: 33 000 quadrilateral elements with reduced integration.

[1] (Hilber, Hughes and Taylor, 1977) Improved numerical dissipation for time integration algorithms in structural dynamics, Earthq Eng Struct D

[2] (Francavilla & Zienkiewicz, 1975) A note on numerical computation of elastic contact problems, Int J Num Meth Eng.

[3] (Jean, 1995) Frictional contact in collections of rigid or deformable bodies: numerical simulation of geomaterial motions, Stud Appl Mech

Limitations and expectations

(Renardy, 1992 [1989]) Ill-posedness at the boundary for elastic solids sliding under Coulomb friction, J Elast (Martins, Guimarães & Faria, 1995 [1993]) Dynamic Surface Solutions in Linear Elasticity and Viscoelasticity With Frictional Boundary Conditions, J Vibr Acoust

Limitations and expectations

(Renardy, 1992 [1989]) Ill-posedness at the boundary for elastic solids sliding under Coulomb friction, J Elast (Martins, Guimarães & Faria, 1995 [1993]) Dynamic Surface Solutions in Linear Elasticity and Viscoelasticity With Frictional Boundary Conditions, J Vibr Acoust

Results II: f = 0.6

Parameters: $v = 0.2, f = 0.6, V_0 = 10^{-6}c_s$.

Results II: f = 0.6

Parameters: $v = 0.2, f = 0.6, V_0 = 10^{-6}c_s$.

 For a train of rectangular stick-slip waves (Adams, 2000) predicted velocity dependence:

$$f_{gl} = f_{loc} - \left(\frac{f}{f_{loc}} - 1\right) \frac{S\alpha V_0 G}{(L-S)\sigma_{yy}c_s},$$

where *S* is the slip length, *L* period, *G* shear modulus, $f = \sigma_{xy}/\sigma_{yy}$ in body waves, $\alpha = \alpha(c_f, c_l, f)$ a coefficient.

(Adams, 2000) Radiation of body waves induced by the sliding of an elastic half-space against a rigid surface, J Appl Mech

Results I: discussion

Intermediate discussion:

- uniform slip in *finite size* systems is unstable
- stick-slip waves
- intersonic c_s < c_p ≤ c_l and supersonic pulses c_p > c_l
- global friction is reduced

 $f_{gl} < f_{loc}$

Position on the interface, x/L

Results I: discussion

Intermediate discussion:

- uniform slip in *finite size* systems is unstable
- stick-slip waves
- intersonic c_s < c_p ≤ c_l and supersonic pulses c_p > c_l
- global friction is reduced

$f_{gl} < f_{loc}$

Explanation:

- Waveguide modes^[1,2]
- Stick-slip waves^[3]
- "Radiation of body waves induced by the sliding"^[4]

- [1] (Mindlin, 1955) An introduction to the mathematical theory of vibrations of elastic plates.
- [2] (Brener et al., 2016) Dynamic instabilities of frictional sliding at a bimaterial interface, J Mech Phys Solids
- [3] (Bui & Oueslati, 2010) On the stick-slip waves under unilateral contact ..., Ann Solid Struct Mech
- [4] (Adams, 2000) Radiation of body waves induced by the sliding of an elastic half-space ..., J Appl Mech

Results I: discussion II

Supersonic slip propagation does not violate causality even though c_l is the maximal signal speed

(Coker, Rosakis, Needleman, 2003) Dynamic crack growth along a polymer composite-Homalite interface, J Mech Phys Solids

(Coker, Lykotrafitis, Needleman, Rosakis, 2005) Frictional sliding modes along an interface between identical elastic plates subject to shear impact loading, J Mech Phys Solids (Kammer & Yastrebov, 2012) On the Propagation of Slip Fronts at Frictional Interfaces, Tribol Lett

Results I: discussion II

Supersonic slip propagation does not violate causality even though c_l is the maximal signal speed

(Coker, Rosakis, Needleman, 2003) Dynamic crack growth along a polymer composite-Homalite interface, J Mech Phys Solids

(Coker, Lykotrafitis, Needleman, Rosakis, 2005) Frictional sliding modes along an interface between identical elastic plates subject to shear impact loading, J Mech Phys Solids

(Kammer & Yastrebov, 2012) On the Propagation of Slip Fronts at Frictional Interfaces, *Tribol Lett*

(Ben-David, Cohen & Fineberg 2010) The dynamics of the onset of frictional slip, *Science*

Results I: discussion III

Inter- and supersonic stable and unstable roots for $\nu = 0.1$

(Martins, Guimarães & Faria, 1995) Dynamic Surface Solutions in Linear Elasticity ..., J Vibr Acoust (Adams, 2000) Radiation of body waves induced by the sliding of an elastic half-space ..., J Appl Mech

Neglect supersonic perturbations in half-space

(Ranjith & Rice, 2001) Slip dynamics at an interface between dissimilar materials, J Mech Phys Solids (Bui & Oueslati, 2010) On the stick-slip waves under unilateral contact and Coulomb friction, Ann Solid Struct Mech

 Neglect supersonic perturbations in an elastic-layer (Brener et al., 2016) Dynamic instabilities of frictional sliding at a bimaterial interface, [Mech Phys Solids

Preliminary comments:

Ill-posed^[1] if

 $\sigma_{xy} = f \sigma_{yy}$

holds all along the interface

- Exponential growth of amplitude results in a stick-slip or separation
- Critical region *f* ≥ 1 for high frequencies *kH* ≫ 1^[2-4]

- [1] (Martins, Guimarães & Faria, 1995) Dynamic Surface Solutions in Linear Elasticity ..., J Vibr Acoust
- [2] (Ranjith & Rice, 2001) Slip dynamics at an interface between dissimilar materials, J Mech Phys Solids 49
- [3] (Cochard & Rice, 2000) Fault rupture between dissimilar materials: Ill-posedness . . . , J Geophys Res 105
- [4] (Kammer, Yastrebov, Anciaux, and Molinari, 2014) The existence of a critical length scale in regularised friction, J Mech Phys Solids 63

Tangential slip velocity, \dot{u}_x

Tangential slip velocity, \dot{u}_x

Tangential slip velocity, \dot{u}_x

Position on the interface, x/L

Results IV: animation

Results IV: animation

Results IV: animation

Results IV: behavior at longer periods

Results IV: behavior at longer periods

Formal analysis I

Scalar elastodynamic potentials for dilatational and shear waves^[1]:

$$\varphi = f(y) \exp[ik(x - ct)], \quad \psi = g(y) \exp[ik(x - ct)]$$

$$f(y) = A \sin(\eta_d y) + B \cos(\eta_d y), \quad g(y) = C \sin(\eta_s y) + D \cos(\eta_s y)$$

Horizontal and vertical displacement:

 $u = [ikf(y) - g'(y)] \exp[ik(x - cy)], \quad v = [f'(y) + ikg(y)] \exp[ik(x - cy)]$

Stress components:

$$\begin{split} \sigma_{xx} &= -\mu \left[(k^2 \gamma^2 + \xi^2 \eta_d^2) f + 2ikg' \right] \exp[ik(x - cy)] \\ \sigma_{yy} &= -\mu \left[(\xi^2 k^2 + \gamma^2 \eta_d^2) f - 2ikg' \right] \exp[ik(x - cy)] \\ \sigma_{xy} &= \mu \left[\xi^2 (\eta_s^2 - k^2) g + 2ikf' \right] \exp[ik(x - cy)] \\ \sigma_{zz} &= \nu (\sigma_{xx} + \sigma_{yy}) = -\mu \xi^2 f(k^2 + \eta_d^2) \exp[ik(x - cy)] \end{split}$$

Constants:

$$\gamma^2 = c_d^2/c_s^2, \quad \xi^2 = \lambda/\mu$$

λ, μ are Lamé parameters, c_s , c_l are transverse and longitudinal wave celerities. [1] (Miklowitz, 1980) The Theory of elastic waves and waveguides. North-Holland

Formal analysis II

Prescribed displacements on boundary y = H:

 $\begin{cases} u(H) = ikf(H) - g'(H) = 0, \\ v(H) = f'(H) + ikg(H) = 0, \end{cases}$

Zero vertical displacement on boundary y = 0 (no opening):

v(H) = f'(0) + ikg(0) = 0

Frictional relation between normal and shear tractions:

 $\sigma_{xy}(0) + F\sigma_{yy}(0) = \xi^2 (\eta_s^2 - k^2)g(0) + 2ikf'(0) - F\left[(\xi^2 k^2 + \gamma^2 \eta_d^2)f(0) - 2ikg'(0)\right] = 0$

■ Obtain a linear system of equations for *X* = {*A*, *B*, *C*, *D*}

KX = 0

For nontrivial solutions, we require that

 $\det(K) = 0$
■ det(*K*) = 0 corresponds to this transcendental equation:

$$\begin{split} \mathbf{F} & \left[\sin(\eta_d H) + \frac{\eta_s \eta_d}{k^2} \sin(\eta_s H) \right] \left(-2 \frac{\eta_d \eta_s}{k^2} \sin(\eta_d H) + (\xi^2 + \gamma^2 \frac{\eta_d^2}{k^2}) \sin(\eta_s H) \right) - \\ & - \mathbf{F} \frac{\eta_s \eta_d}{k^2} \left[\cos(\eta_d H) - \cos(\eta_s H) \right] \left(2 \cos(\eta_d H) + (\xi^2 + \gamma^2 \frac{\eta_d^2}{k^2}) \cos(\eta_s H) \right) + \\ & + i \frac{\eta_d}{k} \left[2 + \xi^2 \left(\frac{\eta_s^2}{k^2} - 1 \right) \right] \left(\cos(\eta_d H) \sin(\eta_s H) + \frac{\eta_s \eta_d}{k^2} \cos(\eta_s H) \sin(\eta_d H) \right) = 0 \end{split}$$

- Fix ν and $k = 2\pi n/L$ with $n \in \mathbb{Z}$
- Take $\eta_d = |k| \sqrt{(c/c_d)^2 1}$, $\eta_s = |k| \sqrt{(c/c_s)^2 1}$
- Express $F = F(\operatorname{Re}(c), \operatorname{Im}(c))$
- Search for Re(*F*) at lines with Im(*F*) = 0
- Solution $u \sim \exp[ik(x \operatorname{Re}(c)t] \cdot \exp[k\operatorname{Im}(c)t]]$

• Example: $v = 0.1, L = 2H, k = 2\pi n/L$

• Example: $v = 0.2, L = 2H, k = 2\pi n/L$

• Example: $v = 0.2, L = 2H, k = 2\pi n/L$

Results IV: references

(Gerde & Marder, 2001) Friction and Fracture, Nature

(Moirot, Nguyen, Oueslati, 2002) An example of stick-slip and stick-slipseparation waves, Eur J Mech A-Solid

Remark: Schallamach waves are much slower.

(Comninou & Dundurs, 1977, 1978) Elastic interface waves involving separation (Freund, 1978) Discussion: elastic interface waves involving separation

Results IV: references

(Gerde & Marder, 2001) Friction and Fracture, Nature

(Moirot, Nguyen, Oueslati, 2002) An example of stick-slip and stick-slipseparation waves, *Eur J Mech A-Solid*

(Schallamach, 1971) How does rubber slide?, Wear Remark: Schallamach waves are much slower.

(Comninou & Dundurs, 1977, 1978) Elastic interface waves involving separation (Freund, 1978) Discussion: elastic interface waves involving separation

Conclusion

Sub-critical regime

- stationary solution
- supersonic stick-slip
- or standing waves stick-slip
- velocity dependent global friction

Critical regime

- intersonic transient slip pulse
- transforms into opening pulse
- ★ sliding without slipping(!)
- ★ inversion of frictional force(!)
- stationary waveguide analysis predicts instability and slip velocity

 V.A. Yastrebov, Sliding Without Slipping Under Coulomb Friction: Opening Waves and Inversion of Frictional Force, Tribology Letters 62:1-8 (2016)

[2] V.A. Yastrebov, Elastodynamic frictional sliding of an elastic layer on a rigid flat, in preparation

Thank you for your attention!

 \odot