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m Reminder: Continuum Solid Mechanics
m Finite Element Method

® Mesh adaptivity and convergence

m Examples



Continuum Solid Mechanics: a Reminder



Deformable medium

m Deformation in time ¢
m Reference configuration at f = f), X and current configuration at f = #;, x(X, f)
m Lagrangian description, follow material points X = x(t = )

m Displacement vectoris u = x — X

X1 space

I

to t time, ¢
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Deformable medium

m Deformation in time ¢
m Reference configuration at f = f), X and current configuration at f = #;, x(X, f)
m Lagrangian description, follow material points X = x(t = )

m Displacement vectoris u = x — X

X1 space

to t time, ¢
Reference configuration Current configuration



Deformation tensor

m Transformation gradient F =

m Cauchy-Green right tensor C =

1 s 1
Green-Lagrange deformation tensor E = 3 (g - Q =H S+ EQ T H

ForH; < 1,E~ I;IS and we obtain a tensor of small deformations

- 1| du ou\' 1
S_ 2| = = — /
e=H 2[8§+(3§) 2(Vu+(\u))
Xl space

X,
1 1
1 1 time, ¢

Reference configuration

Current configuration



Stress tensor and Hooke’s law

m Hooke’s law in uniaxial test:

EA L-L
F=ku & o0wA=-—u=EA 0
Lo Lo
m In general case stress and strain are related through a linear
operator (fourth-order elasticity tensor 4g):

IIS]
1]
i~
llg}
llew

= Inversely the strain can be found through a stiffness tensor “S:

13
I

&=




Hooke’s law for isotropic solids: stress
m In the case of isotropic material the Hooke’s law reduces to:

o =Mr(e)L+2ug,

with A, u being Lamé coefficients:

vE = E

A= T va-)y T aaey

with Young’s modulus E and Poisson’s ratio v.

= In the component form it reads:

Gij = /\(é‘/\»k)b,'/‘ + 2}L{',:,‘

m In the matrix form:

o1 012 013 /\tr(é)/(Z[u)+a” 12 €13
o1 0»  0x|=2u 12 Mr(e)/(2u) + e €23
013 O3 033 £13 €23 Atr(e)/(2u) + €33




Hooke’s law for isotropic solids: stress
m In the case of isotropic material the Hooke’s law reduces to:

o =Mr(e)L+2ug,

with A, u being Lamé coefficients:

vE = E

A= T va-)y T aaey

with Young’s modulus E and Poisson’s ratio v.

= In the component form it reads:

Gij = /\(é‘/\»k)b,'/‘ + 2}L{',:,‘

m In the matrix form:

011 012 013
012 022 023 :Z{U

013 023 033

vtr(e)/(1 - 2v) + enn 12 €13
€10 vtr(e)/(1 - 2v) + ex €23
13 €23 vir(e)/(1 - 2v) + €33




Hooke’s law for isotropic solids: strain

m Strain as a function of stress:

1+v v
E=——0—- =tr(o)L |
)
m In the component form it reads:
1+v v
{','j = E J,‘j - Eokkb,‘,‘
= In the matrix form:
en fn en " (I +v)on —vir(g) 1+ v)o12 (1 +v)os
10 En &n|=—= (1+v)or2 (1 +v)o2 - vir(g) (1+v)os
€13 €3 €33 (1+v)o13 (1+v)oxs (1+v)oss — vtr(g)



Hooke’s law for isotropic solids: strain

m Strain as a function of stress:

1+v v
= o— =tr(o)L |
c=pe- puiel
m In the component form it reads:
1+v v
n','j = E J,‘j - Eokkb,‘,‘
= In the matrix form:
e € €1 " (I +v)on —vir(g) 1+ v)o12 (1 +v)os
10 En &n|=—= (1 +v)or2 (1 +v)o2 - vir(g) (1+v)ox
€13 €3 €33 (1+v)o13 (1+v)oxs (1+v)oss — vtr(g)
1 o= V(o2 + 033) 1+ v)o12 (1+v)o13
== (1+v)o12 o2 — V(011 + 033) (1+v)ox3
(1+v)o3 (1+7v)o23 033 — V(011 + 022)




Equilibrium of an infinitesimal element

m Infinitesimal strain tensor is symmetric and satisfies the
.

compatibility conditions”:

Vx(Vxg)=0
B Stress tensor g should ensure equilibrium of infinitesimal

element*:

Force balance: f n-0dS=0
s

Momentum balance: f[ X(n-0)dS=0
s
|

m Following the divergence theorem:
n-odS= f V- gdV = 0 Since volume V can be arbitrary

; v
-

I
=
<

5
chosen, then

V-g=0 everywhere in V.

—

*In case of a simply-connected solid.
**In absence of volumetric forces.



Equilibrium of an infinitesimal element II

m Second Newton’s law:
L L1
mip=f = py—vjj l
m In presence of volumetric forces with density f v the total
force is given by: fyr
f=[f,dv+ [n-gds — 7
Lol 3- =
/ \V/

m Then using the second Newton’s law and the divergence T

theorem:

f(V-ngf/)dV: prdV
v - v

m Since it is right for arbitrary V, then in every point of V:



Equilibrium of an infinitesimal element II

m Equilibrium (3 equations):

V-g+f, =pi l

® In component form™: fVY
- —
gjij + fvi = pil, /

m Explicitly: T
o . aa.\'}/ J0y

ax dy oz

doyy  doy  doy: o

ox dy s *fvy = pity

00z N 0z N 02,

ox ady 0z

+fv\ = pl"ll

; S 2
* The following notation is used y; ; = i
Yij = 5



Deformable solid and boundary conditions

Notations:
m Consider a solid Q) with boundary J)
m Boundary is split into I';, and I 0Q=T,U Iy

m At T, displacements u(t, X) are prescribed
(Dirichlet boundary conditions [BC]):

g:yoatl",,

m At [ tractions £, (, X) are prescribed (Neumann

1]
I+
o
-
—
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Deformable solid and boundary conditions

Notations:
m Consider a solid Q) with boundary J) L 0
m Boundary is split into I';, and I 0Q=T,U Iy
m At T, displacements u(t, X) are prescribed
(Dirichlet boundary conditions [BC]):
u=u,at |
m At [ tractions £, (, X) are prescribed (Neumann
BC): U
n=tyatly
-n=0at FO

IIQ HQ

oQ

Remarks:
= on the same boundary both BCs can be prescribed if they are orthogonal one to each other, i.e. u, - £, =0
(ex.: friction);
= a relationship between these BCs can be prescribed (Robin BC): #, = U — k¢, (ex.: Winkler’s foundation).



Elastic and static problem set-up

m Equilibrium in absence of inertial forces

V-g+[V:0 (*)

m Consistutive relation:

lis}
1]
e
llg}
llem

m Strain tensor:

(Vu+ (Va)")

N =

&=

oQ

m Boundary conditions:

_ T = Problem:
L=tpattu find such field u in Q) that satisfies
g-n=tjatly equilibrium Eq. (+) and boundary conditions.
g-n=0at I’?



Finite Element Method



Main idea in a nutshell

= Find displacement only on few locations #;(f) and
interpolate in between

u(X, ) = Z Ni(X)u,(t)

m Thus, we reduce the problem of dimension oo to a
finite dimensional problem
m Weak formulation of equilibrium equations results
in a linear system of equations...
m Alternatively, the problem could be formulated as
an optimization problem:
Minimize body’s potential energy for given
external and internal loads

min(u”(yi))for t,on FJ’} and w;, on r




Main idea

m From continuous to discrete problem
m Split solid into finite elements
Q — Q' with Q" =y Of
.

m All quantities are associated with this discretization:

u—u',o— g”,l“f- - T/f’, t,— [g,...

m Search for # only in a finite number of points (nodes)

m Interpolate in between (within elements)

m Ensure (1) equilibrium of every element and (2)
satisfaction of boundary conditions

1) V-g"+f" ~0inQl Ve
(2.a) (:7” -l ~ ;g at F;f
@b) u"~ulatT]




Main idea

From continuous to discrete problem
Split solid into finite elements
Q — Q' with Q" =y Of

.

All quantities are associated with this discretization:

E_)H/l/g_)g/llrf-—)rglto—)tg,..,

Search for " only in a finite number of points (nodes)
Interpolate in between (within elements)

Ensure (1) equilibrium of every element and (2)
satisfaction of boundary conditions

1) V-g"+f" ~0inQl Ve
(2.a) (:7” -l ~ ;g at F;f
@b) u"~ulatT]

h

m Existence and uniqueness of the solution #

= When discretization-size tends to zero /1 — 0,

convergence to the solution of the continuum

problem: #/ — u

* -0 T



Standard discrete system

For any discrete system the quantities of interest [¢] depend on system parameters [p] and on locally acting
external parameters [e]

[q1; = [q1: (Ip);, le];)

In the first approximation this dependence is linear

g1 = Kyip1 + Kpppz + ... Kinpn + Ar1en
q2 = Kz1p1 + K22p2 + .. -KZNPN + Azzez

gn = Ko1p1 + Kaopa + ... Konpn + Annen
In matrix form

[q]i = [K]; [p]; + [Al;; [e];

Assuming that external parameters are of the same nature as quantities of interest ([A]; = [I];)

(9] = [K]; [p]; + le]




Discrete system in structural mechanics

Main quantities
m Quantities of interest [g] are, in general, forces [f]
m System parameters [p] are, in general, displacements []

m External parameters [e] are, in general, external forces [f]*

Main steps
Construct stiffness matrix and nodal loads vector
[K]f‘/.,[f]f, i,j € 1, NN¥;k € NE,
where NN is the number of nodes of k-th element, NE is the number of elements.

Assemble them into the global stiffness matrix and global load vector
[K1;, [l i,j€1,NN,
where NN is the total number of nodes.
Add boundary conditions (for example Dirichlet and Neumann)
[f1, keBCy [ul?, 1€BC,

Solve linear system of equations

[K]ij [u]j =[fli - [f]f’w - [ul



Shape functions

m Displacements are known at nodes: gi.’, i=1,4
= We need to know them inside the element

m Parametrize the inside with parameters
{&nel-1,1]

m Use interpolation or shape functions N;(&, 1)
for position X

X"(&m) = LXINi(E, )
1

and displacement u:
u"(&,n) = Lu!Ni(&,n)

m If the same functions are used, then the element is
called isoparametric

Physical space

m Remark: Find {, 1)} from X is not always
straigthforward
(may result in a system of non-linear equations)

Parameteric space
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Shape functions II

Rules Parameteric space Physical space
m Node i has coordinates {&;, 7);}
0] @
m Then N;(&j, 1)) = 0 I 1 ¢
m Partition of unity: o
Ve, ENiE ) =1 !
i 5
Types -1 5
m Linear shape functions o ‘@
N ) 0
% const @ 1 ®
= Non-linear shape functions | |“
- ¢
ON . ,
25 =/ o e
m Linear elements vs quadratic elements ® ®
m Higher order elements ® of ¢
ORI vy )
0] @)




Shape functions III

Example: bar element

m Linear shape functions: ® Quadratic shape functions:
L1 1.,
N1(5)=§(]*é) N](é)=§é(éf])
No(©) = 3(1+) Nx(®) = (1= £
1, !
N3(&) = 5&(1+ &)
2
Ni(€) Ny(S)

Linear
e
/|
a
€]
N
®

Quadratic
e



Shape functions: vectors and matrices

. v y
= Displacement nodal vectors u; = e 17 + e, 1
m Array of nodal coordinates (size dim - 1)
T
[XT=1[x1, y1, X2, Y2, -+ Xn, Ynly,

m Array of nodal displacements (size dim - 1)

Yy
2

m Arrays of shape functions (size dim - 1)

[N:] =[Ny, 0, N2, 0, ... Ny, 0]},

VAN

yoox
5 ”]2“

[u] =[], uy, u3,

1 u T

nr U

[Ny1=1[0, N1, 0, Na, ... 0, Nyl

0 N, 0 ... N, o

_|M
=10 N~ 0 N ... 0 N,

2nxdim

m Then
X(En, 0 = [No&E DI IXO],  y(En, b =Ny&E ] [XD]

u*(E,m,t) = [Ne &I [u®)],  w/(&1,1) = [Ny(& ] [u(D)]



Gradients and shape functions

m Need to evaluate gradients (spatial derivatives) like 57(

m But with shape functions f = f(&, 1)
df dn
an ox

oFE N _ o o¢

m Then === = 7: o«

m However, in general we do not have & = £(x, ) but rather x = x(&, 1))

m Let’s do it other way around

| o &

S

2 0x
ox d&
d ox

an

J 9y
Ay I&
d dy
Iy I

ox
0&
Jx
an

AN
dE || dx| dx
anllaoy dy

m Matrix [] | is called Jacobian operator/matrix and enables to obtain

0
P
J
2

=

v Sl

NS



Jacobian operator/matrix

m Jacobian operator/matrix:

x %

dE dE
Lw 971]

m Using x = [N,]"[X], v =[N,]"[X] we get:

1= l[Nx,g]T[X] [N]/,E]T[X]}

AN X1 Ny 11

JN JN oN,
where [N, ¢] = 851 , 0, 8;,0, "

.
0] etc.

m Then the inverse Jacobian is given by:
— 1 {[Ny,n]T[X] —[Ny,alT[X]l
ANyl 'IX] Nyl "X ]

with the determinant of the Jacobian matrix (or simply Jacobian):
A = det([J]) = [X]" ([N £][Ny,]" = [Ny, £][Nx]") [X] # O



Infinitesimal strain in 2D

1
m Strain tensor: £ = 3 (Vg + (VE)T) (*)



Infinitesimal strain in 2D

1
m Strain tensor: £ = 3 (Vg + (VE)T) (*)

X

m Interpolated displacements: 1" = [N [u], o= [Ny]T[u]



Infinitesimal strain in 2D

1
m Strain tensor: £ = 3 (Vg + (VE)T) (*)
X

m Interpolated displacements: 1" = [Ny] [u], !/ =[N,]"[u]

m Displacement gradient:



Infinitesimal strain in 2D

1
m Strain tensor: £ = 3 (Vg + (VE)T) (*)
X

m Interpolated displacements: 1" = [Ny] [u], !/ =[N,]"[u]

m Displacement gradient:



Infinitesimal strain in 2D

1
m Strain tensor: £ = 3 (Vg + (VE)T) (*)

m Interpolated displacements: 1" = [Ny] [u], !/ =[N,]"[u]

m Displacement gradient:

ou' ou' u* u* ouy ouY
Viu=—@Qe +— e+ —e' e+ ——e/®e" + ——e/®e
dx ~* dy YV 4 - dy- T Ox - -
Ju*  JuY
ox ox

(V)" ~ our oW



Infinitesimal strain in 2D

1
m Strain tensor: £ = 3 (Vg + (VE)T) (*)

m Interpolated displacements: 1" = [Ny] [u], !/ =[N,]"[u]

m Displacement gradient:

d
T p ) _ 1 .
(Vu) ~ ou* oY =[J] i [ :|



Infinitesimal strain in 2D

1
m Strain tensor: £ = 3 (Vg + (VE)T) (*)
X

m Interpolated displacements: 1" = [N [u], o= [Ny]T[u]

m Displacement gradient:

Vu = &—Eh ®e. + &L’lh ®e, = @e‘éae‘y + alig«‘ Qe + %g}/(ggx + a”ypj/@ey
Toox Y gy Y oxT T Uyt T dxT -yt
g ol 9] 2]l ay
T ox ox RNEAls 1|0 x| [u
(Vi) ~ | 5 x =[J] =[J]
o o i u? i [Ni/]T[u]




Infinitesimal strain in 2D

1
m Strain tensor: £ = 3 (Vg + (VE)T) (*)
X

m Interpolated displacements: 1" = [N [u], W= [Ny]T[u]

m Displacement gradient:

V- ou" o' o o oW
u= §®£’x+7}/®€y* o ®e +7}/€ B+ el ®e 7}/5‘ ®e
u*  JuY i T i : T . .
N AL 1] og [Ny] [u] » [Nxgl [ul  [Nysl [ul
(Vu) ~ oux ouwv | = [J1] 87 . =[J] 87 . = . :
Z || — [N;/] [u] [Nx,n] [u] [Ny,n] [u]




Infinitesimal strain in 2D

1
m Strain tensor: £ = 3 (Vg + (VE)T) (*)

m Interpolated displacements: 1" = [N [u], W= [Ny]T[u]

m Displacement gradient:

V- ou" o' L o Y o M o s g
H*g‘gﬁx*’@@g/*gﬁ ®e +7}/€ gt oo ®e 7}/5‘ e
u*  JuY i T i : T . .
N Al 1] og [Nx] [u] » [Nxgl [ul  [Nysl [ul
(Vu) ~ oux ()l;»l/ =[J1 87 y =[J] P . = . :
Ty 71/ 37,7 u- 971] [N;/] [u] [Nx,n] [u] [Ny,n] [u]

m Represent strain tensor as an array (Voigt notations):

.
£ = [Elz[é‘n, Eyys 7/,\»}/], Yy = 2€xy



Infinitesimal strain in 2D

1
m Strain tensor: £ = 3 (Vg + (VE)T) (*)
X

m Interpolated displacements: 1" = [N [u], W= [Ny]T[u]

m Displacement gradient:

V- o' " L o Y o M o s g
H*g‘gﬁx*’@@g/*gﬁ ®e +7}/€ B+ —-e'®e 7}/5‘ e
u*  JuY i T i : T . .
N Al 1] og [Nx] [u] » [Nxgl [ul  [Nysl [ul
(Vu) ~ oux ouwv | = [J1] 87 . =[J] P . = . :
TV 71/ o uw o [N;/] [u] [Nx,n] [u] [Ny,n] [u]
! ! n n

m Represent strain tensor as an array (Voigt notations):

.
£ = [Elz[é‘n, Eyys 7/,\»}/], Yy = 2€xy

m Then

po|2e o ow ow )
[E] ox’ dy’ oJx  dy



Infinitesimal strain in 2D in matrix form

® ...continue. Jacobian matrix:

[I]—l — l [ [Nj/,r)]T[X] _[N}/,é.]T[X]}
A *[Nx,l]]T[X] [N,\‘,.{]T[X]



Infinitesimal strain in 2D in matrix form

® ...continue. Jacobian matrix:

01! = 1 [ [Ny 1" [X] —[Ny,é,]T[X]} _ []11 ]12}
A *[Nx,l]]T[X] [N,\‘,.{]T[X] ]21 ]22

m Then the strain components are

(INy " [XI[Nsg] — [Ny XN 1) [

Exx = (hl[Nx,g] + ]12[Nx,q])T [u] = %



Infinitesimal strain in 2D in matrix form

® ...continue. Jacobian matrix:

01! = 1 [ [Ny 1" [X] —[Ny,é,]T[X]} _ []11 ]12}
A *[Nx,l]]T[X] [N,\‘,.{]T[X] ]21 ]22

m Then the strain components are

(INyn]" IX1IN €] ~ [Ny ] [X][Ny]) [] = [Ba] ]

Exx = (hl[Nx,g] + ]12[Nx,q])T [u] = %



Infinitesimal strain in 2D in matrix form

® ...continue. Jacobian matrix:

01! = 1 [ [Ny,1" [X] —[Ny,é,]T[X]} _ []11 ]12}
A *[Nx,l]]T[X] [N,\‘,.{]T[X] ]21 jZZ

m Then the strain components are

(INyn]" IX1IN €] ~ [Ny ] [X][Ny]) [] = [Ba] ]

Exx = (hl[Nx,g] + ]12[Nx,q])T [u] = %

(~INi]" [XI[Ny,g] + [Ny ] XNy 1) ]

ey = (F2 Ny + JolNyg]) [l =



Infinitesimal strain in 2D in matrix form

® ...continue. Jacobian matrix:

01! = 1 [ [Ny,1" [X] —[Ny,é,]T[X]} _ []11 ]12}
A *[Nx,l]]T[X] [N,\‘,.{]T[X] ]21 jZZ

m Then the strain components are

(INyn]" IX1IN €] ~ [Ny ] [X][Ny]) [] = [Ba] ]

Exx = (hl[Nx,g] + ]12[Nx,q])T [u] = %

(~INy 1" [XI[Ny,g] + [Nyl " [XIINy 1) ] = [Ba] ]

ey = (F2 Ny + JolNyg]) [l =



Infinitesimal strain in 2D in matrix form

® ...continue. Jacobian matrix:

01! = 1 [ [Ny,1" [X] —[Ny,é,]T[X]} _ []11 ]12}
A *[Nx,l]]T[X] [N,\‘,.{]T[X] ]21 jZZ

m Then the strain components are

(INyn]" IX1IN €] ~ [Ny ] [X][Ny]) [] = [Ba] ]

Exx = (hl[Nx,g] + ]12[Nx,q])T [u] = %

ey = (J [Nyl + 2Ny )) [l = i (~INy 1" [XI[Ny,g] + [Nyl " [XIINy 1) ] = [Ba] ]
u* ouY T
Yy = ( 5t %) = (JuINy gl + J12INy] + J1[Nwg] + J22[Nsg]) [u]



Infinitesimal strain in 2D in matrix form

® ...continue. Jacobian matrix:

01! = 1 [ [Ny,,1"[X] —[Ny,é,]T[X]} _ []11 ]12}
A *[Nx,l]]T[X] [Nx,{]T[X] ]21 ]22

m Then the strain components are

(INyn]" IX1IN €] ~ [Ny ] [X][Ny]) [] = [Ba] ]

Exx = (hl[Nx,.{] + ]12[Nx,q])T [u] = %

T 1 T T T T
eyy = (J1[Ny&] + J22[Nygl) [ = £ (~[Nxq] [X]INyg] + [Nug] [X1INy]) [0 = [Ba]'[u]
u* ouY T
yay = ( T %) = (P [Ny.gl + T[Ny ] + J21 [N e] + 2N ) L1

1

Vxy = A ([N]/,U]T [X][Ny,é] - [Ny,é]T[X][Ny,q] - [Z\IX,U]T [X][Nye] + [NX,S]T[X][Nx,n])T [u]



Infinitesimal strain in 2D in matrix form

® ...continue. Jacobian matrix:

01! = 1 [ [Ny,,1"[X] —[Ny,é,]T[X]} _ []11 ]12}
A *[Nx,l]]T[X] [Nx,{]T[X] ]21 ]22

m Then the strain components are

(INyT" [XIN ] = Ny ] XN ) [] = [Ba]"[e]

Exx = (hl[Nx,.{] + ]12[Nx,q])T [u] = %

w = (Nyel + JolNy) (1] = + ([Nl IXT[Ne] + Nl XNy ) ] = [Bal [
Ju*  ouY T
Vay = (71/ + W) = (]11[Ny,é] + J12[Ny,n] + J21[Ny.£] +]22[Nx,q]) [u]
Yoy = 5 (INyal XNy 1 = Ny T XNy g1 = Ny XN ] + [N IXTNe 1) Tl = [BsT ]

m Then
[E]3 = [B];XZH [u]z”

= With [B] = [[Bi]', [Bal', [Bsl'|



Infinitesimal strain in 2D: example

m Consider a linear triangular element with shape functions: Parameteric space
0
Ny =-3(E+m), Na=3(1+8), N3=3(1+1) e, |
1
m Their derivatives are given by: -1 y
Nig=-1/2, Npe=1/2, N3c=0 ! ®
Nig==1/2, Noy=0, Niy=1/2 Physical space
1 . (2.32)
A= (2 —21)(ys = y1) = (2 = y1)(xs = x1) 2®y2
Guyn)
m Then
1 .
Exx = R l(l/} )(U?\l - U'}) - (}/2 - }/1)(1!; — II;)J
ew = g [~ 1)~ ) = (s = x0) oty — )]
] y Y v X X X X
Yw = Ix [(1/7 - 1) u —uy) = (2 — y)(uy —uy) + (2 — x1)(uz — uy) — (x3 — x1)(u3 — ul)]

“Half of the area of the triangle.



Infinitesimal strain in 2D: example II

m Rectangular triangle x; = x3, y1 = y2, A = LyLy/4

. ; : e VoY Y Y x _x
m Case 1: pure tension/compression along OX iff Uy =1y, Uy =13, Uy = U

R N o= 1 X X\ — .
Ex.: ”; =01 &= ﬂ(V’» - }/l)(”é - ”;) =0/Ly, Eyy = Vxy = 0

Case 1
y
1©) ®
L,
@
®
L

® " @ X 5

Reference configuration Current configuration



Infinitesimal strain in 2D: example II

m Rectangular triangle x; = x3, y1 = y2, A = LyLy/4
m Case 1: pure tension/compression along OX iff Lz = ”1’ u; = ‘1’ u3 = LII

Ex.: ” =01 &= ﬁ(l/% - }/l)(”; - ”T) =0/Ly, Eyy = Vxy = 0

. . . !
m Case 2: pure tensmn/compressmn along OY iff 15 = uj, uzf 11], uy = uj

Ex.: ng =01 &y = ]A(Yz — \1)(” - Ll/) =0/Ly, exx=yxy =0

Case 1 Case 2
y
® ® 0 @
L}'
@
® L, @) x @ 5 ©) )

Reference configuration Current configuration



Infinitesimal strain in 2D: example II

m Rectangular triangle x; = x3, y1 = y2, A = LyLy/4
vy _
vy = ‘1’ uy = uj

Ex.: ” =01 &= ﬁ(l/% - }/l)(”; - ”T) =0/Ly, Eyy = Vxy = 0

m Case 1: pure tension/compression along OX iff Lz =Y

Yy
17 %2
Ex: ! =65: e, =L Yy = 5/L . )
XUy =00 ey = A(1(2—\1)(u —Ll)—(/ v, Exx = Vay =0

m Case 2: pure tension/compression along OY iff 1} = u, 1 11], uy = uy

1

!
— ”./

m Case 3: pure shear in XY iff uy = ”1’ u‘ 1

Ex.: 112 =0y, 113 =0y :

1) y Oy

1 . .
Vxy = A ((V% 1/])(”}2/ - ”}]/) + (e - X[)(Ll}; - ”})) = F + i/ Exx = Eyy = 0
v Ly

Case 1 Case 2 Case 3

Y )
® x
® ® 5£ 16
L}'
@
@ s,
o L © x O = O ® '

Reference configuration Current configuration



Stress tensor

m In linear elasticity, strain decomposition:

E=§& +E&E
= =el =th

m With thermal strain field:

g =a(T-Toyl
=th =



Stress tensor

m In linear elasticity, strain decomposition:

E=§& +E&E
= =el =th

m With thermal strain field:

£, =T = TOL=a(X) (TX) - To(X)L,

where « is the coefficient of thermal expansion (CTE), T and T are the current and reference temperature
fields, respectively.

m The stress is defined by the elastic strain:

c="C:(e-¢ )
= = = =th



Stress: 2D isotropic elasticity

m Remind isotropic stress/strain relationship:

vE

E
= Trna-am) Lt T

m Stress (in Voigt notations): ¢ = [S] =[ox, Oy, aq,]T
Y

la

m Inplane stress .. = 0, ¢, = 77 (exx + €yy)

In plain strain ¢.. = V(0 + 0yy), €22 = 0

m Stress/strain relationship: [S] = [D][E]



Stress: 2D isotropic elasticity

m Remind isotropic stress/strain relationship:

vE

E
= Trna-am) Lt T

m Stress (in Voigt notations): ¢ = [S] =[ox, Oy, aq,]T
Y

la

m Inplane stress .. = 0, ¢, = 77 (exx + €yy)

In plain strain ¢.. = V(0 + 0yy), €22 = 0

m Stress/strain relationship: [S] = [D][E]

Matrix [D] in plane strain ¢.. = ¢y, = eyz = 0:

E 1-v v 0
[D]= —————| Vv 1-v 0
T+v)(1-2v) 0 0 a-2v)/2*



Stress: 2D isotropic elasticity

m Remind isotropic stress/strain relationship:

vE

T+v)(1-2v)

IIS]

Stress (in Voigt notations): = [S] = [0,

g
In plane stress 0. = 0, €22 = ;57 (€xx + &yy)

In plain strain ¢.. = V(0 + 0yy), €22 = 0

Stress/strain relationship: [S] = [D][E]

Matrix [D] in plane strain ¢.. = ¢y, = eyz = 0:

E

Pl= G a-m

Matrix [D] in plane stress 0.. = 0.z = 0y = 0, tr(g)

E

D)= —

Ty,

E
£

tr(e)l +
i 1+v=

(IW]T

0
0

(1- 2v>/2*}

v
1-v
0

1-2v

= (Exx + £yy):

0
0
(1=-w/2

“Factor 1/2 appears because [E] contains ', and not ¢,,,.



Stress: general case

Voigt notations in 3D case

.
B Stress tensor: ¢ — [S] = [0xy, Oyy, 02z, Oxy, Oyz, Oxz]

. T
m Strain tensor: £ — [E] = [exy, €y, €22, Vayr Vyzr Vazl

£
m Hooke’s law: [S] = [D] [E]



Stress: general case

Voigt notations in 3D case
m Stress tensor: ¢ — [S] = [0y, Oyy, 02z, Oxy, Oz, Oxz]’
B Strain tensor: ¢ — [E] = [exy, €y, €22, Vay, Vi Yzl
m Hooke’s law: [S] = [D] [E]
m Isotropic elasticity (two constants E, v):

1-v v v 0 0 0

v 1-v v 0 0 0

(D] = E v 1% 1-v 0 0 0
T @d+v(a-2v)| 0 0 0 (1-2v)/2 0 0

0 0 0 0 (1-2v)/2 0

0 0 0 0 0 1-2v)/2



Stress: general case

Voigt notations in 3D case
m Stress tensor: 0 — [S] = [04y, 0y, 022y Oy Oy, 0x2]
®m Strain tensor: & — [E] = [exx, €4y, €22 Vays Vizr Vil

m Hooke’s law: [S] = [D] [E]

m Isotropic elasticity (two constants E, v):
1-v v v 0 0 0
v 1-v v 0 0 0
[D] = E v v 1-v 0 0 0
T @d+v(a-2v)| 0 0 0 (1-2v)/2 0 0
0 0 0 0 (1-2v)/2 0
0 0 0 0 0 (1-2v)/2

m Cubic elasticity (3 constants E, v, 11):

Cihn Cp Cn O 0 0
Co Cu Cn2 0 0 0

[DJ:ClZ Cpn Cn 0 0 0

0 0 0 0 0 Cys



Stress: general case II

Voigt notations in 3D case
m Transversely isotropic elasticity (5 constants Eq, Eo, vy, V2, 111):

Cini Cn Cis 0 0
Co Cn Ci 0 0
Ciz  Ci3 0 0
Pli=1" 0 0 cu 0
0 0 0 0 (oM
0 0 0 0 0 (C11 —C12)/2

SO OO



Stress: general case II

Voigt notations in 3D case
m Transversely isotropic elasticity (5 constants Eq, Eo, vy, V2, 111):

Cn Cn Cs O 0 0

Cpn Cn Cis 0 0 0

_ Ci3 Ci3 Css 0 0 0
Pli=1" 0 0 cu 0 0
0 0 0 0 (oM 0

0 0 0 0 0 (Cu-Cn)/2

m Orthotropic elasticity (9 constants Eyy, Eyy, Ezz, Vay, Viz, Vaz, lay, tyz, flz):

Cn Cnp Cis 0 0

Cip Cx Cas 0 0

Ciz Cs Gz 0 0
0 0 0 Cys 0
0 0 0 0 Css 0
0 0 0 0 0 Ces

oo O

[D]; =

o



Equilibrium: from strong to weak form

m Equilibrium in absence of inertial forces

V-g+&/:0 (%)

m Consistutive relation:

[is}
]

llg}

llem

m Strain tensor:

(V+ )

N =

&=

m Boundary conditions (BC):
=uyatly

‘n=1t;atly

[ISEIISENES

~Q:Oatr?




Equilibrium: from strong to weak form

m Strong form:  V-o +fv =0



Equilibrium: from strong to weak form

. 7. _
m Strong form: V.o + f - 0
m Product with a virtual vector field v and integrate over a volume:

f(V-g)-ng+ ffv-de:()
o}

Q



Equilibrium: from strong to weak form

m Strong form:  V-o +fv =0

m Product with a virtual vector field v and integrate over a volume:

f(V-g)-de+ ffv-de:()
o}

Q

= Since [V (c-0)dV = [(V-0)-02dV + [g: (Vo)dV
Q Q Q



Equilibrium: from strong to weak form

m Strong form:  V-o +fv =0

m Product with a virtual vector field v and integrate over a volume:

f(V-g)-de+ ffv-de:()
o}

Q

= Since [V (c-2)dV = [(V-0)-vdV+ [g:(Vo)dVand [V-(c-v)dV = [ n-(c-v)dS, we get:
Q Q Q Q 2Q



Equilibrium: from strong to weak form

m Strong form:  V-o +fv =0

m Product with a virtual vector field v and integrate over a volume:

f(V-g)-de+ ffv-de:()
o}

Q

= Since [V (c-2)dV = [(V-0)-vdV+ [g:(Vo)dVand [V-(c-v)dV = [ n-(c-v)dS, we get:
Q Q Q Q 2Q

f g fa (Vv)dV+jf c0dV =0




Equilibrium: from strong to weak form

. 7. _
m Strong form: V.o + f - 0
m Product with a virtual vector field v and integrate over a volume:

f(V-g)-de+ f[v-de:()

Q

Since [V-(g-2)dV = [(V-0)-vdV+ [g:(Vo)dVand [V-(g-2)dV = [ n-(c-)dS, we get:
Q Q Q Q 0Q

r_1~(:r~gd5—fg:(Vy)dV+]fv'de:0
90 Q Q

m If we select virtual vector field v = ou as virtual displacements vanishing at I';;:

fto-égdsff(:f:5§d\/+ffv~5de:0
Q

Ty Q

m This variational formulation is called the principle of virtual work or of virtual displacements.



Stress and reactions: element’s equilibrium II

m Work of imposed surface tractions on virtual displacements = 1 #, - ou

= Work density of distributed volumetric forces = 1 f v ou

m Corresponding virtual density of elastic energy = 1 0:06¢



Stress and reactions: element’s equilibrium II

m Work of imposed surface tractions on virtual displacements = 1 #, - ou
= Work density of distributed volumetric forces = f v ou

m Corresponding virtual density of elastic energy = 1 0:06¢

m According to the principle of virtual work:

fg:bng:fgu-égd5+ff SoudV
== Ty =
Q

Q I



Stress and reactions: element’s equilibrium II

m Work of imposed surface tractions on virtual displacements = 1 #, - ou

= Work density of distributed volumetric forces = 1 f v ou

m Corresponding virtual density of elastic energy = 1 0:06¢

m According to the principle of virtual work:

fg:(5§dV:fQ]-(3gd5+ff SoudV
== e
Q

Q Iy
m Equivalently

a(u, bu) = L(6u)



Stress and reactions: element’s equilibrium II

m Work of imposed surface tractions on virtual displacements = 1 #, - ou

= Work density of distributed volumetric forces = 1 f v ou

m Corresponding virtual density of elastic energy = 1 0:06¢

m According to the principle of virtual work:

fg:(5§dV:fQ]-(3gd5+ff SoudV
== e
Q Q

If
m Equivalently
a(u, bu) = L(6u)
with bilinear form a(u, 6u) = fg :Voudv = fg 0gdV
Q

Q

and linear form L(0u) = _ffoi oudS + ffv ~oudV.
Ty Q~



Stress and reactions: element’s equilibrium II

m Work of imposed surface tractions on virtual displacements = 1 #, - ou

= Work density of distributed volumetric forces = 1 f v ou

m Corresponding virtual density of elastic energy = 1 0:06¢

m According to the principle of virtual work:

fg:(5§dV:fQ]-(3gd5+ff SoudV
== e
Q Q

If
m Equivalently
a(u, bu) = L(6u)
with bilinear form a(u, 6u) = fg :Voudv = fg 0gdV
Q

Q

and linear form L(0u) = _ffoi oudS + ffv ~oudV.
Ty Q-

The functional space of kinematically admissible displacements and inducing finite energy is

uelU= {yeIH'(Q)| g:goonr,‘}

whereas virtual displacements also inducing finite energy and vanishing at Dirichlet boundary belong to
sueV={veHQ)|v=00nT,]

anda:UxV — Rand L:V — R, where H! is the Hilbert space.



Stress and reactions: element’s equilibrium II

m Work of imposed surface tractions on virtual displacements = 1 #, - ou

= Work density of distributed volumetric forces = 1 f v ou

m Corresponding virtual density of elastic energy = 1 0:06¢

m According to the principle of virtual work:

fg:(5§dV:fQ]-(3gd5+ff SoudV
== e
Q Q

If
m Equivalently
a(u, bu) = L(6u)
with bilinear form a(u, 6u) = fg :Voudv = fg 0gdV
Q

Q

and linear form L(0u) = _ffoi oudS + ffv ~oudV.
Ty Q-

The functional space of kinematically admissible displacements and inducing finite energy is

uelU= {yeIH'(Q)| g:goonr,‘}

whereas virtual displacements also inducing finite energy and vanishing at Dirichlet boundary belong to
sueV={veHQ)|v=00nT,]

anda:UxV — Rand L:V — R, where H! is the Hilbert space.

m So we are in the framework of the Lax-Milgram theorem (continuity and coercivity could be easily shown).



Stress and reactions: element’s equilibrium II

m According to the principle of virtual work:

[g:bgd\/fff\/-éyd\/:fto-bgds
¢ 0

0 Iy



Stress and reactions: element’s equilibrium II

m According to the principle of virtual work:
[g:bgd\/ffjjv SoudV = fto-bgds
Q Q Iy

m Elastic stress o :4(:,’ : (gfgm) = [S] = [D]([E] - [E#])

m Straing ~ [E] = [B]" [u]

m Volumetric force density ]j ~ Il = U5 AL

m Virtual displacement 6u ~ [N 176[u]



Stress and reactions: element’s equilibrium II

m According to the principle of virtual work:

[g:bgd\/fff\/-éyd\/:fto-bgds

Q Q Iy
m Elastic stress ¢ :4(:5 : (gfgm) = [S] = [D]([E] - [E #])

m Straing ~ [E] = [B]'[u]

m Volumetric force density f ~ [fo] = [f, AT

m Virtual displacement 6u ~ [N 176[u]

The discretized form of the virtual work:

f [(ID1AE] - [E )" SE] - [fo]" IN:T" 8lal} dV = f £, (OIN™ dS 5lu]

Qh h
Q If



Stress and reactions: element’s equilibrium II

m According to the principle of virtual work:

[g:bgd\/fff\/-égd\/:fto-bgds

Q Q Iy
m Elastic stress ¢ :4(:5 : (gfgm) = [S] = [D]([E] - [E])
m Straing ~ [E] = [B]'[u]
m Volumetric force density f ~ [f,] = [f, £/, fi]"

m Virtual displacement 6u ~ [N 176[u]

The discretized form of the virtual work:

f [(ID1AE] - [E )" SE] - [fo]" IN:T" 8lal} dV = f £, (OIN™ dS 5lu]

Qh h
Q If

ll]t [BI[D][B]" dV olu] = [f]" olul
N

ou][f([m (NT" + [Eq]" [DI[BI) v

Y




Stress and reactions: element’s equilibrium II

m Balance of virtual work for a single element:

[u] [ [BioiEr v b[ul[ (11" T + )" (DIBI") @V otul = (11" ot
U 3//
m For arbitrary virtual displacements o[u]:
[ 81" D812V [u]+“( [ N — [BDI[Eal) dv| = [£]
s e
[K°] o) 2]

m System of equations linking displacements and reactions:

SRR

ext




Assembly

m At every internal node the total force should be zero:
LUz =0

summation over all elements ¢ attached to this node.




Dirichlet boundary conditions

Dirichlet BC
m Use penalty method to enforce prescribed displacements: array [uo] = [0...0 1 0...0 1 0]

m Diagonal selection matrix [I°] with ones at prescribed degrees of freedom (DOFs):

i j
—_— —_—

0O .. 0 0 0 .. 0 0 0

O .. 0 0 0 .. 0 0 0
=0 ... 0 1 0 .. 0 0 0 )i

0 0O 0 0 0 0

o 0 0 .. 0 0 0
0 0 0 1 0 )

o 0 o0 0O 0 0

m Then the system is changed to
(K] + € [°]) [u] = [fext] — [fint] + €luo]
where ¢ is the penalty coefficient such that € > max(Kj), and [I] is the identity matrix.

m Alternatively, (i) a direct DOF elimination or (ii) Lagrange multipliers could be used.



Neumann boundary conditions

m Surface traction £, at 'y

m Virtual work of surface traction over one element:

. o l c_ e
l"‘,‘

m Then
(i) = [Tl ar
i




Discrete system of equations

m Balance of virtual work for the whole body:

f (B1" D11V ) = [ [t INT dn{ [ (e + Bl Ew) av
I %
Sy
[K] [fcx[] _[fint]

System of equations linking displacements and reactions:

|[K] [14] = [fext] = [fint]|

m Stiffness matrix [K]
m Vector of degrees of freedom (DOFs) [u]
Right hand term (vector of forces) [foxt] — [fint]



Evaluation of the integrals

m Weak form (recall):

[ 8] [D][B]dV

v

[u] = f‘[to]T [N]" dIl +

T
f

[ (1 " + B1DI E ) av

v

P

[ —

K] ] ~[fim]

b
m Exact integration: f f(x)dx = F(b) — F(a) (not always possible)
a

m Approximate integration (trapezoidal rule, Simpson’s rule)

b Ngp
m Gauss quadrature: f fx)dx =~ Y, wif(x;)
a i=1

m Gauss points x; and weights w; with i = 1, Ngp
m Integration is exact for polynomials of order 2Ngp — 1
m Tabulated data for x;, w; (1D, 2D, 3D integration)



Evaluation of the integrals: example

m Function f(x) = cos(rx?/2) . :
B Ngp = 1: error ~ 28.22 % — costz /2)
B Ngp = 2: error ~ 11.04 % — = sin(rz)
B Ngp =3: error ~ 1.14 % 1.0
B Ngp = 4: error ~ 0.14 %
B Ngp = 5: error ~ 0.01 %

m Function f(x) = x sin(mx)

Ngp = 1: error ~ 100.00 %
Ngcp = 2: error ~ 76.05 % »06
Ngp = 3t error = 12.07 %
Ngp = 4: error ~ 0.80 %
Ngp = 5: error = 0.03 %




Evaluation of the integrals II

Ne
m Consider: f[BJT [D][B]dV = Zf[sf [D][B]dV
e=1y,

v

m Transpose to the parametric space or mapping (in 2D case):

1 1
f [B(&, m]" [D][BE, p]dV = f f [B(&, ] [DI[B(, ] det([J]) dédn
) J.

-1 -1



Evaluation of the integrals II

m Consider: f[BJT [D][B]dV = f[B [D][B]dV

v

= Transpose to the parametric space or mapping (in 2D case):

f (B, 1" [D][B(E, m]dV = f f [B(&, ] [DI[B(, ] det([J]) dédn
Ve

-1 -1

m Finally:

N. Ngp

= f BldV ~ Z Z (B (551»11@)] [DI[B*(Egps ngp) det([ [ (Egp, Np) Dwgy
%4

e=1 GP=1



Evaluation of the integrals II

m Consider: f[BJT [D][B]dV = f[B [D][B]dV

v

= Transpose to the parametric space or mapping (in 2D case):

f (B, 1" [D][B(E, m]dV = f f [B(&, ] [DI[B(, ] det([J]) dédn
Ve

-1 -1

m Finally:

N. Ngp

= f BldV ~ Z Z (B (551»11@)] [DI[B*(Egps ngp) det([ [ (Egp, Np) Dwgy
%4

e=1 GP=1



Evaluation of the integrals III

Pyp-1)

m If N(&, 1) = Py is a polynomial of order p, then [J ] = P-1y, [B] = o

m Remark I: Gauss quadrature is exact for p = 1 and approximate if p > 1.

m Remark II: Stress and strains are exactly evaluated only in Gauss points, in all other points they are
extrapolated/interpolated

m Remark III: Underintegration may lead to zero-energy deformation modes (which are often stabilized in
FE software)



Evaluation of the integrals: quadrilateral 2D element

m Shape functions: Parameteric space
Ni=31-801~-n, N2=3(1+&A-1) o, 1 o
N3=11+81+1n), Nyi=2ia-81+n)

m Shape function derivatives:

Nig=-31-m), Npe=1(1-1) 1 1¢
N3ys=1(1+n), Nyz=-11+n)

- @(/ - O,
Niy=-11-9, Nyy=-11+9 ! @
N3y =310+8), Niy=11-9 Physical space

m Determinant of Jacobian (dA = det[] Jdédn):
det([J]) =

(@ =mee = x1) + @+ )z = x0)(A + Y5 = y2) + (1= O)ya — 1))~
= (=2 = y1) + 1+ Y5 =y + E)xs = x2) + (1 = E)(xs — x1))]




Evaluation of the integrals: quadrilateral 2D element

m Shape functions: Parameteric space
Ni=31-801~-n, N2=3(1+&A-1) ® 1 o
N3=11+81+1n), Nyi=2ia-81+n) Q o

m Shape function derivatives:
Nig=-31-m), Npe=1(1-1) -1 1¢
N3ys=1(1+n), Nyz=-11+n)

Niy=-11-8), Ny =-i1+¢ S
N3y =310+8), Niy=11-9 Physical space

m Determinant of Jacobian (dA = det[] Jdédn):
det([J]) =

(@ =mee = x1) + @+ )z = x0)(A + Y5 = y2) + (1= O)ya — 1))~
= (=2 = y1) + 1+ Y5 =y + E)xs = x2) + (1 = E)(xs — x1))]

®m Warning: to ensure det([J ]) > 0 the element should remain convex




Problem: Find [u] such that | [K][u] = [f] |, i.e. [u] = [K]! [f]

m Iterative solvers
The solution is approached iteratively, does not require much memory, restrictions to matrix type, sensitive to matrix
conditioning, a preconditioner is often needed.

m Gauss-Seidel method (GS)

m Conjugate gradient method (CG)

m Generalized minimum residual method (GMRES)
[ T

m Direct solvers
The solution is provided directly, no restrictions on matrix type, less sensitive to matrix conditioning, based on LU or
Cholesky decomposition

m Frontal
m Sparse direct
a ...



Convergence



Mesh and interpolation order convergence

1/p
Pu ru\ v

2

S,p .
m For Sobolev spacesl ueW " s,p € IN and their norm: IIEHW»-,p = [
: C 0

Qa

= For Hilbert space H':

Nl = Jf(u-uﬂzw:w) av
Q

I The solution is usually sought in physically meaningful Sobolev space W', i.e. Hilbert space IH'.



Mesh and interpolation order convergence

1/p
s % p
1 sp . ) o U ru
m For Sobolev spaces' u € W, s,p € IN and their norm: ||EHW*W = [f Z()(W T av
) a=! - -

= For Hilbert space H':

[zl = Jf(u-u+[2Vu:Vu)dV: Jf(u-quVu:Vu)dV
0

Q

IThe solution is usually sought in physically meaningful Sobolev space W', i.e. Hilbert space IH'.



Mesh and interpolation order convergence

1/p
s % p
1 sp . ) o U ru
m For Sobolev spaces' u € W, s,p € IN and their norm: ||EHW*W = [f Z()(W T av
) a=! - -

= For Hilbert space H':

[zl = Jf(u-u+[2Vu:Vu)dV: Jf(u-quVu:Vu)dV
0

Q

m If there’s no re-entrant corners and boundary conditions are “gentle”, then displacements converge as :

-4l o

— — H < p+1
< Cul
where 1, 1" are the true and approximate solutions, p is the interpolation order of shape functions N(&, 1)
and /1 is the element size.

I The solution is usually sought in physically meaningful Sobolev space W', i.e. Hilbert space IH'.



Mesh and interpolation order convergence

1/p
s % p
1 sp . ) o U ru
m For Sobolev spaces' u € W, s,p € IN and their norm: ||EHW*W = [f Z()(W T av
) a= - -

= For Hilbert space H':

[zl = Jf(u-u+[2Vu:Vu)dV: Jf(u-quVu:Vu)dV

Q Q

m If there’s no re-entrant corners and boundary conditions are “gentle”, then displacements converge as :

-4l o

— — H < p+1
< Cul
where 1, 1" are the true and approximate solutions, p is the interpolation order of shape functions N(&, 1)
and /1 is the element size.

m And that stresses/strains converge as:
h
-1
-

— — H <« _hP
= Coh

I The solution is usually sought in physically meaningful Sobolev space W', i.e. Hilbert space IH'.



Mesh and interpolation order convergence

1/p

a=0

sp . S, (d*u  *u\f
For Sobolev spacesl ueW " s,p € IN and their norm: ||EHW*VV = [f Y (ﬁ . ﬁ) dd
) x x

= For Hilbert space H':

[zl = Jf(u-u+[2Vu:Vu)dV: Jf(u-quVu:Vu)dV

Q Q

m If there’s no re-entrant corners and boundary conditions are “gentle”, then displacements converge as :
h
u-u
-2l o
i
[[22]] 10

where 1, 1" are the true and approximate solutions, p is the interpolation order of shape functions N(&, 1)
and /: is the element size.

< CyhPt1

m And that stresses/strains converge as:

h
u-u
-1,

— — H <« _hP
= Coh

Therefore, to obtain a converged solution we can either increase interpolation order p (p-refinement) or
decrease /i (h-refinement)

IThe solution is usually sought in physically meaningful Sobolev space W', i.e. Hilbert space IH'.



Tension of a rectangular sheet with a hole
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Tension of a rectangular sheet with a hole
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The symmetry is used to reduce the computational cost®



Triangular mesh with linear elements :
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Triangular mesh with linear elements :
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Triangular mesh with linear elements :
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e FE results for linear elements

log(stress error), a.u.

— error=ah
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log(element size), a.u.
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Comparison of triangular and quadrilateral meshes:
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Nonlinear FEM



Types of nonlinearity

m Material behavior (viscoelasticity,
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Post-buckling behavior with self-contact
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Contact of a rough surface




Impact of WC/Co composite




Multi-contact problem




Multi-contact problem




Multi-contact problem




Multi-contact problem




Polycristalline material




Coupled thin flow in contact interface

Normalized fluid flux
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Conclusion

m The linear Finite Element Method is widely used in mechanical engineering

m To get to a matrix formulation (linear system of equations)

[K][u] = [f]

we need to compute:

a matrix [B] at every Gauss point (GP)

a trivial matrix [D] (which changes from GP to GP only if we have heterogeneous solid)
a vector of external forces [f,.;] (Neumann boundary condition)

Dirichlet boundary conditions are imposed either using penalty method or matrix
rearrangement

m The system is solved using your preferable solver
(see Christophe Bovet’s (ONERA) lecture)
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