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Continuum Solid Mechanics: a Reminder



Deformable medium •

Deformation in time t

Reference configuration at t = t0, X and current configuration at t = t1, x(X, t)

Lagrangian description, follow material points X = x(t = t0)

Displacement vector is u = x − X
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Deformation tensor •

Transformation gradient F
=

=
∂x
∂X

=
∂
(
X + u

)
∂X

= I
=

+
∂u
∂X

= I
=

+ H
=

Cauchy-Green right tensor C
=

= F
=
ᵀ
· F
=

Green-Lagrange deformation tensor E
=

=
1
2

(
C
=
− I

=

)
= H

=
S +

1
2

H
=
ᵀ
·H
=

For Hij � 1, E
=
≈ H

=
S and we obtain a tensor of small deformations

ε
=

= H
=

S =
1
2

 ∂u
∂X

+

(
∂u
∂X

)ᵀ  =
1
2

(
∇u + (∇u)

ᵀ )



Stress tensor and Hooke’s law •

Hooke’s law in uniaxial test:

σxx = Eεxx

F = ku ⇔ σxxA =
EA
L0

u = EA
L − L0

L0

In general case stress and strain are related through a linear
operator (fourth-order elasticity tensor 4C

=
):

σ
=

= 4C
=

: ε
=

Inversely the strain can be found through a stiffness tensor 4S
=

:

ε
=

= 4S
=

: σ
=



Hooke’s law for isotropic solids: stress •

In the case of isotropic material the Hooke’s law reduces to:

σ
=

= λtr(ε
=

)I
=

+ 2µε
=
,

with λ, µ being Lamé coefficients:

λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E
2(1 + ν)

with Young’s modulus E and Poisson’s ratio ν.

In the component form it reads:

σij = λ(εkk)δij + 2µεij

In the matrix form:

σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 = 2µ


λtr(ε

=
)/(2µ) + ε11 ε12 ε13

ε12 λtr(ε
=

)/(2µ) + ε22 ε23

ε13 ε23 λtr(ε
=

)/(2µ) + ε33


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Hooke’s law for isotropic solids: strain •

Strain as a function of stress:

ε
=

=
1 + ν

E
σ
=
−
ν
E

tr(σ
=

)I
=
.

In the component form it reads:

εij =
1 + ν

E
σij −

ν
E
σkkδij

In the matrix form:ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

 =
1
E


(1 + ν)σ11 − νtr(σ

=
) (1 + ν)σ12 (1 + ν)σ13

(1 + ν)σ12 (1 + ν)σ22 − νtr(σ
=

) (1 + ν)σ23

(1 + ν)σ13 (1 + ν)σ23 (1 + ν)σ33 − νtr(σ
=

)





Hooke’s law for isotropic solids: strain •

Strain as a function of stress:

ε
=

=
1 + ν

E
σ
=
−
ν
E

tr(σ
=

)I
=
.

In the component form it reads:

εij =
1 + ν

E
σij −

ν
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σkkδij
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 =
1
E


(1 + ν)σ11 − νtr(σ

=
) (1 + ν)σ12 (1 + ν)σ13

(1 + ν)σ12 (1 + ν)σ22 − νtr(σ
=

) (1 + ν)σ23

(1 + ν)σ13 (1 + ν)σ23 (1 + ν)σ33 − νtr(σ
=

)


=

1
E

σ11 − ν(σ22 + σ33) (1 + ν)σ12 (1 + ν)σ13
(1 + ν)σ12 σ22 − ν(σ11 + σ33) (1 + ν)σ23
(1 + ν)σ13 (1 + ν)σ23 σ33 − ν(σ11 + σ22)





Equilibrium of an infinitesimal element •

Infinitesimal strain tensor is symmetric and satisfies the
compatibility conditions∗:

∇ ×

(
∇ × ε

=

)
= 0

Stress tensor σ
=

should ensure equilibrium of infinitesimal
element∗∗:

Force balance:
∫
S

n · σ
=

dS = 0

Momentum balance:
∫
S

r × (n · σ
=

) dS = 0

Following the divergence theorem:∫
S

n · σ
=

dS =
∫
V
∇ · σ

=
dV = 0 Since volume V can be arbitrary

chosen, then
∇ · σ

=
= 0 everywhere in V.

∗In case of a simply-connected solid.
∗∗In absence of volumetric forces.



Equilibrium of an infinitesimal element II •

Second Newton’s law:

mü = f ⇒ ρü =
1
V

f

In presence of volumetric forces with density f
V

, the total
force is given by:

f =
∫
V

f
V

dV +
∫
S

n · σ
=

dS

Then using the second Newton’s law and the divergence
theorem:∫
V

(
∇ · σ

=
+ f

V

)
dV =

∫
V
ρü dV

Since it is right for arbitrary V, then in every point of V:

∇ · σ
=

+ f
V

= ρü



Equilibrium of an infinitesimal element II •

Equilibrium (3 equations):

∇ · σ
=

+ f
V

= ρü

In component form∗:

σij,j + fVi = ρüi,

Explicitly:

∂σxx

∂x
+
∂σxy

∂y
+
∂σxz

∂z
+ fVx = ρüx

∂σxy

∂x
+
∂σyy

∂y
+
∂σyz

∂z
+ fVy = ρüy

∂σxz

∂x
+
∂σxz

∂y
+
∂σzz

∂z
+ fVz = ρüz

∗ The following notation is used yi,j =
∂yi
∂xj



Deformable solid and boundary conditions •

Notations:

Consider a solid Ω with boundary ∂Ω

Boundary is split into Γu and Γf : ∂Ω = Γu ∪ Γf

At Γu displacements u0(t,X) are prescribed
(Dirichlet boundary conditions [BC]):

u = u0 at Γu

At Γf tractions t0(t,X) are prescribed (Neumann
BC):

σ
=
· n = t0 at Γf

σ
=
· n = 0 at Γ0

f
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BC):
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· n = 0 at Γ0

f

Remarks:

on the same boundary both BCs can be prescribed if they are orthogonal one to each other, i.e. u0 · t0 = 0
(ex.: friction);

a relationship between these BCs can be prescribed (Robin BC): u0 = U − kt0 (ex.: Winkler’s foundation).



Elastic and static problem set-up •

Equilibrium in absence of inertial forces

∇ · σ
=

+ f
V

= 0 (∗)

Consistutive relation:

σ
=

=4 C
=

: ε
=

Strain tensor:

ε
=

=
1
2

(
∇u + (∇u)

ᵀ )
Boundary conditions:

u = u0 at Γu

σ
=
· n = t0 at Γf

σ
=
· n = 0 at Γ0

f

Problem:
find such field u in Ω that satisfies
equilibrium Eq. (∗) and boundary conditions.



Finite Element Method



Main idea in a nutshell •

Find displacement only on few locations ui(t) and
interpolate in between

u(X, t) =
∑

Ni(X)ui(t)

Thus, we reduce the problem of dimension∞ to a
finite dimensional problem

Weak formulation of equilibrium equations results
in a linear system of equations...

Alternatively, the problem could be formulated as
an optimization problem:

Minimize body’s potential energy for given
external and internal loads

min(Uh(ui)) for t0 on Γh
f and u0 on Γh

u



Main idea •

From continuous to discrete problem

Split solid into finite elements

Ω→ Ωh with Ωh =
∑
e

Ωh
e

All quantities are associated with this discretization:
u→ uh, σ

=
→ σ

=
h, Γf → Γh

f , t0 → th
0, . . .

Search for uh only in a finite number of points (nodes)

Interpolate in between (within elements)

Ensure (1) equilibrium of every element and (2)
satisfaction of boundary conditions

(1) ∇ · σ
=

h + f h
v
∼ 0 in Ωh

e ,∀e

(2.a) σ
=

h
· nh
∼ th

0 at Γh
f

(2.b) uh
∼ uh

0 at Γh
u
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∑
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Ωh
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=
h, Γf → Γh
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=
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v
∼ 0 in Ωh

e ,∀e

(2.a) σ
=

h
· nh
∼ th

0 at Γh
f

(2.b) uh
∼ uh

0 at Γh
u

Existence and uniqueness of the solution uh
∗

When discretization-size tends to zero h→ 0,
convergence to the solution of the continuum
problem: uh

∗
−−−→
h→0

u
∗



Standard discrete system •

1 For any discrete system the quantities of interest [q] depend on system parameters [p] and on locally acting
external parameters [e]

[q]i = [q]i
(
[p]j, [e]i

)
2 In the first approximation this dependence is linear

q1 = K11p1 + K12p2 + . . .K1NpN + A11e1
q2 = K21p1 + K22p2 + . . .K2NpN + A22e2
. . .
qN = K21p1 + K22p2 + . . .K2NpN + ANNeN

3 In matrix form

[q]i = [K]ij [p]j + [A]ii [e]i

4 Assuming that external parameters are of the same nature as quantities of interest ([A]ij = [I]ij)

[q]i = [K]ij [p]j + [e]i



Discrete system in structural mechanics •

Main quantities

Quantities of interest [q] are, in general, forces [f ]

System parameters [p] are, in general, displacements [u]

External parameters [e] are, in general, external forces [f ]ext

Main steps

1 Construct stiffness matrix and nodal loads vector

[K]k
ij , [f ]k

i , i, j ∈ 1,NNk; k ∈ NE,

where NNk is the number of nodes of k-th element, NE is the number of elements.

2 Assemble them into the global stiffness matrix and global load vector

[K]ij , [f ]i, i, j ∈ 1,NN,

where NN is the total number of nodes.

3 Add boundary conditions (for example Dirichlet and Neumann)

[f ]ext
k , k ∈ BCf ; [u]0

l , l ∈ BCu

4 Solve linear system of equations
[K]ij [u]j = [f ]i − [f ]ext

i → [u]j∗



Shape functions •

Displacements are known at nodes: uh
i , i = 1, 4

We need to know them inside the element

Parametrize the inside with parameters
{ξ, η} ∈ [−1, 1]

Use interpolation or shape functions Ni(ξ, η)
for position X

Xh(ξ, η) =
∑
i

Xh
i Ni(ξ, η)

and displacement u:

uh(ξ, η) =
∑
i

uh
i Ni(ξ, η)

If the same functions are used, then the element is
called isoparametric

Remark: Find {ξ, η} from X is not always
straigthforward
(may result in a system of non-linear equations)
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Shape functions II •

Rules

Node i has coordinates {ξi, ηi}

Then Ni(ξj, ηj) = δij

Partition of unity:

∀ξ, η, :
∑
i

Ni(ξ, η) = 1

Types

Linear shape functions

∂N
∂ξ

= const

Non-linear shape functions

∂N
∂ξ

= f (ξ)

Linear elements vs quadratic elements

Higher order elements



Shape functions III •

Example: bar element

Linear shape functions:

N1(ξ) =
1
2

(1 − ξ)

N2(ξ) =
1
2

(1 + ξ)

Quadratic shape functions:

N1(ξ) =
1
2
ξ(ξ − 1)

N2(ξ) = (1 − ξ2)

N3(ξ) =
1
2
ξ(1 + ξ)



Shape functions: vectors and matrices •

Displacement nodal vectors ui = exux
i + eyuy

i

Array of nodal coordinates (size dim · n)

[X] = [x1, y1, x2, y2, . . . xn, yn]
ᵀ

2n

Array of nodal displacements (size dim · n)

[u] = [ux
1, uy

1, ux
2, uy

2, . . . ux
n, uy

n]
ᵀ

2n

Arrays of shape functions (size dim · n)

[Nx] = [N1, 0, N2, 0, . . . Nn, 0]
ᵀ

2n

[Ny] = [0, N1, 0, N2, . . . 0, Nn]
ᵀ

2n

[N] =

[
N1 0 N2 0 . . . Nn 0
0 N1 0 N2 . . . 0 Nn

]ᵀ
2n×dim

Then
x(ξ, η, t) = [Nx(ξ, η)]

ᵀ
[X(t)], y(ξ, η, t) = [Ny(ξ, η)]

ᵀ
[X(t)]

ux(ξ, η, t) = [Nx(ξ, η)]
ᵀ

[u(t)], uy(ξ, η, t) = [Ny(ξ, η)]
ᵀ

[u(t)]



Gradients and shape functions •

Need to evaluate gradients (spatial derivatives) like ∂f
∂x

But with shape functions f = f (ξ, η)

Then
∂f (ξ, η)
∂x

=
∂f
∂ξ
∂ξ
∂x

+
∂f
∂η

∂η

∂x

However, in general we do not have ξ = ξ(x, y) but rather x = x(ξ, η)

Let’s do it other way around
∂
∂ξ
∂
∂η

 =


∂
∂x
∂x
∂ξ

+
∂
∂y
∂y
∂ξ

∂
∂x
∂x
∂η

+
∂
∂y
∂y
∂η

 =


∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η



∂
∂x
∂
∂y

 = [ J ]


∂
∂x
∂
∂y


Matrix [ J ] is called Jacobian operator/matrix and enables to obtain

∂
∂x
∂
∂y

 = [ J ]−1


∂
∂ξ
∂
∂η





Jacobian operator/matrix •

Jacobian operator/matrix:

[ J ] =

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η


Using x = [Nx]

ᵀ
[X], y = [Ny]

ᵀ
[X] we get:

[ J ] =

[Nx,ξ]
ᵀ

[X] [Ny,ξ]
ᵀ

[X]

[Nx,η]
ᵀ

[X] [Ny,η]
ᵀ

[X]

 ,
where [Nx,ξ] =

[
∂N1

∂ξ
, 0,

∂N2

∂ξ
, 0, . . .

∂Nn

∂ξ
, 0

]ᵀ
etc.

Then the inverse Jacobian is given by:

[ J ]−1 =
1
∆

 [Ny,η]
ᵀ

[X] −[Ny,ξ]
ᵀ

[X]

−[Nx,η]
ᵀ

[X] [Nx,ξ]
ᵀ

[X]

 ,
with the determinant of the Jacobian matrix (or simply Jacobian):
∆ = det([ J ]) = [X]

ᵀ
(
[Nx,ξ][Ny,η]

ᵀ
− [Ny,ξ][Nx,η]

ᵀ
)

[X] , 0



Infinitesimal strain in 2D •

Strain tensor: ε
=

=
1
2

(
∇u + (∇u)

ᵀ )
(∗)

Interpolated displacements: ux = [Nx]
ᵀ

[u], uy = [Ny]
ᵀ

[u]

Displacement gradient:

∇u =
∂uh

∂x
⊗ ex +

∂uh

∂y
⊗ ey =

∂ux

∂x
ex
⊗ ex +

∂ux

∂y
ex
⊗ ey +

∂uy

∂x
ey
⊗ ex +

∂uy

∂y
ey
⊗ ey

(∇u)
ᵀ
∼


∂ux

∂x
∂uy

∂x
∂ux

∂y
∂uy

∂y

 = [ J ]−1


∂
∂ξ
∂
∂η


ux

uy


ᵀ

= [ J ]−1


∂
∂ξ
∂
∂η


[Nx]

ᵀ
[u]

[Ny]
ᵀ

[u]


ᵀ

= [ J ]−1

[Nx,ξ]
ᵀ

[u] [Ny,ξ]
ᵀ

[u]

[Nx,η]
ᵀ

[u] [Ny,η]
ᵀ

[u]


Represent strain tensor as an array (Voigt notations):

ε
=
⇒ [E] =

[
εxx, εyy, γxy

]ᵀ
, γxy = 2εxy

Then

[E] =

[
∂ux

∂x
,

∂uy

∂y
,

∂uy

∂x
+
∂ux

∂y

]ᵀ



Infinitesimal strain in 2D •

Strain tensor: ε
=

=
1
2

(
∇u + (∇u)

ᵀ )
(∗)

Interpolated displacements: ux = [Nx]
ᵀ

[u], uy = [Ny]
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∂ux

∂y

]ᵀ



Infinitesimal strain in 2D in matrix form •
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∆
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∆
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Infinitesimal strain in 2D: example •

Consider a linear triangular element with shape functions:

N1 = − 1
2 (ξ + η), N2 = 1

2 (1 + ξ), N3 = 1
2 (1 + η)

Their derivatives are given by:

N1,ξ = −1/2, N2,ξ = 1/2, N3,ξ = 0

N1,η = −1/2, N2,η = 0, N3,η = 1/2

∆ =
1
4

((x2 − x1)(y3 − y1) − (y2 − y1)(x3 − x1))∗

Then

εxx =
1

4∆

[
(y3 − y1)(ux

2 − ux
1) − (y2 − y1)(ux

3 − ux
1)
]

εyy =
1

4∆

[
(x2 − x1)(uy

3 − uy
1) − (x3 − x1)(uy

2 − uy
1)
]

γxy =
1

4∆

[
(y3 − y1)(uy

2 − uy
1) − (y2 − y1)(uy

3 − uy
1) + (x2 − x1)(ux

3 − ux
1) − (x3 − x1)(ux

2 − ux
1)
]

∗Half of the area of the triangle.



Infinitesimal strain in 2D: example II •

Rectangular triangle x1 = x3, y1 = y2, ∆ = LxLy/4

Case 1: pure tension/compression along OX iff uy
3 = uy

1, uy
2 = uy

1, ux
3 = ux

1
Ex.: ux

2 = δ : εxx = 1
4∆ (y3 − y1)(ux

2 − ux
1) = δ/Lx, εyy = γxy = 0
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Case 2: pure tension/compression along OY iff ux
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Infinitesimal strain in 2D: example II •

Rectangular triangle x1 = x3, y1 = y2, ∆ = LxLy/4

Case 1: pure tension/compression along OX iff uy
3 = uy

1, uy
2 = uy

1, ux
3 = ux

1
Ex.: ux

2 = δ : εxx = 1
4∆ (y3 − y1)(ux

2 − ux
1) = δ/Lx, εyy = γxy = 0

Case 2: pure tension/compression along OY iff ux
2 = ux

1, uy
2 = uy

1, ux
3 = ux

1
Ex.: uy

3 = δ : εyy = 1
4∆ (x2 − x1)(uy

3 − uy
1) = δ/Ly, εxx = γxy = 0

Case 3: pure shear in XY iff ux
2 = ux

1, uy
3 = uy

1
Ex.: uy

2 = δy, ux
3 = δx :

γxy =
1

4∆

(
(y3 − y1)(uy

2 − uy
1) + (x2 − x1)(ux

3 − ux
1)
)

=
δy

Lx
+
δx

Ly
, εxx = εyy = 0



Stress tensor •

In linear elasticity, strain decomposition:
ε
=

= ε
=el

+ ε
=th

With thermal strain field:
ε
=th

= α(T − T0)I
=

= α(X)
(
T(X) − T0(X)

)
I
=
,

where α is the coefficient of thermal expansion (CTE), T and T0 are the current and reference temperature
fields, respectively.

The stress is defined by the elastic strain:
σ
=

=4C
=

: (ε
=
− ε

=th
)
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Stress: 2D isotropic elasticity •

Remind isotropic stress/strain relationship:

σ
=

=
νE

(1 + ν)(1 − 2ν)
tr(ε

=
)I
=

+
E

1 + ν
ε
=

Stress (in Voigt notations): σ
=
⇒ [S] = [σxx, σyy, σxy]

ᵀ

In plane stress σzz = 0, εzz = ν
ν−1 (εxx + εyy)

In plain strain σzz = ν(σxx + σyy), εzz = 0

Stress/strain relationship: [S] = [D] [E]

Matrix [D] in plane strain εzz = εxz = εyz = 0:

[D] =
E

(1 + ν)(1 − 2ν)

1 − ν ν 0
ν 1 − ν 0
0 0 (1 − 2ν)/2∗


Matrix [D] in plane stress σzz = σxz = σyz = 0, tr(ε

=
) = 1−2ν

1−ν (εxx + εyy):

[D] =
E

1 − ν2

1 ν 0
ν 1 0
0 0 (1 − ν)/2∗


∗Factor 1/2 appears because [E] contains γxy and not εxy.
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Stress: general case •

Voigt notations in 3D case

Stress tensor: σ
=
→ [S] = [σxx, σyy, σzz, σxy, σyz, σxz]

ᵀ

Strain tensor: ε
=
→ [E] = [εxx, εyy, εzz, γxy, γyz, γxz]

ᵀ

Hooke’s law: [S] = [D] [E]

Isotropic elasticity (two constants E, ν):

[D] =
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Equilibrium: from strong to weak form •

Equilibrium in absence of inertial forces

∇ · σ
=

+ f
V

= 0 (∗)

Consistutive relation:

σ
=

=4 C
=

: ε
=

Strain tensor:

ε
=

=
1
2

(
∇u + (∇u)

ᵀ )
Boundary conditions (BC):

u = u0 at Γu

σ
=
· n = t0 at Γf

σ
=
· n = 0 at Γ0

f



Equilibrium: from strong to weak form •

Strong form: ∇ · σ
=

+ f
V

= 0

Product with a virtual vector field v and integrate over a volume:∫
Ω

(∇ · σ
=

) · v dV +

∫
Ω

f
V
· v dV = 0

Since
∫
Ω

∇ · (σ
=
· v) dV =

∫
Ω

(∇ · σ
=

) · v dV +
∫
Ω

σ
=

: (∇v) dV and
∫
Ω

∇ · (σ
=
· v) dV =

∫
∂Ω

n · (σ
=
· v) dS, we get:

∫
∂Ω

n · σ
=
· v dS −

∫
Ω

σ
=

: (∇v) dV +

∫
Ω

f
V
· v dV = 0

If we select virtual vector field v = δu as virtual displacements vanishing at Γu:∫
Γf

t0 · δu dS −
∫
Ω

σ
=

: δε
=

dV +

∫
Ω

f
V
· δu dV = 0

This variational formulation is called the principle of virtual work or of virtual displacements.



Equilibrium: from strong to weak form •

Strong form: ∇ · σ
=

+ f
V

= 0

Product with a virtual vector field v and integrate over a volume:∫
Ω

(∇ · σ
=

) · v dV +

∫
Ω

f
V
· v dV = 0

Since
∫
Ω

∇ · (σ
=
· v) dV =

∫
Ω

(∇ · σ
=

) · v dV +
∫
Ω

σ
=

: (∇v) dV and
∫
Ω

∇ · (σ
=
· v) dV =

∫
∂Ω

n · (σ
=
· v) dS, we get:

∫
∂Ω

n · σ
=
· v dS −

∫
Ω

σ
=

: (∇v) dV +

∫
Ω

f
V
· v dV = 0

If we select virtual vector field v = δu as virtual displacements vanishing at Γu:∫
Γf

t0 · δu dS −
∫
Ω

σ
=

: δε
=

dV +

∫
Ω

f
V
· δu dV = 0

This variational formulation is called the principle of virtual work or of virtual displacements.



Equilibrium: from strong to weak form •

Strong form: ∇ · σ
=

+ f
V

= 0

Product with a virtual vector field v and integrate over a volume:∫
Ω

(∇ · σ
=

) · v dV +

∫
Ω

f
V
· v dV = 0

Since
∫
Ω

∇ · (σ
=
· v) dV =

∫
Ω

(∇ · σ
=

) · v dV +
∫
Ω

σ
=

: (∇v) dV

and
∫
Ω

∇ · (σ
=
· v) dV =

∫
∂Ω

n · (σ
=
· v) dS, we get:

∫
∂Ω

n · σ
=
· v dS −

∫
Ω

σ
=

: (∇v) dV +

∫
Ω

f
V
· v dV = 0

If we select virtual vector field v = δu as virtual displacements vanishing at Γu:∫
Γf

t0 · δu dS −
∫
Ω

σ
=

: δε
=

dV +

∫
Ω

f
V
· δu dV = 0

This variational formulation is called the principle of virtual work or of virtual displacements.



Equilibrium: from strong to weak form •

Strong form: ∇ · σ
=

+ f
V

= 0

Product with a virtual vector field v and integrate over a volume:∫
Ω

(∇ · σ
=

) · v dV +

∫
Ω

f
V
· v dV = 0

Since
∫
Ω

∇ · (σ
=
· v) dV =

∫
Ω

(∇ · σ
=

) · v dV +
∫
Ω

σ
=

: (∇v) dV and
∫
Ω

∇ · (σ
=
· v) dV =

∫
∂Ω

n · (σ
=
· v) dS, we get:

∫
∂Ω

n · σ
=
· v dS −

∫
Ω

σ
=

: (∇v) dV +

∫
Ω

f
V
· v dV = 0

If we select virtual vector field v = δu as virtual displacements vanishing at Γu:∫
Γf

t0 · δu dS −
∫
Ω

σ
=

: δε
=

dV +

∫
Ω

f
V
· δu dV = 0

This variational formulation is called the principle of virtual work or of virtual displacements.



Equilibrium: from strong to weak form •

Strong form: ∇ · σ
=

+ f
V

= 0

Product with a virtual vector field v and integrate over a volume:∫
Ω

(∇ · σ
=

) · v dV +

∫
Ω

f
V
· v dV = 0

Since
∫
Ω

∇ · (σ
=
· v) dV =

∫
Ω

(∇ · σ
=

) · v dV +
∫
Ω

σ
=

: (∇v) dV and
∫
Ω

∇ · (σ
=
· v) dV =

∫
∂Ω

n · (σ
=
· v) dS, we get:

∫
∂Ω

n · σ
=
· v dS −

∫
Ω

σ
=

: (∇v) dV +

∫
Ω

f
V
· v dV = 0

If we select virtual vector field v = δu as virtual displacements vanishing at Γu:∫
Γf

t0 · δu dS −
∫
Ω

σ
=

: δε
=

dV +

∫
Ω

f
V
· δu dV = 0

This variational formulation is called the principle of virtual work or of virtual displacements.



Equilibrium: from strong to weak form •

Strong form: ∇ · σ
=

+ f
V

= 0

Product with a virtual vector field v and integrate over a volume:∫
Ω

(∇ · σ
=

) · v dV +

∫
Ω

f
V
· v dV = 0

Since
∫
Ω

∇ · (σ
=
· v) dV =

∫
Ω

(∇ · σ
=

) · v dV +
∫
Ω

σ
=

: (∇v) dV and
∫
Ω

∇ · (σ
=
· v) dV =

∫
∂Ω

n · (σ
=
· v) dS, we get:

∫
∂Ω

n · σ
=
· v dS −

∫
Ω

σ
=

: (∇v) dV +

∫
Ω

f
V
· v dV = 0

If we select virtual vector field v = δu as virtual displacements vanishing at Γu:∫
Γf

t0 · δu dS −
∫
Ω

σ
=

: δε
=

dV +

∫
Ω

f
V
· δu dV = 0

This variational formulation is called the principle of virtual work or of virtual displacements.



Stress and reactions: element’s equilibrium II •

Work of imposed surface tractions on virtual displacements = 1
2 t0 · δu

Work density of distributed volumetric forces = 1
2 f

V
· δu

Corresponding virtual density of elastic energy = 1
2 σ= : δε

=

According to the principle of virtual work:∫
Ω

σ
=

: δε
=

dV =

∫
Γf

t0 · δu dS +

∫
Ω

f
V
· δu dV

Equivalently

a(u, δu) = L(δu)

with bilinear form a(u, δu) =
∫
Ω

σ
=

: ∇δu dV =
∫
Ω

σ
=

: δε
=

dV

and linear form L(δu) =
∫
Γf

t0 · δu dS +
∫
Ω

f
V
· δu dV.

The functional space of kinematically admissible displacements and inducing finite energy is
u ∈ U =

{
v ∈H1(Ω)

∣∣∣ v = u0 on Γu
}

whereas virtual displacements also inducing finite energy and vanishing at Dirichlet boundary belong to
δu ∈ V =

{
v ∈H1(Ω)

∣∣∣ v = 0 on Γu
}

and a : U ×V→ R and L : V→ R, whereH1 is the Hilbert space.
So we are in the framework of the Lax-Milgram theorem (continuity and coercivity could be easily shown).
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Stress and reactions: element’s equilibrium II •

According to the principle of virtual work:∫
Ω

σ
=

: δε
=

dV −
∫
Ω

f
V
· δu dV =

∫
Γf

t0 · δu dS

Elastic stress σ
=

=4C
=

: (ε
=
− ε

=th
)⇒ [S] = [D] ([E] − [E th])

Strain ε
=
∼ [E] = [B]

ᵀ
[u]

Volumetric force density f
v
∼ [fv] = [ f x

v , f
y
v , f z

v ]
ᵀ

Virtual displacement δu ∼ [N]
ᵀ
δ[u]

The discretized form of the virtual work:∫
Ωh

{
([D] ([E] − [E th]))

ᵀ
δ[E] − [fv]

ᵀ
[Ni]

ᵀ
δ[u]

}
dV =

∫
Γh

f

t0(X)[Ni]
ᵀ

dS δ[u]

[u]


∫
Ωh

[B] [D] [B]
ᵀ

dV

 δ[u] −


∫
Ωh

(
[fv]

ᵀ
[Ni]

ᵀ
+ [E th]

ᵀ
[D] [B]

ᵀ )
dV

 δ[u] = [f ]
ᵀ
δ[u]
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v
∼ [fv] = [ f x

v , f
y
v , f z

v ]
ᵀ

Virtual displacement δu ∼ [N]
ᵀ
δ[u]

The discretized form of the virtual work:∫
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{
([D] ([E] − [E th]))

ᵀ
δ[E] − [fv]
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[Ni]

ᵀ
δ[u]
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Γh

f

t0(X)[Ni]
ᵀ

dS δ[u]
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Stress and reactions: element’s equilibrium II •

Balance of virtual work for a single element:

[u]


∫
Ωh

[B] [D] [B]
ᵀ

dV

 δ[u] −


∫
Ωh

(
[fv]

ᵀ
[Ni]

ᵀ
+ [E th]

ᵀ
[D] [B]

ᵀ )
dV

 δ[u] = [f ]
ᵀ
δ[u]

For arbitrary virtual displacements δ[u]:
∫
Ve

[B]
ᵀ

[D] [B] dV

︸                   ︷︷                   ︸
[Ke]

[u] +


∫
Ve

(
−[fv]

ᵀ
[Ni]

ᵀ
− [B] [D] [E th]

)
dV

︸                                            ︷︷                                            ︸
[f e

int
]

= [f ]

︸︷︷︸
[f e

ext
]

System of equations linking displacements and reactions:

[Ke] [ue] + [f e
int

] = [f e
ext

]



Assembly •

At every internal node the total force should be zero:∑
e

[f e
ext

] = 0

summation over all elements e attached to this node.

Summation over all nodes gives:
[K] [u] + [fint] = 0



Dirichlet boundary conditions •

Dirichlet BC

Use penalty method to enforce prescribed displacements: array [u0] = [0 . . . 0 ui0 0 . . . 0 uj0 0]

Diagonal selection matrix [Is] with ones at prescribed degrees of freedom (DOFs):

[Is] =



0 . . . 0

i︷︸︸︷
0 0 . . . 0

j︷︸︸︷
0 0 } i

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. } i
0 . . . 0 0 0 . . . 0 0 0 } i
0 . . . 0 1 0 . . . 0 0 0 } i
0 . . . 0 0 0 . . . 0 0 0 } i
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. } i

0 . . . 0 0 0 . . . 0 0 0 } i
0 . . . 0 0 0 . . . 0 1 0 } j
0 . . . 0 0 0 . . . 0 0 0 } i


Then the system is changed to

([K] + ε [Is]) [u] = [fext] − [fint] + ε[u0]

where ε is the penalty coefficient such that ε� max(Kij), and [I] is the identity matrix.

Alternatively, (i) a direct DOF elimination or (ii) Lagrange multipliers could be used.



Neumann boundary conditions •

Neumann BC

Surface traction t0 at Γf

Virtual work of surface traction over one element:∫
Γe

f

t0 · δu dΓ = f i
ext
· δue

i

Then

[f i
ext

] =

∫
Γe

f

[t0][N]
ᵀ

dΓ



Discrete system of equations •

Balance of virtual work for the whole body:
∫
V

[B]
ᵀ

[D] [B] dV

︸                   ︷︷                   ︸
[K]

[u] =

∫
Γf

[t0]
ᵀ

[N]
ᵀ

dΓ

︸            ︷︷            ︸
[fext]

+


∫
V

(
[fv]

ᵀ
[Ni]

ᵀ
+ [B] [D] [E th]

)
dV

︸                                          ︷︷                                          ︸
−[fint]

System of equations linking displacements and reactions:

[K] [u] = [fext] − [fint]

Stiffness matrix [K]

Vector of degrees of freedom (DOFs) [u]

Right hand term (vector of forces) [fext] − [fint]



Evaluation of the integrals •

Weak form (recall): 
∫
V

[B]
ᵀ

[D] [B] dV

︸                   ︷︷                   ︸
[K]

[u] =

∫
Γf

[t0]
ᵀ

[N]
ᵀ

dΓ

︸             ︷︷             ︸
[fext]

+


∫
V

(
[fv]

ᵀ
[Ni]

ᵀ
+ [B] [D] [E th]

)
dV

︸                                          ︷︷                                          ︸
−[fint]

Exact integration:
b∫

a
f (x)dx = F(b) − F(a) (not always possible)

Approximate integration (trapezoidal rule, Simpson’s rule)

Gauss quadrature:
b∫

a
f (x)dx ≈

NGP∑
i=1

wif (xi)

Gauss points xi and weights wi with i = 1,NGP

Integration is exact for polynomials of order 2NGP − 1

Tabulated data for xi,wi (1D, 2D, 3D integration)



Evaluation of the integrals: example •

Function f (x) = cos(πx2/2)
NGP = 1: error ≈ 28.22 %
NGP = 2: error ≈ 11.04 %
NGP = 3: error ≈ 1.14 %
NGP = 4: error ≈ 0.14 %
NGP = 5: error ≈ 0.01 %

Function f (x) = x sin(πx)
NGP = 1: error ≈ 100.00 %
NGP = 2: error ≈ 76.05 %
NGP = 3: error ≈ 12.07 %
NGP = 4: error ≈ 0.80 %
NGP = 5: error ≈ 0.03 %

1.0 0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

cos(πx2 /2)

x sin(πx)



Evaluation of the integrals II •

Consider:
∫
V

[B]
ᵀ

[D] [B] dV =

Ne∑
e=1

∫
Ve

[B]
ᵀ

[D] [B] dV

Transpose to the parametric space or mapping (in 2D case):

∫
Ve

[B(ξ, η)]
ᵀ

[D] [B(ξ, η)] dV =

1∫
−1

1∫
−1

[B(ξ, η)]
ᵀ

[D] [B(ξ, η)] det([ J ]) dξdη

Finally:

[K] =

∫
V

[B]
ᵀ

[D] [B] dV ≈
Ne∑
e=1

NGP∑
GP=1

[Be(ξGP , ηGP )]
ᵀ

[D] [Be(ξGP , ηGP )] det([ Je(ξGP , ηGP ) ])wGP
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ᵀ
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Evaluation of the integrals III •

If N(ξ, η) = Pp is a polynomial of order p, then [ J ] = P(p−1), [B] =
P2(p−1)
Q(p−1)

Remark I: Gauss quadrature is exact for p = 1 and approximate if p > 1.

Remark II: Stress and strains are exactly evaluated only in Gauss points, in all other points they are
extrapolated/interpolated

Remark III: Underintegration may lead to zero-energy deformation modes (which are often stabilized in
FE software)



Evaluation of the integrals: quadrilateral 2D element •

Shape functions:

N1 = 1
4 (1 − ξ)(1 − η), N2 = 1

4 (1 + ξ)(1 − η)

N3 = 1
4 (1 + ξ)(1 + η), N4 = 1

4 (1 − ξ)(1 + η)

Shape function derivatives:

N1,ξ = − 1
4 (1 − η), N2,ξ = 1

4 (1 − η)
N3,ξ = 1

4 (1 + η), N4,ξ = − 1
4 (1 + η)

N1,η = − 1
4 (1 − ξ), N2,η = − 1

4 (1 + ξ)
N3,η = 1

4 (1 + ξ), N4,η = 1
4 (1 − ξ)

Determinant of Jacobian (dA = det [ J ]dξdη):

det([ J ]) =
1

16

[(
(1 − η)(x2 − x1) + (1 + η)(x3 − x4)

)(
(1 + ξ)(y3 − y2) + (1 − ξ)(y4 − y1)

)
−

− ((1 − η)(y2 − y1) + (1 + η)(y3 − y4))((1 + ξ)(x3 − x2) + (1 − ξ)(x4 − x1))
]



Evaluation of the integrals: quadrilateral 2D element •

Shape functions:
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1

16

[(
(1 − η)(x2 − x1) + (1 + η)(x3 − x4)

)(
(1 + ξ)(y3 − y2) + (1 − ξ)(y4 − y1)
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−

− ((1 − η)(y2 − y1) + (1 + η)(y3 − y4))((1 + ξ)(x3 − x2) + (1 − ξ)(x4 − x1))
]

Warning: to ensure det([ J ]) > 0 the element should remain convex



Solvers •

Problem: Find [u] such that [K] [u] = [f ] , i.e. [u] = [K]−1 [f ]

Iterative solvers
The solution is approached iteratively, does not require much memory, restrictions to matrix type, sensitive to matrix
conditioning, a preconditioner is often needed.

Gauss-Seidel method (GS)
Conjugate gradient method (CG)
Generalized minimum residual method (GMRES)
. . .

Direct solvers
The solution is provided directly, no restrictions on matrix type, less sensitive to matrix conditioning, based on LU or
Cholesky decomposition

Frontal
Sparse direct
. . .



Convergence



Mesh and interpolation order convergence •

For Sobolev spaces1 u ∈W
s,p
, s, p ∈N and their norm: ‖u‖

W
s,p =

∫
Ω

s∑
α=0

(
∂αu
∂xα ·

∂αu
∂xα

)p
dV

1/p

For Hilbert spaceH1:

‖u‖H1 =

√√∫
Ω

(
u · u + l2∇u : ∇u

)
dV

=

√√∫
Ω

(
u · u + ∇u : ∇u

)
dV

If there’s no re-entrant corners and boundary conditions are ”gentle”, then displacements converge as :

‖u−uh
‖

H0

‖u‖
H0

≤ Cuhp+1

where u, uh are the true and approximate solutions, p is the interpolation order of shape functions N(ξ, η)
and h is the element size.

And that stresses/strains converge as:

‖u−uh
‖

H1

‖u‖
H1

≤ Cσhp

Therefore, to obtain a converged solution we can either increase interpolation order p (p-refinement) or
decrease h (h-refinement)

1The solution is usually sought in physically meaningful Sobolev space W
1,2

, i.e. Hilbert spaceH1.
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1The solution is usually sought in physically meaningful Sobolev space W
1,2

, i.e. Hilbert spaceH1.



Example •

Tension of a rectangular sheet with a hole

x

y



Example •

Tension of a rectangular sheet with a hole

x

y

The symmetry is used to reduce the computational cost,



Example •

Triangular mesh with linear elements :



Example •

Triangular mesh with linear elements :



Example •

Triangular mesh with linear elements :



Example •

Triangular mesh with linear elements (with contour plot stress field):



Example •

Triangular mesh with linear elements (comparison with quadratic elements):



Example •

Triangular mesh with linear elements (comparison with quadratic elements):



Example •

Comparison of triangular and quadrilateral meshes:



Nonlinear FEM



Types of nonlinearity •

Material behavior (viscoelasticity,
plasticity, damage)
Nonlinear geometry = finite
deformations and/or rotations
Ω(t) , Ω(t0), infinitesimal strain tensor
ε
=

is not applicable

Fracture (crack propagation: remeshing
of X-FEM)
Contact, friction, wear
Coupled thermomecanical or
fluid/solid problems

E = 65.87 GPa

ν = 0.375

Non Linear isotropic hardening:

3 Non Linear kinematic hardening:



Post-buckling behavior with self-contact •



Twisting multi-strand wire •



Contact of a rough surface •



Impact of WC/Co composite •



Multi-contact problem •



Multi-contact problem •



Multi-contact problem •



Multi-contact problem •



Polycristalline material •



Coupled thin flow in contact interface •



Conclusion •

The linear Finite Element Method is widely used in mechanical engineering
To get to a matrix formulation (linear system of equations)

[K][u] = [f ]

we need to compute:
a matrix [B] at every Gauss point (GP)
a trivial matrix [D] (which changes from GP to GP only if we have heterogeneous solid)
a vector of external forces [fext] (Neumann boundary condition)
Dirichlet boundary conditions are imposed either using penalty method or matrix
rearrangement

The system is solved using your preferable solver
(see Christophe Bovet’s (ONERA) lecture)



Recommended literature •

FEM from mechanical engineering prospective



Merci de votre attention !




