Finite Element Method for Continuum Solid Mechanics

Vladislav A. Yastrebov

MINES Paris - PSL, CNRS
Centre des Matériaux, Evry, France

Semaine d'ES PSL @ MINES Paris
November 28, 2023

Outline

■ Reminder: Continuum Solid Mechanics

- Finite Element Method
- Mesh adaptivity and convergence
- Examples

Continuum Solid Mechanics: a Reminder

Deformable medium

- Deformation in time t

■ Reference configuration at $t=t_{0}, \underline{X}$ and current configuration at $t=t_{1}, \underline{x}(\underline{X}, t)$

- Lagrangian description, follow material points $\underline{X}=\underline{x}\left(t=t_{0}\right)$

■ Displacement vector is $\underline{u}=\underline{x}-\underline{X}$

Deformable medium

- Deformation in time t

■ Reference configuration at $t=t_{0}, \underline{X}$ and current configuration at $t=t_{1}, \underline{x}(\underline{X}, t)$

- Lagrangian description, follow material points $\underline{X}=\underline{x}\left(t=t_{0}\right)$

■ Displacement vector is $\underline{u}=\underline{x}-\underline{X}$

Deformable medium

- Deformation in time t

■ Reference configuration at $t=t_{0}, \underline{X}$ and current configuration at $t=t_{1}, \underline{x}(\underline{X}, t)$

- Lagrangian description, follow material points $\underline{X}=\underline{x}\left(t=t_{0}\right)$

■ Displacement vector is $\underline{u}=\underline{x}-\underline{X}$

Deformation tensor

- Transformation gradient $\underline{\underline{F}}=\frac{\partial \underline{x}}{\partial \underline{X}}=\frac{\partial(\underline{X}+\underline{u})}{\partial \underline{X}}=\underline{\underline{I}}+\frac{\partial \underline{u}}{\partial \underline{X}}=\underline{\underline{I}}+\underline{\underline{H}}$
- Cauchy-Green right tensor $\underline{\underline{C}}=\underline{\underline{F}}^{\top} \cdot \underline{\underline{F}}$
- Green-Lagrange deformation tensor $\underline{\underline{E}}=\frac{1}{2}(\underline{\underline{C}}-\underline{\underline{I}})=\underline{\underline{H}}^{S}+\frac{1}{2} \underline{\underline{H}}^{\top} \cdot \underline{\underline{\underline{H}}}$
- For $H_{i j} \ll 1, \underline{\underline{E}} \approx \underline{\underline{H}}^{S}$ and we obtain a tensor of small deformations

$$
\underline{\underline{\varepsilon}}=\underline{\underline{H}}^{S}=\frac{1}{2}\left[\frac{\partial \underline{u}}{\partial \underline{\underline{X}}}+\left(\frac{\partial \underline{u}}{\partial \underline{X}}\right)^{\top}\right]=\frac{1}{2}\left(\nabla \underline{\nabla}+(\nabla \underline{\underline{u}})^{\top}\right)
$$

Stress tensor and Hooke's law

- Hooke's law in uniaxial test:

$$
\sigma_{x x}=E \varepsilon_{x x}
$$

$$
F=k u \quad \Leftrightarrow \quad \sigma_{x x} A=\frac{E A}{L_{0}} u=E A \frac{L-L_{0}}{L_{0}}
$$

- In general case stress and strain are related through a linear operator (fourth-order elasticity tensor ${ }^{4} \underline{\underline{C}}$):

$$
\underline{\underline{\sigma}}={ }^{4} \underline{\underline{C}}: \underline{\underline{\varepsilon}}
$$

- Inversely the strain can be found through a stiffness tensor ${ }^{4} \underline{\underline{S}}$:

$$
\underline{\underline{\varepsilon}}={ }^{4} \underline{\underline{S}}: \underline{\underline{\sigma}}
$$

- In the case of isotropic material the Hooke's law reduces to:

$$
\underline{\underline{\sigma}}=\lambda \operatorname{tr} \underline{\underline{\varepsilon}} \underline{\underline{I}}+2 \mu \underline{\underline{\varepsilon}}
$$

with λ, μ being Lamé coefficients:

$$
\lambda=\frac{v E}{(1+v)(1-2 v)}, \quad \mu=\frac{E}{2(1+v)}
$$

with Young's modulus E and Poisson's ratio v.

- In the component form it reads:

$$
\sigma_{i j}=\lambda\left(\varepsilon_{k k}\right) \delta_{i j}+2 \mu \varepsilon_{i j}
$$

■ In the matrix form:

$$
\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{22} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{33}
\end{array}\right]=2 \mu\left[\begin{array}{ccc}
\lambda \operatorname{tr} \underline{\underline{\varepsilon}}) /(2 \mu)+\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
\varepsilon_{12} & \lambda \operatorname{tr} \underline{\underline{\varepsilon}} /(2 \mu)+\varepsilon_{22} & \varepsilon_{23} \\
\varepsilon_{13} & \varepsilon_{23} & \lambda \operatorname{tr} \underline{\underline{\varepsilon})} /(2 \mu)+\varepsilon_{33}
\end{array}\right]
$$

- In the case of isotropic material the Hooke's law reduces to:

$$
\underline{\underline{\sigma}}=\lambda \operatorname{tr} \underline{\underline{\varepsilon}} \underline{\underline{I}}+2 \mu \underline{\underline{\varepsilon}}
$$

with λ, μ being Lamé coefficients:

$$
\lambda=\frac{v E}{(1+v)(1-2 v)}, \quad \mu=\frac{E}{2(1+v)}
$$

with Young's modulus E and Poisson's ratio v.

- In the component form it reads:

$$
\sigma_{i j}=\lambda\left(\varepsilon_{k k}\right) \delta_{i j}+2 \mu \varepsilon_{i j}
$$

■ In the matrix form:

$$
\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{22} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{33}
\end{array}\right]=2 \mu\left[\begin{array}{ccc}
\nu \operatorname{tr} \underline{\underline{\varepsilon}}) /(1-2 v)+\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
\varepsilon_{12} & \nu \operatorname{tr} \underline{\underline{\varepsilon}}) /(1-2 v)+\varepsilon_{22} & \varepsilon_{23} \\
\varepsilon_{13} & \varepsilon_{23} & \nu \operatorname{tr} \underline{\underline{\varepsilon}}) /(1-2 v)+\varepsilon_{33}
\end{array}\right]
$$

- Strain as a function of stress:

$$
\underline{\underline{\varepsilon}}=\frac{1+v}{E} \underline{\underline{\sigma}}-\frac{v}{E} \operatorname{tr}(\underline{\underline{\sigma}}) \underline{\underline{I}} .
$$

- In the component form it reads:

$$
\varepsilon_{i j}=\frac{1+v}{E} \sigma_{i j}-\frac{v}{E} \sigma_{k k} \delta_{i j}
$$

- In the matrix form:

$$
\left[\begin{array}{lll}
\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
\varepsilon_{12} & \varepsilon_{22} & \varepsilon_{23} \\
\varepsilon_{13} & \varepsilon_{23} & \varepsilon_{33}
\end{array}\right]=\frac{1}{E}\left[\begin{array}{ccc}
(1+v) \sigma_{11}-v \operatorname{tr}(\underline{\underline{\sigma}}) & (1+v) \sigma_{12} & (1+v) \sigma_{13} \\
(1+v) \sigma_{12} & (1+v) \sigma_{22}-v \operatorname{tr}(\underline{\underline{\sigma}}) & (1+v) \sigma_{23} \\
(1+v) \sigma_{13} & (1+v) \sigma_{23} & (1+v) \sigma_{33}-v \operatorname{tr}(\underline{\underline{\sigma}})
\end{array}\right]
$$

- Strain as a function of stress:

$$
\underline{\underline{\varepsilon}}=\frac{1+v}{E} \underline{\underline{\sigma}}-\frac{v}{E} \operatorname{tr}(\underline{\underline{\sigma}}) \underline{\underline{I}}
$$

■ In the component form it reads:

$$
\varepsilon_{i j}=\frac{1+v}{E} \sigma_{i j}-\frac{v}{E} \sigma_{k k} \delta_{i j}
$$

- In the matrix form:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
\varepsilon_{12} & \varepsilon_{22} & \varepsilon_{23} \\
\varepsilon_{13} & \varepsilon_{23} & \varepsilon_{33}
\end{array}\right]=\frac{1}{E}\left[\begin{array}{ccc}
(1+v) \sigma_{11}-v \operatorname{tr}(\underline{\underline{\sigma}}) & (1+v) \sigma_{12} & (1+v) \sigma_{13} \\
(1+v) \sigma_{12} & (1+v) \sigma_{22}-v \operatorname{tr}(\underline{\underline{\sigma}}) & (1+v) \sigma_{23} \\
(1+v) \sigma_{13} & (1+v) \sigma_{23} & (1+v) \sigma_{33}-v \operatorname{tr}(\underline{\underline{\sigma}})
\end{array}\right]} \\
& \quad=\frac{1}{E}\left[\begin{array}{ccc}
\sigma_{11}-v\left(\sigma_{22}+\sigma_{33}\right) & (1+v) \sigma_{12} & (1+v) \sigma_{13} \\
(1+v) \sigma_{12} & \sigma_{22}-v\left(\sigma_{11}+\sigma_{33}\right) & (1+v) \sigma_{23} \\
(1+v) \sigma_{13} & (1+v) \sigma_{23} & \sigma_{33}-v\left(\sigma_{11}+\sigma_{22}\right)
\end{array}\right]
\end{aligned}
$$

- Infinitesimal strain tensor is symmetric and satisfies the compatibility conditions*:

$$
\nabla \times(\nabla \times \underline{\underline{\varepsilon}})=0
$$

- Stress tensor $\underline{\underline{\sigma}}$ should ensure equilibrium of infinitesimal element*:

$$
\begin{aligned}
& \text { Force balance: } \int_{S} \underline{n} \cdot \underline{\underline{\sigma}} d S=0 \\
& \text { Momentum balance: } \int_{S} \underline{r} \times(\underline{n} \cdot \underline{\underline{\sigma}}) d S=0
\end{aligned}
$$

- Following the divergence theorem:

$$
\begin{aligned}
& \int_{S} \underline{n} \cdot \underline{\underline{\sigma}} d S=\int_{V} \nabla \cdot \underline{\underline{\sigma}} d V=0 \text { Since volume } V \text { can be arbitrary } \\
& \text { chosen, then } \\
& \nabla \cdot \underline{\underline{\sigma}}=0 \text { everywhere in } V .
\end{aligned}
$$

[^0]

- Second Newton's law:
$m \ddot{\ddot{u}}=\underline{f} \quad \Rightarrow \quad \rho \underline{\ddot{u}}=\frac{1}{V} \underline{f}$
- In presence of volumetric forces with density $f_{-V^{\prime}}$, the total force is given by:

$$
\underline{f}=\int_{V} f_{V} d V+\int_{S} \underline{n} \cdot \underline{\underline{\sigma}} d S
$$

- Then using the second Newton's law and the divergence theorem:

$$
\int_{V}\left(\nabla \cdot \underline{\underline{\sigma}}+\underline{f}_{V}\right) d V=\int_{V} \rho \underline{\ddot{u}} d V
$$

- Since it is right for arbitrary V, then in every point of V :

$$
\nabla \cdot \underline{\underline{\sigma}}+\underline{f}_{V}=\rho \underline{\underline{u}}
$$

- Equilibrium (3 equations):

$$
\nabla \cdot \underline{\underline{\sigma}}+\underline{f}_{V}=\rho \underline{\ddot{u}}
$$

- In component form ${ }^{*}$:

$$
\sigma_{i j, j}+f_{V i}=\rho \ddot{u}_{i},
$$

- Explicitly:

$$
\begin{aligned}
& \frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{x y}}{\partial y}+\frac{\partial \sigma_{x z}}{\partial z}+f_{V_{x}}=\rho \ddot{u}_{x} \\
& \frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}+\frac{\partial \sigma_{y z}}{\partial z}+f_{V_{y}}=\rho \ddot{u}_{y} \\
& \frac{\partial \sigma_{x z}}{\partial x}+\frac{\partial \sigma_{x z}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}+f_{V_{z}}=\rho \ddot{u}_{z}
\end{aligned}
$$

* The following notation is used $y_{i, j}=\frac{\partial y_{i}}{\partial x_{j}}$

Deformable solid and boundary conditions

Notations:

- Consider a solid Ω with boundary $\partial \Omega$
- Boundary is split into Γ_{u} and $\Gamma_{f}: \partial \Omega=\Gamma_{u} \cup \Gamma_{f}$
- At Γ_{u} displacements $\underline{u}_{0}(t, \underline{X})$ are prescribed (Dirichlet boundary conditions [BC]):

$$
\underline{u}=\underline{u}_{0} \text { at } \Gamma_{u}
$$

- At Γ_{f} tractions $\underline{t}_{0}(t, \underline{X})$ are prescribed (Neumann $B C$):

$$
\begin{aligned}
& \underline{\sigma} \cdot \underline{n}=\underline{t}_{0} \text { at } \Gamma_{f} \\
& \underline{\underline{\sigma}} \cdot \underline{n}=0 \text { at } \Gamma_{f}^{0}
\end{aligned}
$$

Deformable solid and boundary conditions

Notations:

- Consider a solid Ω with boundary $\partial \Omega$
- Boundary is split into Γ_{u} and $\Gamma_{f}: \partial \Omega=\Gamma_{u} \cup \Gamma_{f}$
- At Γ_{u} displacements $\underline{u}_{0}(t, \underline{X})$ are prescribed (Dirichlet boundary conditions [BC]):

$$
\underline{u}=\underline{u}_{0} \text { at } \Gamma_{u}
$$

- At Γ_{f} tractions $\underline{t}_{0}(t, \underline{X})$ are prescribed (Neumann $B C)$:

$$
\begin{aligned}
& \underline{\sigma} \cdot \underline{n}=\underline{t}_{0} \text { at } \Gamma_{f} \\
& \underline{\underline{\sigma}} \cdot \underline{n}=0 \text { at } \Gamma_{f}^{0}
\end{aligned}
$$

Remarks:

- on the same boundary both BCs can be prescribed if they are orthogonal one to each other, i.e. $\underline{u}_{0} \cdot \underline{t}_{0}=0$ (ex.: friction);
- a relationship between these BCs can be prescribed (Robin BC): $\underline{u}_{0}=\underline{U}-k \underline{t}_{0}$ (ex.: Winkler's foundation).

Elastic and static problem set-up

- Equilibrium in absence of inertial forces

$$
\begin{equation*}
\nabla \cdot \underline{\underline{\sigma}}+\underline{f}_{V}=0 \tag{*}
\end{equation*}
$$

- Consistutive relation:

$$
\underline{\underline{\sigma}}={ }^{4} \underline{\underline{C}}: \underline{\underline{\varepsilon}}
$$

- Strain tensor:

$$
\underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{u}+(\nabla \underline{u})^{\top}\right)
$$

- Boundary conditions:

$$
\begin{aligned}
& \underline{u}=\underline{u}_{0} \text { at } \Gamma_{u} \\
& \underline{\underline{\sigma}} \cdot \underline{n}=\underline{t}_{0} \text { at } \Gamma_{f} \\
& \underline{\underline{\sigma}} \cdot \underline{n}=0 \text { at } \Gamma_{f}^{0}
\end{aligned}
$$

- Problem:
find such field u in Ω that satisfies equilibrium Eq. (*) and boundary conditions.

Finite Element Method

Main idea in a nutshell

- Find displacement only on few locations $\underline{u}_{i}(t)$ and interpolate in between

$$
\underline{u}(\underline{X}, t)=\sum N_{i}(\underline{X}) \underline{u}_{i}(t)
$$

- Thus, we reduce the problem of dimension ∞ to a finite dimensional problem
- Weak formulation of equilibrium equations results in a linear system of equations...
- Alternatively, the problem could be formulated as an optimization problem:

Minimize body's potential energy for given external and internal loads

$$
\min \left(U^{h}\left(\underline{\boldsymbol{u}}_{i}\right)\right) \text { for } \underline{t}_{0} \text { on } \Gamma_{f}^{h} \text { and } \underline{u}_{0} \text { on } \Gamma_{u}^{h}
$$

Main idea

- From continuous to discrete problem
- Split solid into finite elements
$\Omega \rightarrow \Omega^{h}$ with $\Omega^{h}=\sum_{e} \Omega_{e}^{h}$
- All quantities are associated with this discretization: $\underline{\underline{u}} \rightarrow \underline{\underline{u}}^{h}, \underline{\underline{\sigma}} \rightarrow \underline{\underline{\sigma}}^{h}, \Gamma_{f} \rightarrow \Gamma_{f}^{h}, \underline{t}_{0} \rightarrow \underline{\underline{t}}_{0}^{h}, \ldots$
- Search for \underline{u}^{h} only in a finite number of points (nodes)
- Interpolate in between (within elements)
- Ensure (1) equilibrium of every element and (2) satisfaction of boundary conditions
(1) $\nabla \cdot \underline{\underline{\sigma}}^{h}+\underline{f}_{-v}^{h} \sim 0$ in $\Omega_{e}^{h}, \forall e$
(2.a) $\underline{\underline{\sigma}}^{h} \cdot \underline{n}^{h} \sim \underline{t}_{0}^{h}$ at Γ_{f}^{h}
(2.b) $\underline{u}^{h} \sim \underline{u}_{0}^{h}$ at Γ_{u}^{h}

Main idea

- From continuous to discrete problem
- Split solid into finite elements
$\Omega \rightarrow \Omega^{h}$ with $\Omega^{h}=\sum_{e} \Omega_{e}^{h}$
- All quantities are associated with this discretization:
$\underline{\underline{u}} \rightarrow \underline{\underline{u}}^{h}, \underline{\underline{\sigma}} \rightarrow \underline{\underline{\sigma}}_{\underline{h}}, \Gamma_{f} \rightarrow \Gamma_{f}^{h}, \underline{t}_{0} \rightarrow \underline{\underline{t}}_{0}^{h}, \cdots$
- Search for \underline{u}^{h} only in a finite number of points (nodes)
- Interpolate in between (within elements)
- Ensure (1) equilibrium of every element and (2) satisfaction of boundary conditions
(1) $\nabla \cdot \underline{\underline{\sigma}}^{h}+\underline{f}_{-v}^{h} \sim 0$ in $\Omega_{e}^{h}, \forall e$
(2.a) $\underline{\underline{\sigma}}^{h} \cdot \underline{n}^{h} \sim \underline{t}_{0}^{h}$ at Γ_{f}^{h}
(2.b) $\underline{u}^{h} \sim \underline{u}_{0}^{h}$ at Γ_{u}^{h}

- Existence and uniqueness of the solution \underline{u}_{*}^{h}
- When discretization-size tends to zero $h \rightarrow 0$, convergence to the solution of the continuum problem: $\underline{u}_{*}^{h} \xrightarrow[h \rightarrow 0]{\longrightarrow} \underline{u}_{*}$

1 For any discrete system the quantities of interest [q] depend on system parameters $[p]$ and on locally acting external parameters [e]

$$
[q]_{i}=[q]_{i}\left([p]_{j},[e]_{i}\right)
$$

2 In the first approximation this dependence is linear

$$
\begin{aligned}
& q_{1}=K_{11} p_{1}+K_{12} p_{2}+\ldots K_{1 N} p_{N}+A_{11} e_{1} \\
& q_{2}=K_{21} p_{1}+K_{22} p_{2}+\ldots K_{2 N} p_{N}+A_{22} e_{2} \\
& \ldots \\
& q_{N}=K_{21} p_{1}+K_{22} p_{2}+\ldots K_{2 N} p_{N}+A_{N N} e_{N}
\end{aligned}
$$

3 In matrix form

$$
[q]_{i}=[\mathbf{K}]_{i j}[p]_{j}+[\mathbf{A}]_{i i}[e]_{i}
$$

4 Assuming that external parameters are of the same nature as quantities of interest $\left([\mathrm{A}]_{i j}=[\mathrm{I}]_{i j}\right)$

$$
[q]_{i}=[\mathrm{K}]_{i j}[p]_{j}+[e]_{i}
$$

Discrete system in structural mechanics

Main quantities

■ Quantities of interest $[q]$ are, in general, forces $[f]$

- System parameters $[p]$ are, in general, displacements [u]
- External parameters $[e]$ are, in general, external forces $[f]^{\text {ext }}$

Main steps

1 Construct stiffness matrix and nodal loads vector

$$
[\mathbf{K}]_{i j}^{k},[f]_{i}^{k}, \quad i, j \in 1, N N^{k} ; k \in N E,
$$

where $N N^{k}$ is the number of nodes of k-th element, $N E$ is the number of elements.
2 Assemble them into the global stiffness matrix and global load vector

$$
[\mathbf{K}]_{i j},[f]_{i,}, \quad i, j \in 1, N N,
$$

where $N N$ is the total number of nodes.
3 Add boundary conditions (for example Dirichlet and Neumann)

$$
[f]_{k}^{e x t}, \quad k \in B C_{f} ; \quad[u]_{l}^{0}, \quad l \in B C_{u}
$$

4 Solve linear system of equations

$$
[\mathbf{K}]_{i j}[u]_{j}=[f]_{i}-[f]_{i}^{e x t} \quad \rightarrow \quad[u]_{j *}
$$

- Displacements are known at nodes: $\underline{\underline{u}}_{i}^{h}, i=1,4$
- We need to know them inside the element
- Parametrize the inside with parameters $\{\xi, \eta\} \in[-1,1]$
- Use interpolation or shape functions $N_{i}(\xi, \eta)$ for position \underline{X}

$$
\underline{X}^{h}(\xi, \eta)=\sum_{i} \underline{X}_{i}^{h} N_{i}(\xi, \eta)
$$

and displacement \underline{u} :

$$
\underline{\boldsymbol{u}}^{h}(\xi, \eta)=\sum_{i} \underline{\boldsymbol{u}}_{i}^{h} N_{i}(\xi, \eta)
$$

- If the same functions are used, then the element is called isoparametric
- Remark: Find $\{\xi, \eta\}$ from \underline{X} is not always straigthforward (may result in a system of non-linear equations)

Continuum

Finite element

- Displacements are known at nodes: $\underline{\underline{u}}_{i}^{h}, i=1,4$
- We need to know them inside the element
- Parametrize the inside with parameters $\{\xi, \eta\} \in[-1,1]$
- Use interpolation or shape functions $N_{i}(\xi, \eta)$ for position \underline{X}

$$
\underline{X}^{h}(\xi, \eta)=\sum_{i} \underline{X}_{i}^{h} N_{i}(\xi, \eta)
$$

and displacement \underline{u} :

$$
\underline{\boldsymbol{u}}^{h}(\xi, \eta)=\sum_{i} \underline{\boldsymbol{u}}_{i}^{h} N_{i}(\xi, \eta)
$$

- If the same functions are used, then the element is called isoparametric
- Remark: Find $\{\xi, \eta\}$ from \underline{X} is not always straigthforward (may result in a system of non-linear equations)

Continuum

Finite element

Rules

- Node i has coordinates $\left\{\xi_{i}, \eta_{i}\right\}$
- Then $N_{i}\left(\xi_{j}, \eta_{j}\right)=\delta_{i j}$
- Partition of unity:

$$
\forall \xi, \eta,: \sum_{i} N_{i}(\xi, \eta)=1
$$

Types

- Linear shape functions

$$
\frac{\partial N}{\partial \xi}=\text { const }
$$

- Non-linear shape functions

$$
\frac{\partial N}{\partial \xi}=f(\xi)
$$

- Linear elements vs quadratic elements
- Higher order elements

Parameteric space

Physical space

Example: bar element

- Linear shape functions:
$N_{1}(\xi)=\frac{1}{2}(1-\xi)$
$N_{2}(\xi)=\frac{1}{2}(1+\xi)$
- Quadratic shape functions:

$$
\begin{aligned}
& N_{1}(\xi)=\frac{1}{2} \xi(\xi-1) \\
& N_{2}(\xi)=\left(1-\xi^{2}\right) \\
& N_{3}(\xi)=\frac{1}{2} \xi(1+\xi)
\end{aligned}
$$

■ Displacement nodal vectors $\underline{u}_{i}=\underline{e}_{x} u_{i}^{x}+\underline{e}_{y} u_{i}^{y}$

- Array of nodal coordinates (size dim $\cdot n$)

$$
[X]=\left[x_{1}, y_{1}, x_{2}, y_{2}, \ldots x_{n}, y_{n}\right]_{2 n}^{\top}
$$

- Array of nodal displacements (size $\operatorname{dim} \cdot n$)

$$
[u]=\left[u_{1}^{x}, u_{1}^{y}, u_{2}^{x}, u_{2}^{y}, \ldots u_{n}^{x}, u_{n}^{y}\right]_{2 n}^{\top}
$$

- Arrays of shape functions (size $\operatorname{dim} \cdot n$)

$$
\left.\left.\left.\left.\begin{array}{l}
{\left[N_{x}\right]=\left[N_{1}, 0, N_{2}, 0, \ldots\right.} \\
{\left[N_{y}\right]=\left[0, N_{n}, 0\right.}
\end{array}\right]_{2 n}^{\top}, 0, N_{2}, \ldots 0, N_{n}\right]_{2 n}^{\top}\right]\left[\begin{array}{ccccccc}
N_{1} & 0 & N_{2} & 0 & \ldots & N_{n} & 0 \\
0 & N_{1} & 0 & N_{2} & \ldots & 0 & N_{n}
\end{array}\right]_{2 n \times \operatorname{dim}}^{\top} . ~ \$ N\right]
$$

- Then

$$
\begin{array}{cc}
x(\xi, \eta, t)=\left[N_{x}(\xi, \eta)\right]^{\top}[X(t)], & y(\xi, \eta, t)=\left[N_{y}(\xi, \eta)\right]^{\top}[X(t)] \\
u^{x}(\xi, \eta, t)=\left[N_{x}(\xi, \eta)\right]^{\top}[u(t)], & u^{y}(\xi, \eta, t)=\left[N_{y}(\xi, \eta)\right]^{\top}[u(t)]
\end{array}
$$

- Need to evaluate gradients (spatial derivatives) like $\frac{\partial f}{\partial x}$
- But with shape functions $f=f(\xi, \eta)$
- Then $\frac{\partial f(\xi, \eta)}{\partial x}=\frac{\partial f}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial f}{\partial \eta} \frac{\partial \eta}{\partial x}$
- However, in general we do not have $\xi=\xi(x, y)$ but rather $x=x(\xi, \eta)$
- Let's do it other way around

$$
\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial}{\partial x} \frac{\partial x}{\partial \xi}+\frac{\partial}{\partial y} \frac{\partial y}{\partial \xi} \\
\frac{\partial}{\partial x} \frac{\partial x}{\partial \eta}+\frac{\partial}{\partial y} \frac{\partial y}{\partial \eta}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y}
\end{array}\right]=[\mathrm{J}]\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y}
\end{array}\right]
$$

- Matrix [J] is called Jacobian operator/matrix and enables to obtain

$$
\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y}
\end{array}\right]=[\mathbf{J}]^{-1}\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]
$$

- Jacobian operator/matrix:

$$
[J]=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]
$$

- Using $x=\left[N_{x}\right]^{\top}[X], \quad y=\left[N_{y}\right]^{\top}[X]$ we get:

$$
[J]=\left[\begin{array}{ll}
{\left[N_{x, \xi}\right]^{\top}[X]} & {\left[N_{y, \xi} \xi^{\top}[X]\right.} \\
{\left[N_{x, \eta}\right]^{\top}[X]} & {\left[N_{y, \eta}\right]^{\top}[X]}
\end{array}\right),
$$

where $\left[N_{x, \xi}\right]=\left[\frac{\partial N_{1}}{\partial \xi}, 0, \frac{\partial N_{2}}{\partial \xi}, 0, \ldots \frac{\partial N_{n}}{\partial \xi}, 0\right]^{\top}$ etc.

- Then the inverse Jacobian is given by:

$$
[\mathrm{J}]^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
{\left[N_{y, \eta}\right]^{\top}[X]} & -\left[N_{y, \xi}\right]^{\top}[X] \\
-\left[N_{x, \eta}\right]^{\top}[X] & {\left[N_{x, \xi}\right]^{\top}[X]}
\end{array}\right],
$$

with the determinant of the Jacobian matrix (or simply Jacobian):
$\Delta=\operatorname{det}([J])=[X]^{\top}\left(\left[N_{x, \xi}\right]\left[N_{y, \eta}\right]^{\top}-\left[N_{y, \xi} \xi\left[N_{x, \eta}\right]^{\top}\right)[X] \neq 0\right.$

Infinitesimal strain in 2D

- Strain tensor: $\quad \underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{\underline{u}}+(\nabla \underline{u})^{\top}\right) \quad(*)$

Infinitesimal strain in 2D

- Strain tensor: $\quad \underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{\underline{u}}+(\nabla \underline{u})^{\top}\right) \quad(*)$
- Interpolated displacements: $u^{x}=\left[N_{x}\right]^{\top}[u], \quad u^{y}=\left[N_{y}\right]^{\top}[u]$

Infinitesimal strain in 2D

- Strain tensor: $\quad \underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{\nabla}+(\nabla \underline{u})^{\top}\right) \quad(*)$
- Interpolated displacements: $u^{x}=\left[N_{x}\right]^{\top}[u], \quad u^{y}=\left[N_{y}\right]^{\top}[u]$
- Displacement gradient:

$$
\nabla \underline{\boldsymbol{u}}=\frac{\partial \underline{\boldsymbol{u}}^{h}}{\partial x} \otimes \underline{\boldsymbol{e}}_{x}+\frac{\partial \underline{\boldsymbol{u}}^{h}}{\partial y} \otimes \underline{\boldsymbol{e}}_{-1}
$$

Infinitesimal strain in 2D

- Strain tensor: $\quad \underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{\nabla}+(\nabla \underline{u})^{\top}\right) \quad(*)$
- Interpolated displacements: $u^{x}=\left[N_{x}\right]^{\top}[u], \quad u^{y}=\left[N_{y}\right]^{\top}[u]$
- Displacement gradient:

$$
\nabla \underline{u}=\frac{\partial \underline{u}^{h}}{\partial x} \otimes \underline{e}_{x}+\frac{\partial \underline{u}^{h}}{\partial y} \otimes \underline{e}_{y}=\frac{\partial u^{x}}{\partial x} \underline{e}^{x} \otimes \underline{e}^{x}+\frac{\partial u^{x}}{\partial y} \underline{e}^{x} \otimes \underline{e}^{y}+\frac{\partial u^{y}}{\partial x} \underline{e}^{y} \otimes \underline{e}^{x}+\frac{\partial u^{y}}{\partial y} \underline{e}^{y} \otimes \underline{e}^{y}
$$

Infinitesimal strain in 2D

- Strain tensor: $\quad \underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{\nabla}+(\nabla \underline{u})^{\top}\right) \quad(*)$
- Interpolated displacements: $u^{x}=\left[N_{x}\right]^{\top}[u], \quad u^{y}=\left[N_{y}\right]^{\top}[u]$
- Displacement gradient:

$$
\begin{aligned}
& \nabla \underline{u}=\frac{\partial \underline{u}^{h}}{\partial x} \otimes \underline{e}_{x}+\frac{\partial \underline{u}^{h}}{\partial y} \otimes \underline{e}_{y}=\frac{\partial u^{x}}{\partial x} \underline{e}^{x} \otimes \underline{e}^{x}+\frac{\partial u^{x}}{\partial y} \underline{e}^{x} \otimes \underline{e}^{y}+\frac{\partial u^{y}}{\partial x} \underline{e}^{y} \otimes \underline{e}^{x}+\frac{\partial u^{y}}{\partial y} \underline{e}^{y} \otimes \underline{e}^{y} \\
& (\nabla \underline{\boldsymbol{u}})^{\top} \sim\left[\begin{array}{ll}
\frac{\partial u^{x}}{\partial x} & \frac{\partial u^{y}}{\partial x} \\
\frac{\partial u^{x}}{\partial y} & \frac{\partial u^{y}}{\partial y}
\end{array}\right]
\end{aligned}
$$

Infinitesimal strain in 2D

- Strain tensor: $\quad \underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{\underline{u}}+(\nabla \underline{u})^{\top}\right) \quad(*)$
- Interpolated displacements: $u^{x}=\left[N_{x}\right]^{\top}[u], \quad u^{y}=\left[N_{y}\right]^{\top}[u]$
- Displacement gradient:

$$
\begin{gathered}
\nabla \underline{u}=\frac{\partial \underline{u}^{h}}{\partial x} \otimes \underline{e}_{x}+\frac{\partial \underline{u}^{h}}{\partial y} \otimes \underline{e}_{y}=\frac{\partial u^{x}}{\partial x} \underline{e}^{x} \otimes \underline{e}^{x}+\frac{\partial u^{x}}{\partial y} \underline{e}^{x} \otimes \underline{e}^{y}+\frac{\partial u^{y}}{\partial x} \underline{e}^{y} \otimes \underline{e}^{x}+\frac{\partial u^{y}}{\partial y} \underline{e}^{y} \otimes \underline{e}^{y} \\
(\nabla \underline{u})^{\top} \sim\left[\begin{array}{ll}
\frac{\partial u^{x}}{\partial x} & \frac{\partial u^{y}}{\partial x} \\
\frac{\partial u^{x}}{\partial y} & \frac{\partial u^{y}}{\partial y}
\end{array}\right]=[\mathbf{J}]^{-1}\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]\left[\begin{array}{c}
u^{x} \\
u^{y}
\end{array}\right]^{\top}
\end{gathered}
$$

Infinitesimal strain in 2D

- Strain tensor: $\quad \underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{\underline{u}}+(\nabla \underline{u})^{\top}\right) \quad(*)$
- Interpolated displacements: $u^{x}=\left[N_{x}\right]^{\top}[u], \quad u^{y}=\left[N_{y}\right]^{\top}[u]$
- Displacement gradient:

$$
\begin{gathered}
\nabla \underline{u}=\frac{\partial \underline{u}^{h}}{\partial x} \otimes \underline{e}_{x}+\frac{\partial \underline{u}^{h}}{\partial y} \otimes \underline{e}_{y}=\frac{\partial u^{x}}{\partial x} \underline{e}^{x} \otimes \underline{e}^{x}+\frac{\partial u^{x}}{\partial y} \underline{e}^{x} \otimes \underline{e}^{y}+\frac{\partial u^{y}}{\partial x} \underline{e}^{y} \otimes \underline{e}^{x}+\frac{\partial u^{y}}{\partial y} \underline{e}^{y} \otimes \underline{e}^{y} \\
(\nabla \underline{u})^{\top} \sim\left[\begin{array}{cc}
\frac{\partial u^{x}}{\partial x} & \frac{\partial u^{y}}{\partial x} \\
\frac{\partial u^{x}}{\partial y} & \frac{\partial u^{y}}{\partial y}
\end{array}\right]=[\mathbf{J}]^{-1}\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]\left[\begin{array}{c}
u^{x} \\
u^{y}
\end{array}\right]^{\top}=[\mathbf{J}]^{-1}\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]\left[\begin{array}{c}
{\left[N_{x}\right]^{\top}[u]} \\
{\left[N_{y}\right]^{\top}[u]}
\end{array}\right]^{\top}
\end{gathered}
$$

Infinitesimal strain in 2D

- Strain tensor: $\quad \underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{\sim}+(\nabla \underline{u})^{\top}\right) \quad(*)$
- Interpolated displacements: $u^{x}=\left[N_{x}\right]^{\top}[u], \quad u^{y}=\left[N_{y}\right]^{\top}[u]$
- Displacement gradient:

$$
\begin{gathered}
\nabla \underline{u}=\frac{\partial \underline{u}^{h}}{\partial x} \otimes \underline{e}_{x}+\frac{\partial \underline{u}^{h}}{\partial y} \otimes \underline{e}_{y}=\frac{\partial u^{x}}{\partial x} \underline{e}^{x} \otimes \underline{e}^{x}+\frac{\partial u^{x}}{\partial y} \underline{e}^{x} \otimes \underline{e}^{y}+\frac{\partial u^{y}}{\partial x} \underline{e}^{y} \otimes \underline{e}^{x}+\frac{\partial u^{y}}{\partial y} \underline{e}^{y} \otimes \underline{e}^{y} \\
(\nabla \underline{u})^{\top} \sim\left[\begin{array}{cc}
\frac{\partial u^{x}}{\partial x} & \frac{\partial u^{y}}{\partial x} \\
\frac{\partial u^{x}}{\partial y} & \frac{\partial u^{y}}{\partial y}
\end{array}\right]=[\mathbf{J}]^{-1}\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]\left[\begin{array}{c}
u^{x} \\
u^{y}
\end{array}\right]^{\top}=[\mathbf{J}]^{-1}\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]\left[\begin{array}{l}
{\left[N_{x}\right]^{\top}[u]} \\
{\left[N_{y}\right]^{\top}[u]}
\end{array}\right]^{\top}=[\mathbf{J}]^{-1}\left[\begin{array}{ll}
{\left[N_{x, \xi}\right]^{\top}[u]} & {\left[N_{y, \xi}\right]^{\top}[u]} \\
{\left[N_{x, \eta}\right]^{\top}[u]} & {\left[N_{y, \eta}\right]^{\top}[u]}
\end{array}\right]
\end{gathered}
$$

Infinitesimal strain in 2D

- Strain tensor: $\quad \underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{\underline{u}}+(\nabla \underline{u})^{\top}\right) \quad(*)$
- Interpolated displacements: $u^{x}=\left[N_{x}\right]^{\top}[u], \quad u^{y}=\left[N_{y}\right]^{\top}[u]$
- Displacement gradient:

$$
\begin{gathered}
\nabla \underline{u}=\frac{\partial \underline{u}^{h}}{\partial x} \otimes \underline{e}_{x}+\frac{\partial \underline{u}^{h}}{\partial y} \otimes \underline{e}_{y}=\frac{\partial u^{x}}{\partial x} \underline{e}^{x} \otimes \underline{e}^{x}+\frac{\partial u^{x}}{\partial y} \underline{e}^{x} \otimes \underline{e}^{y}+\frac{\partial u^{y}}{\partial x} \underline{e}^{y} \otimes \underline{e}^{x}+\frac{\partial u^{y}}{\partial y} \underline{e}^{y} \otimes \underline{e}^{y} \\
(\nabla \underline{u})^{\top} \sim\left[\begin{array}{ll}
\frac{\partial u^{x}}{\partial x} & \frac{\partial u^{y}}{\partial x} \\
\frac{\partial u^{x}}{\partial y} & \frac{\partial u^{y}}{\partial y}
\end{array}\right]=[\mathbf{J}]^{-1}\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]\left[\begin{array}{c}
u^{x} \\
u^{y}
\end{array}\right]^{\top}=[\mathbf{J}]^{-1}\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]\left[\begin{array}{l}
\left.N_{x}\right]^{\top}[u] \\
{\left[N_{y}\right]^{\top}[u]}
\end{array}\right]^{\top}=[\mathbf{J}]^{-1}\left[\begin{array}{ll}
{\left[N_{x, \xi}\right]^{\top}[u]} & {\left[N_{y, \xi}\right]^{\top}[u]} \\
{\left[N_{x, \eta}\right]^{\top}[u]} & {\left[N_{y, \eta}\right]^{\top}[u]}
\end{array}\right]
\end{gathered}
$$

- Represent strain tensor as an array (Voigt notations):

$$
\underline{\underline{\varepsilon}} \quad \Rightarrow \quad[E]=\left[\begin{array}{lll}
\varepsilon_{x x}, & \varepsilon_{y y}, & \gamma_{x y}
\end{array}\right]^{\top}, \quad \gamma_{x y}=2 \varepsilon_{x y}
$$

Infinitesimal strain in 2D

- Strain tensor: $\quad \underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{\underline{u}}+(\nabla \underline{u})^{\top}\right) \quad(*)$
- Interpolated displacements: $u^{x}=\left[N_{x}\right]^{\top}[u], \quad u^{y}=\left[N_{y}\right]^{\top}[u]$
- Displacement gradient:

$$
\begin{gathered}
\nabla \underline{u}=\frac{\partial \underline{u}^{h}}{\partial x} \otimes \underline{e}_{x}+\frac{\partial \underline{u}^{h}}{\partial y} \otimes \underline{e}_{y}=\frac{\partial u^{x}}{\partial x} \underline{e}^{x} \otimes \underline{e}^{x}+\frac{\partial u^{x}}{\partial y} \underline{e}^{x} \otimes \underline{e}^{y}+\frac{\partial u^{y}}{\partial x} \underline{e}^{y} \otimes \underline{e}^{x}+\frac{\partial u^{y}}{\partial y} \underline{e}^{y} \otimes \underline{e}^{y} \\
(\nabla \underline{u})^{\top} \sim\left[\begin{array}{ll}
\frac{\partial u^{x}}{\partial x} & \frac{\partial u^{y}}{\partial x} \\
\frac{\partial u^{x}}{\partial y} & \frac{\partial u^{y}}{\partial y}
\end{array}\right]=[\mathbf{J}]^{-1}\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]\left[\begin{array}{c}
u^{x} \\
u^{y}
\end{array}\right]^{\top}=[\mathbf{J}]^{-1}\left[\begin{array}{c}
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta}
\end{array}\right]\left[\begin{array}{l}
\left.N_{x}\right]^{\top}[u] \\
{\left[N_{y}\right]^{\top}[u]}
\end{array}\right]^{\top}=[\mathbf{J}]^{-1}\left[\begin{array}{ll}
{\left[N_{x, \xi}\right]^{\top}[u]} & {\left[N_{y, \xi}\right]^{\top}[u]} \\
{\left[N_{x, \eta}\right]^{\top}[u]} & {\left[N_{y, \eta}\right]^{\top}[u]}
\end{array}\right]
\end{gathered}
$$

- Represent strain tensor as an array (Voigt notations):

$$
\underline{\underline{\varepsilon}} \Rightarrow[E]=\left[\begin{array}{lll}
\varepsilon_{x x}, & \varepsilon_{y y}, & \gamma_{x y}
\end{array}\right]^{\top}, \quad \gamma_{x y}=2 \varepsilon_{x y}
$$

- Then

$$
[E]=\left[\begin{array}{lll}
\frac{\partial u^{x}}{\partial x}, & \frac{\partial u^{y}}{\partial y}, & \frac{\partial u^{y}}{\partial x}+\frac{\partial u^{x}}{\partial y}
\end{array}\right]^{\top}
$$

Infinitesimal strain in 2D in matrix form

- ...continue. Jacobian matrix:

$$
[\mathrm{J}]^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
{\left[N_{y, \eta}\right]^{\top}[X]} & -\left[N_{y, \xi}\right]^{\top}[X] \\
-\left[N_{x, \eta}\right]^{\top}[X] & {\left[N_{x, \xi}\right]^{\top}[X]}
\end{array}\right]
$$

Infinitesimal strain in 2D in matrix form

- ...continue. Jacobian matrix:

$$
[\mathrm{J}]^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
{\left[N_{y, \eta}\right]^{\top}[X]} & -\left[N_{y, \xi}\right]^{\top}[X] \\
-\left[N_{x, \eta}\right]^{\top}[X] & {\left[N_{x, \xi}\right]^{\top}[X]}
\end{array}\right]=\left[\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{array}\right]
$$

- Then the strain components are

$$
\varepsilon_{x x}=\left(J_{11}\left[N_{x, \xi}\right]+J_{12}\left[N_{x, \eta}\right]\right)^{\top}[u]=\frac{1}{\Delta}\left(\left[N_{y, \eta}\right]^{\top}[X]\left[N_{x, \xi}\right]-\left[N_{y, \xi}\right]^{\top}[X]\left[N_{x, \eta}\right]\right)^{\top}[u]
$$

Infinitesimal strain in 2D in matrix form

- ...continue. Jacobian matrix:

$$
[\mathrm{J}]^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
{\left[N_{y, \eta}\right]^{\top}[X]} & -\left[N_{y, \xi}\right]^{\top}[X] \\
-\left[N_{x, \eta}\right]^{\top}[X] & {\left[N_{x, \xi}\right]^{\top}[X]}
\end{array}\right]=\left[\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{array}\right]
$$

- Then the strain components are

$$
\varepsilon_{x x}=\left(J_{11}\left[N_{x, \xi}\right]+J_{12}\left[N_{x, \eta}\right]\right)^{\top}[u]=\frac{1}{\Delta}\left(\left[N_{y, \eta}\right]^{\top}[X]\left[N_{x, \xi}\right]-\left[N_{y, \xi}\right]^{\top}[X]\left[N_{x, \eta}\right]\right)^{\top}[u]=\left[B_{1}\right]^{\top}[u]
$$

Infinitesimal strain in 2D in matrix form

- ...continue. Jacobian matrix:

$$
[\mathrm{J}]^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
{\left[N_{y, \eta}\right]^{\top}[X]} & -\left[N_{y, \xi}\right]^{\top}[X] \\
-\left[N_{x, \eta}\right]^{\top}[X] & {\left[N_{x, \xi}\right]^{\top}[X]}
\end{array}\right]=\left[\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{array}\right]
$$

- Then the strain components are

$$
\begin{aligned}
& \varepsilon_{x x}=\left(J_{11}\left[N_{x, \xi}\right]+J_{12}\left[N_{x, \eta}\right]\right)^{\top}[u]=\frac{1}{\Delta}\left(\left[N_{y, \eta}\right]^{\top}[X]\left[N_{x, \xi}\right]-\left[N_{y, \xi}\right]^{\top}[X]\left[N_{x, \eta}\right]\right)^{\top}[u]=\left[B_{1}\right]^{\top}[u] \\
& \varepsilon_{y y}=\left(J_{21}\left[N_{y, \xi}\right]+J_{22}\left[N_{y, \eta}\right]\right)^{\top}[u]=\frac{1}{\Delta}\left(-\left[N_{x, \eta}\right]^{\top}[X]\left[N_{y, \xi}\right]+\left[N_{x, \xi}\right]^{\top}[X]\left[N_{y, \eta}\right]\right)^{\top}[u]
\end{aligned}
$$

Infinitesimal strain in 2D in matrix form

- ...continue. Jacobian matrix:

$$
[\mathrm{J}]^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
{\left[N_{y, \eta}\right]^{\top}[X]} & -\left[N_{y, \xi}\right]^{\top}[X] \\
-\left[N_{x, \eta}\right]^{\top}[X] & {\left[N_{x, \xi}\right]^{\top}[X]}
\end{array}\right]=\left[\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{array}\right]
$$

- Then the strain components are

$$
\begin{gathered}
\varepsilon_{x x}=\left(J_{11}\left[N_{x, \xi}\right]+J_{12}\left[N_{x, \eta}\right]\right)^{\top}[u]=\frac{1}{\Delta}\left(\left[N_{y, \eta}\right]^{\top}[X]\left[N_{x, \xi}\right]-\left[N_{y, \xi}\right]^{\top}[X]\left[N_{x, \eta}\right]\right)^{\top}[u]=\left[B_{1}\right]^{\top}[u] \\
\varepsilon_{y y}=\left(J_{21}\left[N_{y, \xi}\right]+J_{22}\left[N_{y, \eta}\right]\right)^{\top}[u]=\frac{1}{\Delta}\left(-\left[N_{x, \eta}\right]^{\top}[X]\left[N_{y, \xi}\right]+\left[N_{x, \xi}\right]^{\top}[X]\left[N_{y, \eta}\right]\right)^{\top}[u]=\left[B_{2}\right]^{\top}[u]
\end{gathered}
$$

- ...continue. Jacobian matrix:

$$
[\mathrm{J}]^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
{\left[N_{y, \eta}\right]^{\top}[X]} & -\left[N_{y, \xi}\right]^{\top}[X] \\
-\left[N_{x, \eta}\right]^{\top}[X] & {\left[N_{x, \xi}\right]^{\top}[X]}
\end{array}\right]=\left[\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{array}\right]
$$

- Then the strain components are

$$
\begin{gathered}
\varepsilon_{x x}=\left(J_{11}\left[N_{x, \xi}\right]+J_{12}\left[N_{x, \eta}\right]\right)^{\top}[u]=\frac{1}{\Delta}\left(\left[N_{y, \eta}\right]^{\top}[X]\left[N_{x, \xi}\right]-\left[N_{y, \xi}\right]^{\top}[X]\left[N_{x, \eta}\right]\right)^{\top}[u]=\left[B_{1}\right]^{\top}[u] \\
\varepsilon_{y y}=\left(J_{21}\left[N_{y, \xi}\right]+J_{22}\left[N_{y, \eta}\right]\right)^{\top}[u]=\frac{1}{\Delta}\left(-\left[N_{x, \eta}\right]^{\top}[X]\left[N_{y, \xi}\right]+\left[N_{x, \xi}\right]^{\top}[X]\left[N_{y, \eta}\right]\right)^{\top}[u]=\left[B_{2}\right]^{\top}[u] \\
\gamma_{x y}=\left(\frac{\partial u^{x}}{\partial y}+\frac{\partial u^{y}}{\partial x}\right)=\left(J_{11}\left[N_{y, \xi}\right]+J_{12}\left[N_{y, \eta}\right]+J_{21}\left[N_{x, \xi}\right]+J_{22}\left[N_{x, \eta}\right]\right)^{\top}[u]
\end{gathered}
$$

- ...continue. Jacobian matrix:

$$
[\mathrm{J}]^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
{\left[N_{y, \eta}\right]^{\top}[X]} & -\left[N_{y, \xi}\right]^{\top}[X] \\
-\left[N_{x, \eta}\right]^{\top}[X] & {\left[N_{x, \xi}\right]^{\top}[X]}
\end{array}\right]=\left[\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{array}\right]
$$

- Then the strain components are

$$
\begin{gathered}
\varepsilon_{x x}=\left(J_{11}\left[N_{x, \xi}\right]+J_{12}\left[N_{x, \eta}\right]\right)^{\top}[u]=\frac{1}{\Delta}\left(\left[N_{y, \eta}\right]^{\top}[X]\left[N_{x, \xi}\right]-\left[N_{y, \xi}\right]^{\top}[X]\left[N_{x, \eta}\right]\right)^{\top}[u]=\left[B_{1}\right]^{\top}[u] \\
\varepsilon_{y y}=\left(J_{21}\left[N_{y, \xi}\right]+J_{22}\left[N_{y, \eta}\right]\right)^{\top}[u]=\frac{1}{\Delta}\left(-\left[N_{x, \eta}\right]^{\top}[X]\left[N_{y, \xi}\right]+\left[N_{x, \xi}\right]^{\top}[X]\left[N_{y, \eta}\right]\right)^{\top}[u]=\left[B_{2}\right]^{\top}[u] \\
\gamma_{x y}=\left(\frac{\partial u^{x}}{\partial y}+\frac{\partial u^{y}}{\partial x}\right)=\left(J_{11}\left[N_{y, \xi}\right]+J_{12}\left[N_{y, \eta}\right]+J_{21}\left[N_{x, \xi}\right]+J_{22}\left[N_{x, \eta}\right]\right)^{\top}[u] \\
\left.\gamma_{x y}=\frac{1}{\Delta}\left(\left[N_{y, \eta}\right]^{\top}[X]\left[N_{y, \xi}\right]-\left[N_{y, \xi}\right]^{\top}[X]\left[N_{y, \eta}\right]-\left[N_{x, \eta}\right]^{\top}[X]\left[N_{x, \xi}\right]+\left[N_{x, \xi}\right]\right]^{\top}[X]\left[N_{x, \eta}\right]\right)^{\top}[u]
\end{gathered}
$$

Infinitesimal strain in 2D in matrix form

- ...continue. Jacobian matrix:

$$
[\mathrm{J}]^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
{\left[N_{y, \eta}\right]^{\top}[X]} & -\left[N_{y, \xi}\right]^{\top}[X] \\
-\left[N_{x, \eta}\right]^{\top}[X] & {\left[N_{x, \xi}\right]^{\top}[X]}
\end{array}\right]=\left[\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{array}\right]
$$

- Then the strain components are

$$
\begin{gathered}
\varepsilon_{x x}=\left(J_{11}\left[N_{x, \xi}\right]+J_{12}\left[N_{x, \eta}\right]\right)^{\top}[u]=\frac{1}{\Delta}\left(\left[N_{y, \eta}\right]^{\top}[X]\left[N_{x, \xi}\right]-\left[N_{y, \xi}\right]^{\top}[X]\left[N_{x, \eta}\right]\right)^{\top}[u]=\left[B_{1}\right]^{\top}[u] \\
\varepsilon_{y y}=\left(J_{21}\left[N_{y, \xi}\right]+J_{22}\left[N_{y, \eta}\right]\right)^{\top}[u]=\frac{1}{\Delta}\left(-\left[N_{x, \eta}\right]^{\top}[X]\left[N_{y, \xi}\right]+\left[N_{x, \xi}\right]^{\top}[X]\left[N_{y, \eta}\right]\right)^{\top}[u]=\left[B_{2}\right]^{\top}[u] \\
\gamma_{x y}=\left(\frac{\partial u^{x}}{\partial y}+\frac{\partial u^{y}}{\partial x}\right)=\left(J_{11}\left[N_{y, \xi}\right]+J_{12}\left[N_{y, \eta}\right]+J_{21}\left[N_{x, \xi}\right]+J_{22}\left[N_{x, \eta}\right]\right)^{\top}[u] \\
\gamma_{x y}=\frac{1}{\Delta}\left(\left[N_{y, \eta}\right]^{\top}[X]\left[N_{y, \xi}\right]-\left[N_{y, \xi}\right]^{\top}[X]\left[N_{y, \eta}\right]-\left[N_{x, \eta}\right]^{\top}[X]\left[N_{x, \xi}\right]+\left[N_{x, \xi}\right]^{\top}[X]\left[N_{x, \eta}\right]\right)^{\top}[u]=\left[B_{3}\right]^{\top}[u]
\end{gathered}
$$

- Then

$$
[E]_{3}=[B]_{3 \times 2 n}^{\top}[u]_{2 n}
$$

- With $[B]=\left[\begin{array}{lll}{\left[B_{1}\right]^{\top},} & {\left[B_{2}\right]^{\top},} & {\left[B_{3}\right]^{\top}}\end{array}\right]^{\top}$
- Consider a linear triangular element with shape functions:

$$
N_{1}=-\frac{1}{2}(\xi+\eta), \quad N_{2}=\frac{1}{2}(1+\xi), \quad N_{3}=\frac{1}{2}(1+\eta)
$$

- Their derivatives are given by:

$$
\begin{aligned}
& N_{1, \xi}=-1 / 2, \quad N_{2, \xi}=1 / 2, \quad N_{3, \xi}=0 \\
& N_{1, \eta}=-1 / 2, \quad N_{2, \eta}=0, \quad N_{3, \eta}=1 / 2 \\
& \Delta=\frac{1}{4}\left(\left(x_{2}-x_{1}\right)\left(y_{3}-y_{1}\right)-\left(y_{2}-y_{1}\right)\left(x_{3}-x_{1}\right)\right)^{*}
\end{aligned}
$$

- Then

$$
\begin{aligned}
& \varepsilon_{x x}=\frac{1}{4 \Delta}\left[\left(y_{3}-y_{1}\right)\left(u_{2}^{x}-u_{1}^{x}\right)-\left(y_{2}-y_{1}\right)\left(u_{3}^{x}-u_{1}^{x}\right)\right] \\
& \varepsilon_{y y}=\frac{1}{4 \Delta}\left[\left(x_{2}-x_{1}\right)\left(u_{3}^{y}-u_{1}^{y}\right)-\left(x_{3}-x_{1}\right)\left(u_{2}^{y}-u_{1}^{y}\right)\right] \\
& \gamma_{x y}=\frac{1}{4 \Delta}\left[\left(y_{3}-y_{1}\right)\left(u_{2}^{y}-u_{1}^{y}\right)-\left(y_{2}-y_{1}\right)\left(u_{3}^{y}-u_{1}^{y}\right)+\left(x_{2}-x_{1}\right)\left(u_{3}^{x}-u_{1}^{x}\right)-\left(x_{3}-x_{1}\right)\left(u_{2}^{x}-u_{1}^{x}\right)\right]
\end{aligned}
$$

Parameteric space

Physical space $\left(x_{2}, y_{2}\right)$

- Rectangular triangle $x_{1}=x_{3}, y_{1}=y_{2}, \Delta=L_{x} L_{y} / 4$

■ Case 1: pure tension/compression along $O X$ iff $u_{3}^{y}=u_{1}^{y}, u_{2}^{y}=u_{1}^{y}, u_{3}^{x}=u_{1}^{x}$ Ex.: $u_{2}^{x}=\delta: \quad \varepsilon_{x x}=\frac{1}{4 \Delta}\left(y_{3}-y_{1}\right)\left(u_{2}^{x}-u_{1}^{x}\right)=\delta / L_{x}, \quad \varepsilon_{y y}=\gamma_{x y}=0$

Case 1

Reference configuration

Current configuration

- Rectangular triangle $x_{1}=x_{3}, y_{1}=y_{2}, \Delta=L_{x} L_{y} / 4$
- Case 1: pure tension/compression along $O X$ iff $u_{3}^{y}=u_{1}^{y}, u_{2}^{y}=u_{1}^{y}, u_{3}^{x}=u_{1}^{x}$ Ex.: $u_{2}^{x}=\delta: \quad \varepsilon_{x x}=\frac{1}{4 \Delta}\left(y_{3}-y_{1}\right)\left(u_{2}^{x}-u_{1}^{x}\right)=\delta / L_{x}, \quad \varepsilon_{y y}=\gamma_{x y}=0$
- Case 2: pure tension/compression along $O Y$ iff $u_{2}^{x}=u_{1}^{x}, u_{2}^{y}=u_{1}^{y}, u_{3}^{x}=u_{1}^{x}$ Ex.: $u_{3}^{y}=\delta: \quad \varepsilon_{y y}=\frac{1}{4 \Delta}\left(x_{2}-x_{1}\right)\left(u_{3}^{y}-u_{1}^{y}\right)=\delta / L_{y}, \quad \varepsilon_{x x}=\gamma_{x y}=0$

Case 1

Reference configuration

Case 2

Current configuration

- Rectangular triangle $x_{1}=x_{3}, y_{1}=y_{2}, \Delta=L_{x} L_{y} / 4$
- Case 1: pure tension/compression along OX iff $u_{3}^{y}=u_{1}^{y}, u_{2}^{y}=u_{1}^{y}, u_{3}^{x}=u_{1}^{x}$

Ex.: $u_{2}^{x}=\delta: \quad \varepsilon_{x x}=\frac{1}{4 \Delta}\left(y_{3}-y_{1}\right)\left(u_{2}^{x}-u_{1}^{x}\right)=\delta / L_{x}, \quad \varepsilon_{y y}=\gamma_{x y}=0$

- Case 2: pure tension/compression along $O Y$ iff $u_{2}^{x}=u_{1}^{x}, u_{2}^{y}=u_{1}^{y}, u_{3}^{x}=u_{1}^{x}$

Ex.: $u_{3}^{y}=\delta: \quad \varepsilon_{y y}=\frac{1}{4 \Delta}\left(x_{2}-x_{1}\right)\left(u_{3}^{y}-u_{1}^{y}\right)=\delta / L_{y,} \quad \varepsilon_{x x}=\gamma_{x y}=0$

- Case 3: pure shear in XY iff $u_{2}^{x}=u_{1}^{x}, u_{3}^{y}=u_{1}^{y}$

Ex.: $u_{2}^{y}=\delta_{y}, u_{3}^{x}=\delta_{x}$:
$\gamma_{x y}=\frac{1}{4 \Delta}\left(\left(y_{3}-y_{1}\right)\left(u_{2}^{y}-u_{1}^{y}\right)+\left(x_{2}-x_{1}\right)\left(u_{3}^{x}-u_{1}^{x}\right)\right)=\frac{\delta_{y}}{L_{x}}+\frac{\delta_{x}}{L_{y}}, \quad \varepsilon_{x x}=\varepsilon_{y y}=0$

Case 1

Case 2
Case 3

Current configuration

Stress tensor

- In linear elasticity, strain decomposition:

$$
\underline{\underline{\varepsilon}}=\underline{\underline{\varepsilon}}_{e l}+\underline{\underline{\varepsilon}}_{t h}
$$

- With thermal strain field:

$$
\underline{\underline{\varepsilon}}_{t h}=\alpha\left(T-T_{0}\right) \underline{\underline{I}}
$$

Stress tensor

- In linear elasticity, strain decomposition:

$$
\underline{\underline{\varepsilon}}=\underline{\underline{\varepsilon}}_{e l}+\underline{\underline{\varepsilon}}_{t h}
$$

- With thermal strain field:

$$
\underline{\underline{\varepsilon}}_{t h}=\alpha\left(T-T_{0}\right) \underline{\underline{\boldsymbol{I}}}=\alpha(\underline{\boldsymbol{X}})\left(T(\underline{\boldsymbol{X}})-T_{0}(\underline{\boldsymbol{X}})\right) \underline{\underline{\boldsymbol{I}}}
$$

where α is the coefficient of thermal expansion (CTE), T and T_{0} are the current and reference temperature fields, respectively.

- The stress is defined by the elastic strain:

$$
\underline{\underline{\sigma}}={ }^{4} \underline{\underline{C}}:\left(\underline{\underline{\varepsilon}}-\underline{\underline{\varepsilon}}_{t h}\right)
$$

- Remind isotropic stress/strain relationship:

$$
\underline{\underline{\sigma}}=\frac{v E}{(1+v)(1-2 v)} \operatorname{tr} \underline{\underline{\varepsilon}} \underline{\underline{\underline{I}}}+\frac{E}{1+v} \underline{\underline{\varepsilon}}
$$

- Stress (in Voigt notations): $\quad \underline{\underline{\sigma}} \Rightarrow[S]=\left[\begin{array}{lll}\sigma_{x x}, & \sigma_{y y}, & \sigma_{x y}\end{array}\right]^{\top}$
- In plane stress $\sigma_{z z}=0, \varepsilon_{z z}=\frac{v}{v-1}\left(\varepsilon_{x x}+\varepsilon_{y y}\right)$

■ In plain strain $\sigma_{z z}=v\left(\sigma_{x x}+\sigma_{y y}\right), \varepsilon_{z z}=0$

- Stress/strain relationship: $[S]=[D][E]$
- Remind isotropic stress/strain relationship:

$$
\underline{\underline{\sigma}}=\frac{v E}{(1+v)(1-2 v)} \operatorname{tr} \underline{\underline{\varepsilon}} \underline{\underline{\underline{I}}}+\frac{E}{1+v} \underline{\underline{\varepsilon}}
$$

- Stress (in Voigt notations): $\quad \underline{\underline{\sigma}} \Rightarrow[S]=\left[\begin{array}{lll}\sigma_{x x}, & \sigma_{y y}, & \sigma_{x y}\end{array}\right]^{\top}$

■ In plane stress $\sigma_{z z}=0, \varepsilon_{z z}=\frac{v}{v-1}\left(\varepsilon_{x x}+\varepsilon_{y y}\right)$
■ In plain strain $\sigma_{z z}=v\left(\sigma_{x x}+\sigma_{y y}\right), \varepsilon_{z z}=0$

- Stress/strain relationship: $[S]=[D][E]$
- Matrix [D] in plane strain $\varepsilon_{z z}=\varepsilon_{x z}=\varepsilon_{y z}=0$:

$$
[\mathbf{D}]=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & (1-2 v) / 2^{*}
\end{array}\right]
$$

- Remind isotropic stress/strain relationship:

$$
\underline{\underline{\sigma}}=\frac{v E}{(1+v)(1-2 v)} \operatorname{tr} \underline{\underline{\varepsilon}} \underline{\underline{\underline{I}}}+\frac{E}{1+v} \underline{\underline{\varepsilon}}
$$

- Stress (in Voigt notations): $\quad \underline{\underline{\sigma}} \Rightarrow[S]=\left[\begin{array}{lll}\sigma_{x x}, & \sigma_{y y}, & \sigma_{x y}\end{array}\right]^{\top}$

■ In plane stress $\sigma_{z z}=0, \varepsilon_{z z}=\frac{v}{v-1}\left(\varepsilon_{x x}+\varepsilon_{y y}\right)$
■ In plain strain $\sigma_{z z}=v\left(\sigma_{x x}+\sigma_{y y}\right), \varepsilon_{z z}=0$

- Stress/strain relationship: $[S]=[D][E]$
- Matrix [D] in plane strain $\varepsilon_{z z}=\varepsilon_{x z}=\varepsilon_{y z}=0$:

$$
[\mathbf{D}]=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & (1-2 v) / 2^{*}
\end{array}\right]
$$

- Matrix [D] in plane stress $\sigma_{z z}=\sigma_{x z}=\sigma_{y z}=0, \operatorname{tr}(\underline{\underline{\varepsilon}})=\frac{1-2 v}{1-v}\left(\varepsilon_{x x}+\varepsilon_{y y}\right)$:

$$
[\mathbf{D}]=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & (1-v) / 2^{*}
\end{array}\right]
$$

Stress: general case

Voigt notations in 3D case

■ Stress tensor: $\underline{\underline{\sigma}} \rightarrow[S]=\left[\sigma_{x x}, \sigma_{y y}, \sigma_{z z}, \sigma_{x y}, \sigma_{y z}, \sigma_{x z}\right]^{\top}$
■ Strain tensor: $\underset{\underline{\varepsilon}}{\rightarrow} \rightarrow[E]=\left[\varepsilon_{x x}, \varepsilon_{y y}, \varepsilon_{z z}, \gamma_{x y}, \gamma_{y z}, \gamma_{x z}\right]^{\top}$

- Hooke's law: $[S]=[D][E]$

Voigt notations in 3D case

■ Stress tensor: $\underline{\underline{\sigma}} \rightarrow[S]=\left[\sigma_{x x}, \sigma_{y y}, \sigma_{z z}, \sigma_{x y}, \sigma_{y z}, \sigma_{x z}\right]^{\top}$
■ Strain tensor: $\underline{\underline{\varepsilon}} \rightarrow[E]=\left[\varepsilon_{x x}, \varepsilon_{y y}, \varepsilon_{z z}, \gamma_{x y}, \gamma_{y z}, \gamma_{x z}\right]^{\top}$

- Hooke's law: $[S]=[D][E]$
- Isotropic elasticity (two constants E, v):

$$
[\mathbf{D}]=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{cccccc}
1-v & v & v & 0 & 0 & 0 \\
v & 1-v & v & 0 & 0 & 0 \\
v & v & 1-v & 0 & 0 & 0 \\
0 & 0 & 0 & (1-2 v) / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & (1-2 v) / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & (1-2 v) / 2
\end{array}\right]
$$

Voigt notations in 3D case

■ Stress tensor: $\underline{\underline{\sigma}} \rightarrow[S]=\left[\sigma_{x x}, \sigma_{y y}, \sigma_{z z}, \sigma_{x y}, \sigma_{y z}, \sigma_{x z}\right]^{\top}$
■ Strain tensor: $\underline{\underline{\varepsilon}} \rightarrow[E]=\left[\varepsilon_{x x}, \varepsilon_{y y}, \varepsilon_{z z}, \gamma_{x y}, \gamma_{y z}, \gamma_{x z}\right]^{\top}$

- Hooke's law: $[S]=[D][E]$
- Isotropic elasticity (two constants E, v):

$$
[\mathbf{D}]=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{cccccc}
1-v & v & v & 0 & 0 & 0 \\
v & 1-v & v & 0 & 0 & 0 \\
v & v & 1-v & 0 & 0 & 0 \\
0 & 0 & 0 & (1-2 v) / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & (1-2 v) / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & (1-2 v) / 2
\end{array}\right]
$$

- Cubic elasticity (3 constants E, v, μ):

$$
[\mathrm{D}]=\left[\begin{array}{cccccc}
C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\
C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\
C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{44}
\end{array}\right]
$$

Voigt notations in 3D case

- Transversely isotropic elasticity (5 constants $E_{1}, E_{2}, \nu_{1}, v_{2}, \mu_{1}$):

$$
[\mathrm{D}]_{i j}=\left[\begin{array}{cccccc}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\
C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & \left(C_{11}-C_{12}\right) / 2
\end{array}\right]
$$

Voigt notations in 3D case

- Transversely isotropic elasticity (5 constants $E_{1}, E_{2}, \nu_{1}, v_{2}, \mu_{1}$):

$$
[\mathrm{D}]_{i j}=\left[\begin{array}{cccccc}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\
C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & \left(C_{11}-C_{12}\right) / 2
\end{array}\right]
$$

- Orthotropic elasticity (9 constants $E_{x x}, E_{y y}, E_{z z}, v_{x y}, v_{y z}, v_{x z}, \mu_{x y}, \mu_{y z}, \mu_{x z}$):

$$
[\mathrm{D}]_{i j}=\left[\begin{array}{cccccc}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\
C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{66}
\end{array}\right]
$$

- Equilibrium in absence of inertial forces

$$
\begin{equation*}
\nabla \cdot \underline{\underline{\sigma}}+\underline{f}_{V}=0 \tag{*}
\end{equation*}
$$

- Consistutive relation:

$$
\underline{\underline{\sigma}}={ }^{4} \underline{\underline{C}}: \underline{\underline{\varepsilon}}
$$

- Strain tensor:

$$
\underline{\underline{\varepsilon}}=\frac{1}{2}\left(\nabla \underline{u}+(\nabla \underline{u})^{\top}\right)
$$

- Boundary conditions (BC):

$$
\begin{aligned}
& \underline{u}=\underline{u}_{0} \text { at } \Gamma_{u} \\
& \underline{\underline{\sigma}} \cdot \underline{n}=\underline{t}_{0} \text { at } \Gamma_{f} \\
& \underline{\underline{\sigma}} \cdot \underline{n}=0 \text { at } \Gamma_{f}^{0}
\end{aligned}
$$

Equilibrium: from strong to weak form

- Strong form: $\quad \nabla \cdot \underline{\underline{\sigma}}+\underline{f}_{V}=0$

Equilibrium: from strong to weak form

- Strong form: $\quad \nabla \cdot \underline{\underline{\sigma}}+\underline{f}_{V}=0$
- Product with a virtual vector field \underline{v} and integrate over a volume:

$$
\int_{\Omega}(\nabla \cdot \underline{\underline{\sigma}}) \cdot \underline{v} d V+\int_{\Omega} \underline{f}_{V} \cdot \underline{v} d V=0
$$

- Strong form: $\quad \nabla \cdot \underline{\underline{\sigma}}+\underline{f}_{V}=0$
- Product with a virtual vector field \underline{v} and integrate over a volume:

$$
\int_{\Omega}(\nabla \cdot \underline{\underline{\sigma}}) \cdot \underline{v} d V+\int_{\Omega} \underline{f}_{V} \cdot \underline{\underline{v}} d V=0
$$

- Since $\int_{\Omega} \nabla \cdot(\underline{\underline{\sigma}} \cdot \underline{v}) d V=\int_{\Omega}(\nabla \cdot \underline{\underline{\sigma}}) \cdot \underline{v} d V+\int_{\Omega} \frac{\underline{\sigma}}{}:(\nabla \underline{v}) d V$
- Strong form: $\quad \nabla \cdot \underline{\underline{\sigma}}+\underline{f}_{V}=0$
- Product with a virtual vector field \underline{v} and integrate over a volume:

$$
\int_{\Omega}(\nabla \cdot \underline{\underline{\sigma}}) \cdot \underline{v} d V+\int_{\Omega} \underline{f}_{V} \cdot \underline{v} d V=0
$$

■ Since $\int_{\Omega} \nabla \cdot(\underline{\underline{\sigma}} \cdot \underline{v}) d V=\int_{\Omega}(\nabla \cdot \underline{\underline{\sigma}}) \cdot \underline{v} d V+\int_{\Omega} \underline{\underline{\sigma}}:(\nabla \underline{v}) d V$ and $\int_{\Omega} \nabla \cdot(\underline{\underline{\sigma}} \cdot \underline{v}) d V=\int_{\Omega} \underline{n} \cdot(\underline{\underline{\sigma}} \cdot \underline{v}) d S$, we get:

- Strong form: $\quad \nabla \cdot \underline{\underline{\sigma}}+\underline{f}_{V}=0$
- Product with a virtual vector field \underline{v} and integrate over a volume:

$$
\int_{\Omega}(\nabla \cdot \underline{\underline{\sigma}}) \cdot \underline{v} d V+\int_{\Omega} \underline{f}_{V} \cdot \underline{v} d V=0
$$

■ Since $\int_{\Omega} \nabla \cdot(\underline{\underline{\sigma}} \cdot \underline{v}) d V=\int_{\Omega}(\nabla \cdot \underline{\underline{\sigma}}) \cdot \underline{v} d V+\int_{\Omega} \underline{\underline{\sigma}}:(\nabla \underline{v}) d V$ and $\int_{\Omega} \nabla \cdot(\underline{\underline{\sigma}} \cdot \underline{v}) d V=\int_{\Omega \Omega} \underline{n} \cdot(\underline{\underline{\sigma}} \cdot \underline{v}) d S$, we get:

$$
\int_{\partial \Omega} \underline{n} \cdot \underline{\underline{\sigma}} \cdot \underline{v} d S-\int_{\Omega} \underline{\underline{\sigma}}:(\nabla \underline{v}) d V+\int_{\Omega} f_{V} \cdot \underline{v} d V=0
$$

- Strong form: $\quad \nabla \cdot \underline{\underline{\sigma}}+{\underset{-}{V}}=0$
- Product with a virtual vector field \underline{v} and integrate over a volume:

$$
\int_{\Omega}(\nabla \cdot \underline{\underline{\sigma}}) \cdot \underline{v} d V+\int_{\Omega} \underline{f}_{V} \cdot \underline{v} d V=0
$$

■ Since $\int_{\Omega} \nabla \cdot(\underline{\underline{\sigma}} \cdot \underline{v}) d V=\int_{\Omega}(\nabla \cdot \underline{\underline{\sigma}}) \cdot \underline{v} d V+\int_{\Omega} \underline{\underline{\sigma}}:(\nabla \underline{v}) d V$ and $\int_{\Omega} \nabla \cdot(\underline{\underline{\sigma}} \cdot \underline{v}) d V=\int_{\partial \Omega} \underline{n} \cdot(\underline{\underline{\sigma}} \cdot \underline{v}) d S$, we get:

$$
\int_{\partial \Omega} \underline{n} \cdot \underline{\underline{\sigma}} \cdot \underline{v} d S-\int_{\Omega} \underline{\underline{\sigma}}:(\nabla \underline{v}) d V+\int_{\Omega} f_{-V} \cdot \underline{v} d V=0
$$

■ If we select virtual vector field $\underline{v}=\delta \underline{u}$ as virtual displacements vanishing at Γ_{u} :

$$
\int_{\Gamma_{f}} \underline{\boldsymbol{t}}_{0} \cdot \delta \underline{\boldsymbol{u}} d S-\int_{\Omega} \underline{\underline{\sigma}}: \delta \underline{\underline{\boldsymbol{\varepsilon}}} d V+\int_{\Omega} \underline{f}_{V} \cdot \delta \underline{\boldsymbol{u}} d V=0
$$

- This variational formulation is called the principle of virtual work or of virtual displacements.
- Work of imposed surface tractions on virtual displacements $=\frac{1}{2} \underline{t}_{0} \cdot \delta \underline{u}$
- Work density of distributed volumetric forces $=\frac{1}{2}{\underset{-V}{V}} \cdot \delta \underline{u}$

■ Corresponding virtual density of elastic energy $=\frac{1}{2} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}}$

Stress and reactions: element's equilibrium II

- Work of imposed surface tractions on virtual displacements $=\frac{1}{2} \underline{t}_{0} \cdot \delta \underline{u}$
- Work density of distributed volumetric forces $=\frac{1}{2}{\underset{-V}{V}}^{\text {- }} \cdot \delta \underline{u}$
- Corresponding virtual density of elastic energy $=\frac{1}{2} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}}$
- According to the principle of virtual work:

$$
\int_{\Omega} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}} d V=\int_{\Gamma_{f}} \underline{t}_{0} \cdot \delta \underline{\underline{u}} d S+\int_{\Omega} \underline{f}_{V} \cdot \delta \underline{\underline{u}} d V
$$

Stress and reactions: element's equilibrium II

- Work of imposed surface tractions on virtual displacements $=\frac{1}{2} \underline{t}_{0} \cdot \delta \underline{u}$
- Work density of distributed volumetric forces $=\frac{1}{2}{\underset{-V}{V}}^{\text {- }} \cdot \delta \underline{u}$
- Corresponding virtual density of elastic energy $=\frac{1}{2} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}}$
- According to the principle of virtual work:

$$
\int_{\Omega} \underline{\underline{\sigma}}: \delta \underline{\underline{\underline{\varepsilon}}} d V=\int_{\Gamma_{f}} \underline{\boldsymbol{t}}_{0} \cdot \delta \underline{\underline{u}} d S+\int_{\Omega} \underline{f}_{V} \cdot \delta \underline{\underline{\boldsymbol{u}}} d V
$$

- Equivalently

$$
a(\underline{u}, \delta \underline{\boldsymbol{u}})=L(\delta \underline{u})
$$

Stress and reactions: element's equilibrium II

- Work of imposed surface tractions on virtual displacements $=\frac{1}{2} \underline{t}_{0} \cdot \delta \underline{u}$
- Work density of distributed volumetric forces $=\frac{1}{2}{\underset{-V}{V}} \cdot \delta \underline{u}$
- Corresponding virtual density of elastic energy $=\frac{1}{2} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}}$
- According to the principle of virtual work:

$$
\int_{\Omega} \underline{\underline{\sigma}}: \delta \underline{\underline{\underline{\varepsilon}}} d V=\int_{\Gamma_{f}} \underline{\boldsymbol{t}}_{0} \cdot \delta \underline{\underline{u}} d S+\int_{\Omega} \underline{f}_{V} \cdot \delta \underline{\underline{\boldsymbol{u}}} d V
$$

- Equivalently

$$
a(\underline{\boldsymbol{u}}, \delta \underline{\boldsymbol{u}})=L(\delta \underline{\boldsymbol{u}})
$$

with bilinear form $a(\underline{u}, \delta \underline{\boldsymbol{u}})=\int_{\Omega} \underline{\underline{\sigma}}: \nabla \delta \underline{\underline{u}} d V=\int_{\Omega} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}} d V$
and linear form $L(\delta \underline{\boldsymbol{u}})=\int_{\Gamma_{f}} \underline{t}_{0} \cdot \delta \underline{\boldsymbol{u}} d S+\int_{\Omega_{-}} f_{V} \cdot \delta \underline{\boldsymbol{u}} d V$.

- Work of imposed surface tractions on virtual displacements $=\frac{1}{2} \underline{t}_{0} \cdot \delta \underline{u}$
- Work density of distributed volumetric forces $=\frac{1}{2}{\underset{-V}{V}} \cdot \delta \underline{u}$
- Corresponding virtual density of elastic energy $=\frac{1}{2} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}}$
- According to the principle of virtual work:

$$
\int_{\Omega} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}} d V=\int_{\Gamma_{f}} \underline{t}_{0} \cdot \delta \underline{\underline{u}} d S+\int_{\Omega} \underline{f}_{V} \cdot \delta \underline{\boldsymbol{u}} d V
$$

- Equivalently

$$
a(\underline{\boldsymbol{u}}, \delta \underline{\boldsymbol{u}})=L(\delta \underline{\boldsymbol{u}})
$$

with bilinear form $a(\underline{u}, \delta \underline{\boldsymbol{u}})=\int_{\Omega} \underline{\underline{\sigma}}: \nabla \delta \underline{\underline{u}} d V=\int_{\Omega} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}} d V$
and linear form $L(\delta \underline{u})=\int_{\Gamma_{f}} \underline{t}_{0} \cdot \delta \underline{\boldsymbol{u}} d S+\int_{\Omega} f_{V} \cdot \delta \underline{u} d V$.
The functional space of kinematically admissible displacements and inducing finite energy is $\underline{u} \in \mathbb{U}=\left\{\underline{v} \in \mathbb{H}^{1}(\Omega) \mid \underline{v}=\underline{u}_{0}\right.$ on $\left.\Gamma_{u}\right\}$ whereas virtual displacements also inducing finite energy and vanishing at Dirichlet boundary belong to $\delta \underline{u} \in \mathbb{V}=\left\{\underline{v} \in \mathbb{H}^{1}(\Omega) \mid \underline{v}=0\right.$ on $\left.\Gamma_{u}\right\}$
and $a: \mathbb{U} \times \mathbb{V} \rightarrow \mathbb{R}$ and $L: \mathbb{V} \rightarrow \mathbb{R}$, where \mathbb{H}^{1} is the Hilbert space.

- Work of imposed surface tractions on virtual displacements $=\frac{1}{2} \underline{t}_{0} \cdot \delta \underline{u}$
- Work density of distributed volumetric forces $=\frac{1}{2}{\underset{-V}{V}} \cdot \delta \underline{u}$
- Corresponding virtual density of elastic energy $=\frac{1}{2} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}}$
- According to the principle of virtual work:

$$
\int_{\Omega} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}} d V=\int_{\Gamma_{f}} \underline{t}_{0} \cdot \delta \underline{\underline{u}} d S+\int_{\Omega} \underline{f}_{V} \cdot \delta \underline{\boldsymbol{u}} d V
$$

- Equivalently

$$
a(\underline{u}, \delta \underline{\boldsymbol{u}})=L(\delta \underline{\boldsymbol{u}})
$$

with bilinear form $a(\underline{u}, \delta \underline{\boldsymbol{u}})=\int_{\Omega} \underline{\underline{\sigma}}: \nabla \delta \underline{\underline{u}} d V=\int_{\Omega} \underline{\underline{\sigma}}: \delta \underline{\underline{\varepsilon}} d V$
and linear form $L(\delta \underline{\boldsymbol{u}})=\int_{\Gamma_{f}} \underline{t}_{0} \cdot \delta \underline{\boldsymbol{u}} d S+\int_{\Omega} f_{V} \cdot \delta \underline{\boldsymbol{u}} d V$.
The functional space of kinematically admissible displacements and inducing finite energy is $\underline{u} \in \mathbb{U}=\left\{\underline{v} \in \mathbb{H}^{1}(\Omega) \mid \underline{v}=\underline{u}_{0}\right.$ on $\left.\Gamma_{u}\right\}$ whereas virtual displacements also inducing finite energy and vanishing at Dirichlet boundary belong to $\delta \underline{u} \in \mathbb{V}=\left\{\underline{v} \in \mathbb{H}^{1}(\Omega) \mid \underline{v}=0\right.$ on $\left.\Gamma_{u}\right\}$ and $a: \mathbb{U} \times \mathbb{V} \rightarrow \mathbb{R}$ and $L: \mathbb{V} \rightarrow \mathbb{R}$, where \mathbb{H}^{1} is the Hilbert space.

- So we are in the framework of the Lax-Milgram theorem (continuity and coercivity could be easily shown).
- According to the principle of virtual work:

$$
\int_{\Omega} \underline{\underline{\sigma}}: \delta \underline{\underline{\boldsymbol{\varepsilon}}} d V-\int_{\Omega} \underline{f}_{V} \cdot \delta \underline{\boldsymbol{u}} d V=\int_{\Gamma_{f}} \underline{t}_{0} \cdot \delta \underline{\boldsymbol{u}} d S
$$

Stress and reactions: element's equilibrium II

- According to the principle of virtual work:

$$
\int_{\Omega} \underline{=}: \delta \underline{\underline{\varepsilon}} d V-\int_{\Omega} \underline{f}_{V} \cdot \delta \underline{\underline{u}} d V=\int_{\Gamma_{f}} \underline{t}_{0} \cdot \delta \underline{\boldsymbol{u}} d S
$$

- Elastic stress $\underline{\underline{\sigma}}={ }^{4} \underline{\underline{C}}:\left(\underline{\underline{\varepsilon}}-\underline{\underline{\varepsilon}}_{\text {th }}\right) \Rightarrow[S]=[\mathrm{D}]\left([E]-\left[E_{\text {th }}\right]\right)$
- Strain $\underline{\underline{\varepsilon}} \sim[E]=[B]^{\top}[u]$
- Volumetric force density $f_{-v} \sim\left[f_{v}\right]=\left[f_{v}^{x}, f_{v}^{y}, f_{v}^{z}\right]^{\top}$
- Virtual displacement $\delta \underline{u} \sim[N]^{\top} \delta[u]$

Stress and reactions: element's equilibrium II

- According to the principle of virtual work:

$$
\int_{\Omega} \underline{=}: \delta \underline{\underline{\varepsilon}} d V-\int_{\Omega} \underline{f}_{V} \cdot \delta \underline{\underline{u}} d V=\int_{\Gamma_{f}} \underline{t}_{0} \cdot \delta \underline{\boldsymbol{u}} d S
$$

- Elastic stress $\underline{\underline{\sigma}}={ }^{4} \underline{\underline{C}}:\left(\underline{\underline{\varepsilon}}-\underline{\underline{\varepsilon}}_{\text {th }}\right) \Rightarrow[S]=[\mathrm{D}]\left([E]-\left[E_{\text {th }}\right]\right)$
- Strain $\underline{\underline{\varepsilon}} \sim[E]=[B]^{\top}[u]$

- Virtual displacement $\delta \underline{u} \sim[N]^{\top} \delta[u]$
- The discretized form of the virtual work:

$$
\int_{\Omega^{h}}\left\{\left([\mathbf{D}]\left([E]-\left[E_{t h}\right]\right)\right)^{\top} \delta[E]-\left[f_{v}\right]^{\top}\left[N_{i}\right]^{\top} \delta[u]\right\} d V=\int_{\Gamma_{f}^{h}} t_{0}(\underline{X})\left[N_{i}\right]^{\top} d S \delta[u]
$$

Stress and reactions: element's equilibrium II

- According to the principle of virtual work:

$$
\int_{\Omega} \underline{=}: \delta \underline{\underline{\varepsilon}} d V-\int_{\Omega} \underline{f}_{V} \cdot \delta \underline{\underline{u}} d V=\int_{\Gamma_{f}} \underline{t}_{0} \cdot \delta \underline{\boldsymbol{u}} d S
$$

- Elastic stress $\underline{\underline{\sigma}}={ }^{4} \underline{\underline{C}}:\left(\underline{\underline{\varepsilon}}-\underline{\underline{\varepsilon}}_{\text {th }}\right) \Rightarrow[S]=[\mathrm{D}]\left([E]-\left[E_{\text {th }}\right]\right)$
- Strain $\underline{\underline{\varepsilon}} \sim[E]=[B]^{\top}[u]$

- Virtual displacement $\delta \underline{u} \sim[N]^{\top} \delta[u]$
- The discretized form of the virtual work:

$$
\begin{gathered}
\int_{\Omega^{h}}\left\{\left([\mathbf{D}]\left([E]-\left[E_{t h}\right]\right)\right)^{\top} \delta[E]-\left[f_{v}\right]^{\top}\left[N_{i}\right]^{\top} \delta[u]\right\} d V=\int_{\Gamma_{f}^{h}} t_{0}(\underline{X})\left[N_{i}\right]^{\top} d S \delta[u] \\
{[u]\left[\int_{\Omega^{h}}[B][\mathbf{D}][B]^{\top} d V\right] \delta[u]-\left[\int_{\Omega^{h}}\left(\left[f_{v}\right]^{\top}\left[N_{i}\right]^{\top}+\left[E_{t h}\right]^{\top}[\mathbf{D}][B]^{\top}\right) d V\right] \delta[u]=[f]^{\top} \delta[u]}
\end{gathered}
$$

Stress and reactions: element's equilibrium II

- Balance of virtual work for a single element:

$$
[u]\left[\int_{\Omega^{h}}[B][\mathrm{D}][B]^{\top} d V\right] \delta[u]-\left[\int_{\Omega^{h}}\left(\left[f_{v}\right]^{\top}\left[N_{i}\right]^{\top}+\left[E_{t h}\right]^{\top}[\mathrm{D}][B]^{\top}\right) d V\right] \delta[u]=[f]^{\top} \delta[u]
$$

- For arbitrary virtual displacements $\delta[u]$:

$$
\underbrace{\left[\int_{V^{e}}[B]^{\top}[\mathbf{D}][B] d V\right]}_{\left[\mathbf{K}^{e}\right]}[u]+\underbrace{\left[\int_{V^{e}}\left(-\left[f_{v}\right]^{\top}\left[N_{i}\right]^{\top}-[B][\mathbf{D}]\left[E_{t h}\right]\right) d V\right]}_{\left[f_{\text {int }}^{e}\right]}=\underbrace{[f]}_{\left[f_{\text {ext }}^{e}\right]}
$$

- System of equations linking displacements and reactions:

$$
\left[\mathbf{K}^{\mathrm{e}}\right]\left[u^{e}\right]+\left[f_{\text {int }}^{e}\right]=\left[f_{\text {ext }}^{e}\right]
$$

Assembly

- At every internal node the total force should be zero:

$$
\sum_{e}\left[f_{e x t}^{e}\right]=0
$$

summation over all elements e attached to this node.

- Summation over all nodes gives:

$$
[\mathbf{K}][u]+\left[f_{\text {int }}\right]=0
$$

Dirichlet boundary conditions

Dirichlet BC

■ Use penalty method to enforce prescribed displacements: array $\left[u_{0}\right]=\left[\begin{array}{llll}0 & \ldots & u_{i 0} & 0 \ldots 0\end{array} u_{j 0} 0\right]$

- Diagonal selection matrix $\left[I^{\mathrm{s}}\right]$ with ones at prescribed degrees of freedom (DOFs):

$$
\left[\mathbf{I}^{\mathrm{s}}\right]=\left[\begin{array}{cccccccccc}
0 & \ldots & 0 & \overbrace{0}^{i} & 0 & \ldots & 0 & \overbrace{0} & 0 & \\
\vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \\
0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \\
0 & \ldots & 0 & 1 & 0 & \ldots & 0 & 0 & 0 & \} \\
0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \\
\vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \\
0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \\
0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 1 & 0 & \} \\
0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & j
\end{array}\right]
$$

- Then the system is changed to

$$
\left([\mathrm{K}]+\epsilon\left[\mathbf{I}^{\mathrm{s}}\right]\right)[u]=\left[f_{\text {ext }}\right]-\left[f_{\text {int }}\right]+\epsilon\left[u_{0}\right]
$$

where ϵ is the penalty coefficient such that $\epsilon \gg \max \left(K_{i j}\right)$, and [I] is the identity matrix.

- Alternatively, (i) a direct DOF elimination or (ii) Lagrange multipliers could be used.

Neumann boundary conditions

Neumann BC

- Surface traction \underline{t}_{0} at Γ_{f}
- Virtual work of surface traction over one element:

■ Then

$$
\left[f_{e x t}^{i}\right]=\int_{\Gamma_{f}^{e}}\left[t_{0}\right][N]^{\top} d \Gamma
$$

Discrete system of equations

- Balance of virtual work for the whole body:

- System of equations linking displacements and reactions:

$$
[\mathrm{K}][u]=\left[f_{e x t}\right]-\left[f_{i n t}\right]
$$

- Stiffness matrix [K]
- Vector of degrees of freedom (DOFs) $[u]$
- Right hand term (vector of forces) $\left[f_{\text {ext }}\right]-\left[f_{\text {int }}\right]$
- Weak form (recall):

$$
\underbrace{\left[\int_{V}[B]^{\top}[\mathrm{D}][B] d V\right][u]}_{[\mathrm{K}]}=\underbrace{\int_{\Gamma_{f}}\left[t_{0}\right]^{\top}[N]^{\top} d \Gamma}_{\left[f_{\text {ext }}\right]}+\underbrace{\left[\int_{V}\left(\left[f_{v}\right]^{\top}\left[N_{i}\right]^{\top}+[B][\mathrm{D}]\left[E_{t h}\right]\right) d V\right]}_{-\left[f_{\text {int }}\right]}
$$

- Exact integration: $\int_{a}^{b} f(x) d x=F(b)-F(a)$ (not always possible)
- Approximate integration (trapezoidal rule, Simpson's rule)
- Gauss quadrature: $\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{N_{G P}} w_{i} f\left(x_{i}\right)$
- Gauss points x_{i} and weights w_{i} with $i=1, N_{G P}$
- Integration is exact for polynomials of order $2 N_{G P}-1$
- Tabulated data for x_{i}, w_{i} (1D,2D,3D integration)
- Function $f(x)=\cos \left(\pi x^{2} / 2\right)$
- $N_{G P}=1$: error $\approx 28.22 \%$
- $N_{G P}=2$: error $\approx 11.04 \%$
- $N_{G P}=3$: error $\approx 1.14 \%$
- $N_{G P}=4$: error $\approx 0.14 \%$

■ $N_{G P}=5$: error $\approx 0.01 \%$

- Function $f(x)=x \sin (\pi x)$
- $N_{G P}=1:$ error $\approx 100.00 \%$
- $N_{G P}=2$: error $\approx 76.05 \%$
- $N_{G P}=3$: error $\approx 12.07 \%$

■ $N_{G P}=4$: error $\approx 0.80 \%$
■ $N_{G P}=5$: error $\approx 0.03 \%$

- Consider: $\int_{V}[B]^{\top}[\mathrm{D}][B] d V=\sum_{e=1}^{N_{e}} \int_{V_{e}}[B]^{\top}[\mathrm{D}][B] d V$
- Transpose to the parametric space or mapping (in 2D case):

$$
\int_{V_{e}}[B(\xi, \eta)]^{\top}[\mathbf{D}][B(\xi, \eta)] d V=\int_{-1}^{1} \int_{-1}^{1}[B(\xi, \eta)]^{\top}[\mathbf{D}][B(\xi, \eta)] \operatorname{det}([\mathbf{J}]) d \xi d \eta
$$

■ Consider: $\int_{V}[B]^{\top}[\mathbf{D}][B] d V=\sum_{e=1}^{N_{e}} \int_{V_{e}}[B]^{\top}[\mathbf{D}][B] d V$

- Transpose to the parametric space or mapping (in 2D case):

$$
\int_{V_{e}}[B(\xi, \eta)]^{\top}[\mathbf{D}][\boldsymbol{B}(\xi, \eta)] d V=\int_{-1}^{1} \int_{-1}^{1}[\boldsymbol{B}(\xi, \eta)]^{\top}[\mathbf{D}][\boldsymbol{B}(\xi, \eta)] \operatorname{det}([\mathbf{J}]) d \xi d \eta
$$

- Finally:

$$
[\mathbf{K}]=\int_{V}[\boldsymbol{B}]^{\top}[\mathbf{D}][B] d V \approx \sum_{e=1}^{N_{e}} \sum_{G P=1}^{N_{G P}}\left[\boldsymbol{B}^{e}\left(\xi_{G P}, \eta_{G P}\right)\right]^{\top}[\mathbf{D}]\left[\boldsymbol{B}^{e}\left(\xi_{G P}, \eta_{G P}\right)\right] \operatorname{det}\left(\left[J^{e}\left(\xi_{G P}, \eta_{G P}\right)\right]\right) w_{G P}
$$

■ Consider: $\int_{V}[B]^{\top}[\mathbf{D}][B] d V=\sum_{e=1}^{N_{e}} \int_{V_{e}}[B]^{\top}[\mathbf{D}][B] d V$

- Transpose to the parametric space or mapping (in 2D case):

$$
\int_{V_{e}}[B(\xi, \eta)]^{\top}[\mathbf{D}][\boldsymbol{B}(\xi, \eta)] d V=\int_{-1}^{1} \int_{-1}^{1}[\boldsymbol{B}(\xi, \eta)]^{\top}[\mathbf{D}][\boldsymbol{B}(\xi, \eta)] \operatorname{det}([\mathbf{J}]) d \xi d \eta
$$

- Finally:

$$
[\mathbf{K}]=\int_{V}[\boldsymbol{B}]^{\top}[\mathbf{D}][B] d V \approx \sum_{e=1}^{N_{e}} \sum_{G P=1}^{N_{G P}}\left[\boldsymbol{B}^{e}\left(\xi_{G P}, \eta_{G P}\right)\right]^{\top}[\mathbf{D}]\left[\boldsymbol{B}^{e}\left(\xi_{G P}, \eta_{G P}\right)\right] \operatorname{det}\left(\left[J^{e}\left(\xi_{G P}, \eta_{G P}\right)\right]\right) w_{G P}
$$

- If $N(\xi, \eta)=P_{p}$ is a polynomial of order p, then $[\mathbf{J}]=P_{(p-1)},[B]=\frac{P_{2(p-1)}}{Q_{(p-1)}}$
- Remark I: Gauss quadrature is exact for $p=1$ and approximate if $p>1$.
- Remark II: Stress and strains are exactly evaluated only in Gauss points, in all other points they are extrapolated/interpolated
- Remark III: Underintegration may lead to zero-energy deformation modes (which are often stabilized in FE software)
- Shape functions:

$$
\begin{array}{ll}
N_{1}=\frac{1}{4}(1-\xi)(1-\eta), & N_{2}=\frac{1}{4}(1+\xi)(1-\eta) \\
N_{3}=\frac{1}{4}(1+\xi)(1+\eta), & N_{4}=\frac{1}{4}(1-\xi)(1+\eta)
\end{array}
$$

- Shape function derivatives:

$$
\begin{aligned}
& N_{1, \xi}=-\frac{1}{4}(1-\eta), \quad N_{2, \xi}=\frac{1}{4}(1-\eta) \\
& N_{3, \xi}=\frac{1}{4}(1+\eta), \quad N_{4, \xi}=-\frac{1}{4}(1+\eta) \\
& N_{1, \eta}=-\frac{1}{4}(1-\xi), \quad N_{2, \eta}=-\frac{1}{4}(1+\xi) \\
& N_{3, \eta}=\frac{1}{4}(1+\xi), \quad N_{4, \eta}=\frac{1}{4}(1-\xi)
\end{aligned}
$$

- Determinant of Jacobian $(d A=\operatorname{det}[J] d \xi d \eta)$:
$\operatorname{det}([J])=$

$$
\begin{aligned}
& \frac{1}{11}\left[\left((1-\eta)\left(x_{2}-x_{1}\right)+(1+\eta)\left(x_{3}-x_{4}\right)\right)\left((1+\xi)\left(y_{3}-y_{2}\right)+(1-\xi)\left(y_{4}-y_{1}\right)\right)-\right. \\
& \left.-\left((1-\eta)\left(y_{2}-y_{1}\right)+(1+\eta)\left(y_{3}-y_{4}\right)\right)\left((1+\xi)\left(x_{3}-x_{2}\right)+(1-\xi)\left(x_{4}-x_{1}\right)\right)\right]
\end{aligned}
$$

Parameteric space

Physical space

- Shape functions:

$$
\begin{array}{ll}
N_{1}=\frac{1}{4}(1-\xi)(1-\eta), & N_{2}=\frac{1}{4}(1+\xi)(1-\eta) \\
N_{3}=\frac{1}{4}(1+\xi)(1+\eta), & N_{4}=\frac{1}{4}(1-\xi)(1+\eta)
\end{array}
$$

- Shape function derivatives:

$$
\begin{aligned}
& N_{1, \xi}=-\frac{1}{4}(1-\eta), \quad N_{2, \xi}=\frac{1}{4}(1-\eta) \\
& N_{3, \xi}=\frac{1}{4}(1+\eta), \quad N_{4, \xi}=-\frac{1}{4}(1+\eta) \\
& N_{1, \eta}=-\frac{1}{4}(1-\xi), \quad N_{2, \eta}=-\frac{1}{4}(1+\xi) \\
& N_{3, \eta}=\frac{1}{4}(1+\xi), \quad N_{4, \eta}=\frac{1}{4}(1-\xi)
\end{aligned}
$$

- Determinant of Jacobian $(d A=\operatorname{det}[J] d \xi d \eta)$:
$\operatorname{det}([J])=$

$$
\begin{aligned}
& \frac{1}{16}\left[\left((1-\eta)\left(x_{2}-x_{1}\right)+(1+\eta)\left(x_{3}-x_{4}\right)\right)\left((1+\xi)\left(y_{3}-y_{2}\right)+(1-\xi)\left(y_{4}-y_{1}\right)\right)-\right. \\
& \left.-\left((1-\eta)\left(y_{2}-y_{1}\right)+(1+\eta)\left(y_{3}-y_{4}\right)\right)\left((1+\xi)\left(x_{3}-x_{2}\right)+(1-\xi)\left(x_{4}-x_{1}\right)\right)\right]
\end{aligned}
$$

- Warning: to ensure $\operatorname{det}([\mathrm{J}])>0$ the element should remain convex

Parameteric space

Physical space

Problem: Find $[u]$ such that $[K][u]=[f]$, i.e. $[u]=[K]^{-1}[f]$

- Iterative solvers

The solution is approached iteratively, does not require much memory, restrictions to matrix type, sensitive to matrix conditioning, a preconditioner is often needed.

■ Gauss-Seidel method (GS)
■ Conjugate gradient method (CG)
■ Generalized minimum residual method (GMRES)
■...

- Direct solvers

The solution is provided directly, no restrictions on matrix type, less sensitive to matrix conditioning, based on LU or Cholesky decomposition

- Frontal
- Sparse direct

Convergence

Mesh and interpolation order convergence

■ For Sobolev spaces ${ }^{1} \underline{u} \in \mathbb{W}^{s, p}, s, p \in \mathbb{N}$ and their norm: $\|\underline{u}\|_{\mathbb{W}^{s, p}}=\left[\int_{\Omega} \sum_{\alpha=0}^{s}\left(\frac{\partial^{\alpha}}{\partial \underline{x}^{\alpha}} \cdot \frac{\partial^{\alpha}}{\partial \underline{x}^{\alpha}}\right)^{p} d V\right]^{1 / p}$

- For Hilbert space \mathbb{H}^{1} :

$$
\|\underline{u}\|_{\mathbb{H}^{1}}=\sqrt{\int_{\Omega}\left(\underline{u} \cdot \underline{u}+l^{2} \nabla \underline{u}: \nabla \underline{u}\right) d V}
$$

[^1]
Mesh and interpolation order convergence

■ For Sobolev spaces ${ }^{1} \underline{u} \in \mathbb{W}^{s, p}, s, p \in \mathbb{N}$ and their norm: $\|\underline{u}\|_{\mathbb{W}^{s, p}}=\left[\int_{\Omega} \sum_{\alpha=0}^{s}\left(\frac{\partial^{\alpha}}{\partial \underline{x}^{\alpha}} \cdot \frac{\partial^{\alpha}}{\partial \underline{x}^{\alpha}}\right)^{p} d V\right]^{1 / p}$

- For Hilbert space \mathbb{H}^{1} :

$$
\|\underline{u}\|_{\mathbb{H}^{1}}=\sqrt{\int_{\Omega}\left(\underline{u} \cdot \underline{u}+l^{2} \nabla \underline{u}: \nabla \underline{u}\right) d V}=\sqrt{\int_{\Omega}(\underline{u} \cdot \underline{u}+\nabla \underline{u}: \nabla \underline{u}) d V}
$$

[^2]
Mesh and interpolation order convergence

■ For Sobolev spaces ${ }^{1} \underline{u} \in \mathbb{W}^{s, p}, s, p \in \mathbb{N}$ and their norm: $\|\underline{u}\|_{\mathbb{W}^{s, p}}=\left[\int_{\Omega} \sum_{\alpha=0}^{s}\left(\frac{\partial^{\alpha} \underline{u}}{\partial \underline{x}^{\alpha}} \cdot \frac{\partial^{\alpha} \underline{\underline{u}}}{\partial \underline{x}^{\alpha}}\right)^{p} d V\right]^{1 / p}$

- For Hilbert space \mathbb{H}^{1} :

$$
\|\underline{u}\|_{\mathbb{H}^{1}}=\sqrt{\int_{\Omega}\left(\underline{u} \cdot \underline{u}+l^{2} \nabla \underline{u}: \nabla \underline{u}\right) d V}=\sqrt{\int_{\Omega}(\underline{u} \cdot \underline{u}+\nabla \underline{u}: \nabla \underline{u}) d V}
$$

- If there's no re-entrant corners and boundary conditions are "gentle", then displacements converge as :

$$
\frac{\left\|\underline{\boldsymbol{u}}-\underline{\boldsymbol{u}}^{h}\right\|_{H^{0}}}{\|\underline{\boldsymbol{u}}\|_{H^{0}}} \leq C_{u} h^{p+1}
$$

where $\underline{u}, \underline{u}^{h}$ are the true and approximate solutions, p is the interpolation order of shape functions $N(\xi, \eta)$ and h is the element size.
${ }^{1}$ The solution is usually sought in physically meaningful Sobolev space $W^{1,2}$, i.e. Hilbert space \mathbb{H}^{1}.

Mesh and interpolation order convergence

■ For Sobolev spaces ${ }^{1} \underline{u} \in \mathbb{W}^{s, p}, s, p \in \mathbb{N}$ and their norm: $\|\underline{u}\|_{\mathbb{W}^{s, p}}=\left[\int_{\Omega} \sum_{\alpha=0}^{s}\left(\frac{\partial^{\alpha} \underline{u}}{\partial \underline{x}^{\alpha}} \cdot \frac{\partial^{\alpha} \underline{\underline{u}}}{\partial \underline{x}^{\alpha}}\right)^{p} d V\right]^{1 / p}$

- For Hilbert space \mathbb{H}^{1} :

$$
\|\underline{u}\|_{\mathbb{H}^{1}}=\sqrt{\int_{\Omega}\left(\underline{u} \cdot \underline{u}+l^{2} \nabla \underline{u}: \nabla \underline{u}\right) d V}=\sqrt{\int_{\Omega}(\underline{u} \cdot \underline{u}+\nabla \underline{u}: \nabla \underline{u}) d V}
$$

- If there's no re-entrant corners and boundary conditions are "gentle", then displacements converge as :

$$
\frac{\left\|\underline{\boldsymbol{u}}-\underline{\boldsymbol{u}}^{h}\right\|_{H^{0}}}{\|\underline{\boldsymbol{u}}\|_{H^{0}}} \leq C_{u} h^{p+1}
$$

where $\underline{u}, \underline{u}^{h}$ are the true and approximate solutions, p is the interpolation order of shape functions $N(\xi, \eta)$ and h is the element size.

- And that stresses/strains converge as:

$$
\frac{\left\|\underline{\boldsymbol{u}}-\underline{\boldsymbol{u}}^{h}\right\|_{H^{1}}}{\| \underline{\boldsymbol{u}}_{H^{1}}} \leq C_{\sigma} h^{p}
$$

${ }^{1}$ The solution is usually sought in physically meaningful Sobolev space $W^{1,2}$, i.e. Hilbert space \mathbb{H}^{1}.

Mesh and interpolation order convergence

■ For Sobolev spaces ${ }^{1} \underline{u} \in \mathbb{W}^{s, p}, s, p \in \mathbb{N}$ and their norm: $\|\underline{u}\|_{\mathbb{W}^{s, p}}=\left[\int_{\Omega} \sum_{\alpha=0}^{s}\left(\frac{\partial^{\alpha} \underline{u}}{\partial \underline{x}^{\alpha}} \cdot \frac{\partial^{\alpha} \underline{\underline{u}}}{\partial \underline{x}^{\alpha}}\right)^{p} d V\right]^{1 / p}$

- For Hilbert space \mathbb{H}^{1} :

$$
\|\underline{\boldsymbol{u}}\|_{\mathbb{H}^{1}}=\sqrt{\int_{\Omega}\left(\underline{\boldsymbol{u}} \cdot \underline{u}+l^{2} \nabla \underline{\boldsymbol{u}}: \nabla \underline{u}\right) d V}=\sqrt{\int_{\Omega}(\underline{\boldsymbol{u}} \cdot \underline{u}+\nabla \underline{\boldsymbol{u}}: \nabla \underline{u}) d V}
$$

- If there's no re-entrant corners and boundary conditions are "gentle", then displacements converge as :

$$
\frac{\left\|\underline{\boldsymbol{u}}-\underline{\boldsymbol{u}}^{h}\right\|_{H^{0}}}{\|\underline{\boldsymbol{u}}\|_{H^{0}}} \leq C_{u} h^{p+1}
$$

where $\underline{u}, \underline{u}^{h}$ are the true and approximate solutions, p is the interpolation order of shape functions $N(\xi, \eta)$ and h is the element size.

- And that stresses/strains converge as:

$$
\frac{\left\|\underline{\boldsymbol{u}}-\underline{\boldsymbol{u}}^{h}\right\|_{H^{1}}}{\| \underline{\boldsymbol{u}}_{H^{1}}} \leq C_{\sigma} h^{p}
$$

- Therefore, to obtain a converged solution we can either increase interpolation order p (p-refinement) or decrease h (h-refinement)
${ }^{1}$ The solution is usually sought in physically meaningful Sobolev space $W^{1,2}$, i.e. Hilbert space \mathbb{H}^{1}.

Tension of a rectangular sheet with a hole

Tension of a rectangular sheet with a hole

The symmetry is used to reduce the computational $\operatorname{cost}{ }^{*}$

Example

Triangular mesh with linear elements :
$h=4 h_{0}$

$h=2 h_{0}$

$$
h=h_{0}
$$

Stress component, $\sigma_{x x}(\mathrm{~Pa})$

Example

Triangular mesh with linear elements :

$$
h=4 h_{0}
$$

$h=2 h_{0}$

$$
h=h_{0}
$$

Stress component, $\sigma_{x x}(\mathrm{~Pa})$

Triangular mesh with linear elements :

Example

Triangular mesh with linear elements (with contour plot stress field):

Stress component, $\sigma_{x x}(\mathrm{~Pa})$

Example

Triangular mesh with linear elements (comparison with quadratic elements):
$h=8 h_{0}$

$h=4 h_{0}$

$h=2 h_{0}$

$h=h_{0}$

Example

Triangular mesh with linear elements (comparison with quadratic elements):
$h=8 h_{0}$

$h=4 h_{0}$

$h=2 h_{0}$

$h=h_{0}$

Comparison of triangular and quadrilateral meshes:
triangular

Nonlinear FEM

- Material behavior (viscoelasticity, plasticity, damage)
- Nonlinear geometry = finite deformations and/or rotations $\Omega(t) \neq \Omega\left(t_{0}\right)$, infinitesimal strain tensor $\underline{\underline{\varepsilon}}$ is not applicable
- Fracture (crack propagation: remeshing of X-FEM)
- Contact, friction, wear
- Coupled thermomecanical or fluid/solid problems

Post-buckling behavior with self-contact

Twisting multi-strand wire

Contact of a rough surface

Multi-contact problem

Multi-contact problem

Multi-contact problem

Multi-contact problem

Polycristalline material

Coupled thin flow in contact interface

- The linear Finite Element Method is widely used in mechanical engineering
- To get to a matrix formulation (linear system of equations)

$$
[K][u]=[f]
$$

we need to compute:

- a matrix [B] at every Gauss point (GP)
- a trivial matrix [D] (which changes from GP to GP only if we have heterogeneous solid)
- a vector of external forces $\left[f_{\text {ext }}\right]$ (Neumann boundary condition)
- Dirichlet boundary conditions are imposed either using penalty method or matrix rearrangement
■ The system is solved using your preferable solver (see Christophe Bovet's (ONERA) lecture)

FEM from mechanical engineering prospective

Merci de votre attention !

[^0]: *In case of a simply-connected solid.
 ${ }^{* *}$ In absence of volumetric forces.

[^1]: ${ }^{1}$ The solution is usually sought in physically meaningful Sobolev space $W^{1,2}$, i.e. Hilbert space \mathbb{H}^{1}.

[^2]: ${ }^{1}$ The solution is usually sought in physically meaningful Sobolev space $W^{1,2}$, i.e. Hilbert space \mathbb{H}^{1}.

