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Temperature

Temperature is one of the central concepts in physics

Relations between the kinetic energy Ekin of the system and its
temperature T:

Ekin =
1
2

NdofkBT

Ndof is the number of degrees of freedom (need to exclude rigid body motions),
kB is the Boltzmann constant

kB ≈ 1.38065 · 10−23 m2 kg
s2 K
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Temperature

Temperature is one of the central concepts in physics

Relations between the kinetic energy Ekin of the system and its
temperature T:

Ekin =
1
2

NdofkBT

Ndof is the number of degrees of freedom (need to exclude rigid body motions),
kB is the Boltzmann constant

kB ≈ 1.38065 · 10−23 m2 kg
s2 K

Kinetic energy of the system

Ekin =
1
2

∑

i

mi|vi|2

Kinetic energy of the system excluding rigid body motions

Ekin =
1
2

∑

i

mi|vi − v
rb
i |2,

where v
rb
i
= v̄ +ω × (ri − r0), v̄ is the velocity of the center of mass r0, ω

is the angular velocity, and ri is the point position vector.
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Temperature

Temperature is one of the central concepts in physics

Relations between the kinetic energy Ekin of the system and its
temperature T:

Ekin =
1
2

NdofkBT

Ndof is the number of degrees of freedom (need to exclude rigid body motions),
kB is the Boltzmann constant

kB ≈ 1.38065 · 10−23 m2 kg
s2 K

The temperature of a system of particles (in equilibrium and without
rigid-body motion v

rb
i
= 0):

T =
1

3NkB

∑

i

mi|vi|2

where N is the number of particles
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Temperature

Temperature is one of the central concepts in physics

Relations between the kinetic energy Ekin of the system and its
temperature T:

Ekin =
1
2

NdofkBT

Ndof is the number of degrees of freedom (need to exclude rigid body motions),
kB is the Boltzmann constant

kB ≈ 1.38065 · 10−23 m2 kg
s2 K

The temperature of a system of particles (in equilibrium and without
rigid-body motion v

rb
i
= 0):

T =
1

3NkB

∑

i

mi|vi|2 =
2

3kB
Ēkin,

where N is the number of particles , Ēkin is the average kinetic energy.
Attention!
(1) particles are considered as points (no contribution from angular velocities),

(2) no contribution from electrons, important carriers of the heat.
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Let’s control the temperature: prescribe
Prescribe a temperature

In the ideal gas, velocity of particles follows Maxwell-Boltzmann
distribution:

f (v) = 4π
(

m

2πkBT

)3/2

v2 exp
(

− mv2

2kBT

)

, v = |v|
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Let’s control the temperature: prescribe
Prescribe a temperature

In the ideal gas, velocity of particles follows Maxwell-Boltzmann
distribution:

f (v) = 4π
(

m

2πkBT

)3/2

v2 exp
(

− mv2

2kBT

)

, v = |v|

The mean squared velocity thus satisfies

〈v2〉 =
∫ ∞

0
v2f (v)dv =

3kBT

m

For every degree of freedom:

1
2

m〈v2
x + v2

y + v2
z〉 =

3kBT

2
⇔ 〈v2

d〉 =
kBT

m

Box-Muller method[1]

[1] Box, Muller: A Note on the Generation of Random Normal Deviates, Annals Math. Stat.:29 (1958).
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Let’s control the temperature: preserve

Preserve the temperature

Initially inserted energy T0 . . .

V.A. Yastrebov 11/51



Let’s control the temperature: preserve

Preserve the temperature

Initially inserted energy T0 distributes between the kinetic and potential
energy

Total energy is conserved Ekin + Epot
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Let’s control the temperature: preserve

Preserve the temperature

Initially inserted energy T0 distributes between the kinetic and potential
energy
Total energy is conserved Ekin + Epot

Color represents the velocity of particles
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Let’s control the temperature: preserve

Preserve the temperature

Initially inserted energy T0 distributes between the kinetic and potential
energy

Total energy is conserved Ekin + Epot

Equipartition theorem: In thermal equilibrium energy is shared equally

among all of its various forms
[1]

Start from a 0K equilibrium perfect crystal Epot = Epot(0K),Ekin = 0

Prescribe initial temperature T0 → Ekin(T0), the total system energy
becomes E = Epot(0K) + Ekin(T0) and because of the equal repartition:

E = Epot(0K) +
1
2

Ekin(T0) +
1
2

Ekin(T0)

E = Epot(0K) + Ekin

(1
2

T0

)

︸                     ︷︷                     ︸

Epot( 1
2 T0)

+Ekin

(1
2

T0

)

︸      ︷︷      ︸

Ekin( 1
2 T0)

= Epot(Teq) + Ekin(Teq)

In thermal equilibrium Teq =
1
2

T0
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Let’s control the temperature: preserve

Preserve the temperature

Velocity scaling method enables us to keep the target temperature Tt:

β =
√

Tt/T =
√

Et
kin/Ekin =

√

〈v2〉t/〈v2〉

at every m-th increment scale velocities:

v(t) = βv(t)

A better choice would be to scale temperature more smoothly:

β =
√

1 + γ(Tt/T − 1), γ ∈ [0, 1]

for example γ ∼ dt
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Let’s control the temperature: preserve

Preserve the temperature

Friction/anti-friction term can be added in dynamical equation:

mir̈i = Fi − ξmiṙi,





ξ > 0, if T > Tt

ξ ≤ 0, if T ≤ Tt

Choice of ξ:
dEkin

dt
= −

(
dEpot

dt
+ ξ

∑

mi|vi|2
)

= 0, ⇒ ξ = −
dEpot/dt

2Ekin
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Let’s control the temperature: preserve

Preserve the temperature

Friction/anti-friction term can be added in dynamical equation:

mir̈i = Fi − ξmiṙi,





ξ > 0, if T > Tt

ξ ≤ 0, if T ≤ Tt

Choice of ξ:
dEkin

dt
= −

(
dEpot

dt
+ ξ

∑

mi|vi|2
)

= 0, ⇒ ξ = −
dEpot/dt

2Ekin

A good strategy:
use a thermostat on a part of simulated domain, not too close to the
zone of the interest

See also: Nosé-Hoover thermostat[1] and Langevin dynamics.

[1] Hoover. Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31 (1985)
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Let’s control the temperature: change

Prescribe a temperature

Preserve the temperature

Change the temperature during the simulation

Linear scaling of the target temperature during the time Tt = Tt(t)
Heating ξ > 1/cooling ξ < 1 wall vx(t + dt) = −ξvx(t)
Rigid walls at prescribed temperature (thermostats)
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Thermal expansion 1

Thermal expansion is related
to the asymmetry of the potential well.

eq,T=0
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Thermal expansion 1

Thermal expansion is related
to the asymmetry of the potential well.

eq,T=0

Ekin += ∆U U += ∆U
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Thermal expansion 1

Thermal expansion is related
to the asymmetry of the potential well.

∆U

eq,T=0∆U

1

∆U

2

eq,∆U
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Thermal expansion 1

Thermal expansion is related
to the asymmetry of the potential well.

∆U

eq,T=0∆U

1

∆U

2

eq,∆U

∆r

r r( U) r(T)
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Thermal expansion 2
LJ-6-12: Taylor expansion up to the third order:

U(req

ij
+ ∆rij)

with
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Thermal expansion 2
LJ-6-12: Taylor expansion up to the third order:

U(req

ij
+ ∆rij) = U0(req

ij
) +

1
2
∂2U

∂r2
ij

∆r2
ij + o(∆r2

ij)

with ∂2U/∂r2
ij = 288εσ12/r

eq14
ij

,
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Thermal expansion 2
LJ-6-12: Taylor expansion up to the third order:

U(req

ij
+ ∆rij) = U0(req

ij
) +

1
2
∂2U

∂r2
ij

∆r2
ij +

1
6
∂3U

∂r3
ij

∆r3
ij + o(∆r3

ij)

with ∂2U/∂r2
ij = 288εσ12/r

eq14
ij

, ∂3U/∂r3
ij = −6048εσ12/r

eq15
ij
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Thermal expansion 2

Approximation of the potential in vicinity of the equilibrium:

U(req

ij
+ ∆rij) = U0 + a∆r2

ij − b∆r3
ij, a, b > 0

Locations corresponding to ∆U:




∆U = a∆r2
1 − b∆r3

1

∆U = a∆r2
2 − b∆r3

2

Where from

a(∆r2
1 − ∆r2

2) − b(∆r3
1 − ∆r3

2) = 0 or 4b∆r2 − 2a∆r + bη = 0

where ∆r = (∆r1 + ∆r2)/2 ≥ 0, η = −∆r1∆r2 ≈ ∆U/a ≥ 0

∆r =
a −

√

a2 − 4b2η

4b
=

a

4b

(

1 −
√

1 − 4b2η/a2
)

≈ a

4b

(

1 −
√

1 − 4b2∆U/a3
)

≈ b

2a

∆U

a

∆r ≈
1008r

eq12
ij

288σ12

∆U

144ε
r

eq

ij
⇒ ǫth =

∆r

r
eq

ij

≈ 0.097
∆U

ε
= 0.097

∆Ekin

2ε
= 0.0729

kB∆T

ε
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Normalizations

Energy ε: E′ = E/ε

Distance σ: l′ = l/σ

Mass M = mp: m′ = m/M

Time t0 =
√
σ2 ∗m/ε: t′ = t/t0

Velocity V =
√
ε/m: v′ = v/V

Force F = ε/σ: f ′ = f/F

Pressure P = ε/σ3: p′ = p/P

Temperature T0 = ε/kB: T′ = T/T0
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Examples



Example: liquid-gas interface
Stabilization phase of a liquid-gas interface under huge gravity.

6000 particles
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Example: shear test
Shear test of a crystal with 6 vacancy defects (6 500 atoms)
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Example: shear test
Shear test of a crystal with 6 vacancy defects (6 500 atoms)
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Example: tensile test
High-velocity tensile test of a bar with a circular defect.
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Example: tensile test
High-velocity tensile test of a bar with a circular defect.

Perfect crystal with a hole, 10 000 particles
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Example: tensile test
High-velocity tensile test of a bar with a circular defect.

Crystal with 0.5% of vacancy defects and a hole, 10 000 particles
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Example: tensile test
High-velocity tensile test of a bar with a circular defect.

A bigger crystal with 0.5% of vacancy defects and a hole, 130 000 particles
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Example: tensile test
High-velocity tensile test of a bar with a circular defect.

Wave dynamics
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Example: tensile test
High-velocity tensile test of a bar with a circular defect.

Wave dynamics
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Example: tensile test
High-velocity tensile test of a bar with a circular defect.

Wave dynamics

V.A. Yastrebov 38/51



Example: high-velocity impact
Impact of a perfect crystal by a circular projectile
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Example: high-velocity impact
Impact of a perfect crystal by a circular projectile
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Example: high-velocity impact
Impact of a perfect crystal by a circular projectile: 20 000 particles on 20 000
time steps.
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Example: high-velocity impact
Impact of a perfect crystal by a circular projectile: 20 000 particles on 20 000
time steps.
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Example: martensitic phase transformation
An imitation of martensitic phase transformation with mixed LJ potential[1]

Cooling of a small lattice with high-temperature stable square lattice and low temperature hcp lattice

[1] Kastner O, Eggeler G, Weiss W, Ackland GJ. Molecular dynamics simulation study of microstructure evolution
during cyclic martensitic transformations. J Mech Phys Solids 30 (2011)
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Example: martensitic phase transformation
An imitation of martensitic phase transformation with mixed LJ potential[1]

Cooling of a bigger lattice with high-temperature stable square lattice and low temperature hcp lattice
(atomic cells are colored depending on martensitic variant)

[1] Kastner O, Eggeler G, Weiss W, Ackland GJ. Molecular dynamics simulation study of microstructure evolution
during cyclic martensitic transformations. J Mech Phys Solids 30 (2011)
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Example: phase transition in Argon

Cooling down noble (thus monoatomic) gas Argon in NVT ensemble

Selecting appropriate parameters σ = 3.4 Å, ε = 0.0343 eV, m = 39.95 u
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Example: phase transition in Argon

Cooling down noble (thus monoatomic) gas Argon in NVT ensemble

Selecting appropriate parameters σ = 3.4 Å, ε = 0.0343 eV, m = 39.95 u
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Example: phase transition in Argon

Cooling down noble (thus monoatomic) gas Argon in NVT ensemble

Selecting appropriate parameters σ = 3.4 Å, ε = 0.0343 eV, m = 39.95 u

0 100 200 300 400 500
Temperature

1100

1000

900

800

700

600

500

400

300

200

Po
te

nt
ia

l e
ne

rg
y

instanteneous
average
solid phase
gas phase

V.A. Yastrebov 47/51



Applications of MD

Popular in materials science, biophysics and biochemistry

In material science it does not replace continuum models, but
complements it with the atomic scale insights

Naturally couples thermal and mechanical effects (linear and
non-linear)
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Applications of MD

Popular in materials science, biophysics and biochemistry
In material science it does not replace continuum models, but
complements it with the atomic scale insights
Naturally couples thermal and mechanical effects (linear and
non-linear)

Applications:
Diffusion and self-diffusion in gas and liquid
Instabilities in liquids
Dislocations (ingredients for upper scale models Dislocation Dynamics)
Nanograined materials
Atomic-scale heat conduction
Phase-transformations
Grain boundaries (including GB migration)
Collision cascade (impact by a high energy particle (ion, neutron, electron))
Thin wetting films
Nanolubrication, nanowear
NEMS (nano electro mechanical devices)
Motion of bilogical macromolecules (proteins, nuclear acids) and their
interaction with other molecules and cell structures
Nobel prize in Chemistry “for the development of multiscale models for complex
chemical systems” was decerned to Michael Levitt
Thin film growth (hard to analyse with conventional experimental
methods)
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Applications of MD

Several examples:

Deformation and fracture of
nanograined wires

MD simulations vs experiments (size effect)
[1]

[1] Z. Wu, Y.W. Zhang, M.H. Jhon, D.J. Srolovitz.
Anatomy of nanomaterial deformation: Grain boundary
sliding, plasticity and cavitation in nanocrystalline Ni,

Acta Materialia 61, 2013
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Applications of MD

Several examples:

Deformation and fracture of
nanograined wires

MD simulations of void growth (red zones)
[1]

[1] Z. Wu, Y.W. Zhang, M.H. Jhon, D.J. Srolovitz.
Anatomy of nanomaterial deformation: Grain boundary
sliding, plasticity and cavitation in nanocrystalline Ni,

Acta Materialia 61, 2013
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Applications of MD

Several examples:

Deformation and fracture of
nanograined wires

Rayleigh-Taylor instability
(7 billion particles)

From Kai Kadau home page
(ex. Los Alamos National Laboratory)

[2]

http://www.thp.uni-duisburg.de

[2] K. Kadau et al. The importance of fluctuations in
fluid mixing. Proc Nat Acad Sci 104 (2007)
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Applications of MD

Several examples:

Deformation and fracture of
nanograined wires

Rayleigh-Taylor instability
(7 billion particles)

Shock-induced structural phase
transformation in bcc iron
(8 million atoms)

From Kai Kadau home page
[3]

http://www.thp.uni-duisburg.de

[3] K. Kadau et al. Shock waves in polycrystalline iron.
Phys Rev Lett 98 (2007)
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Applications of MD

Several examples:

Deformation and fracture of
nanograined wires

Rayleigh-Taylor instability
(7 billion particles)

Shock-induced structural phase
transformation in bcc iron
(8 million atoms)

Lipid bilayer and water
Molecular Dynamics simulation of a lipid bilayer and

water
[4]

[4] M. Stepniewski et al, Effects of the lipid bilayer phase
state on the water membrane interface, Phys. Chem. B

114 (2010).
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Applications of MD

Several examples:

Deformation and fracture of
nanograined wires

Rayleigh-Taylor instability
(7 billion particles)

Shock-induced structural phase
transformation in bcc iron
(8 million atoms)

Lipid bilayer and water

Simulation of a nano-indentation

MD simulation of a spherical indentation on (111) FCC
cube.

[5] H.J. Chang, M. Fivel, D. Rodney, M. Verdier.
Multiscale modelling of indentation in FCC metals:
From atomic to continuum, CR Physique 11 (2010).
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Applications of MD

Several examples:

Deformation and fracture of
nanograined wires

Rayleigh-Taylor instability
(7 billion particles)

Shock-induced structural phase
transformation in bcc iron
(8 million atoms)

Lipid bilayer and water

Simulation of a nano-indentation

Molecular dynamics simulation
of the martensitic phase
transformation in NiAl alloys

Martensitic structure formed by cooling a simulation

block of the Ni0.65Al0.35 alloy with a free surface
[5]

[6] Pun GP, Mishin Y. Molecular dynamics simulation of
the martensitic phase transformation in NiAl alloys. J

Phys: Condens Mat 22 (2010)
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Fundamental problem

“The problem of hydrodynamic limits is to obtain rigorous derivations
of macroscopic models such as the fundamental partial differential
equations (PDEs) of fluid mechanics from a microscopic description of

matter, be it molecular dynamics or the kinetic theory of gases.”
[1]

[1] F. Golse ”The Boltzmann equation and its hydrodynamic limits. Evolutionary equations 2:159-301 (2005).
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Limits of the MD

It is a long road from an atom to a continuum
modeling representative system requires massively parallel computers an
adapted software, or even adapted hardware

Choice and fit of potential for a particular chemical composition and
configuration is non-trivial

Systems with long-range interactions (e.g., Coulomb) are heavy to
simulate O(N log(N))

Integration over long time periods require specific numerical methods

Rare processes are hard to simulate
e.g., low temperature diffusion (for example, Cottrell atmosphere), dislocation
glide at low stress especially in bcc
Either use high temperature and/or high strain rates (see also Kinetic
Monte Carlo method)

No chemical reactions
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Limits of the MD

It is a long road from an atom to a continuum
modeling representative system requires massively parallel computers an
adapted software, or even adapted hardware

Choice and fit of potential for a particular chemical composition and
configuration is non-trivial

Systems with long-range interactions (e.g., Coulomb) are heavy to
simulate O(N log(N))

Integration over long time periods require specific numerical methods

Rare processes are hard to simulate
e.g., low temperature diffusion (for example, Cottrell atmosphere), dislocation
glide at low stress especially in bcc
Either use high temperature and/or high strain rates (see also Kinetic
Monte Carlo method)

No chemical reactions

Apart from the physical simulations, MD is a helpful tool to
understand physics of matter in all its states
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Records in MD simulations

World’s Largest Molecular Dynamics Simulation
[1]

(2013)

4 125 000 000 000 = 4.125·1012 atoms on 131 072 cores

World’s Longest Molecular Dynamics Simulation
[2]

(2015)

1.112 milliseconds→ 1012 time steps

Simulation (blue), experimentally determined structure (red)

[1] W. Eckhardt et al. 591 TFLOPS multi-trillion particles simulation on SuperMUC. Supercomputing (2013).
[2] K. Lindorff-Larsen et al. How fast-folding proteins fold. Science 334 (2011)
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Afterword

It was a very short introduction to the
world of molecular dynamic
simulations

They were (almost) skipped:
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Afterword

It was a very short introduction to the
world of molecular dynamic
simulations

They were (almost) skipped:

Statistical ensembles (NVT, NPT &
NσT)

Non-pair potential and long-range
interactions, especially the Embedded
atom method (EAM) extensivelly used
for modeling metals

Grid or tree methods for long-range
interactions, especially the Fast
Multipole Method (FMM)

Kinetic Monte Carlo molecular
dynamics which is used to accelerate
the time
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Afterword

It was a very short introduction to the
world of molecular dynamic
simulations

They were (almost) skipped:

Statistical ensembles (NVT, NPT &
NσT)

Non-pair potential and long-range
interactions, especially the Embedded
atom method (EAM) extensivelly used
for modeling metals

Grid or tree methods for long-range
interactions, especially the Fast
Multipole Method (FMM)

Kinetic Monte Carlo molecular
dynamics which is used to accelerate
the time

I encourage you to consult the literature. . .
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Sources & Reading

Recommended reading:

Sources:
[1] M. Griebel, S. Knapek, G. Zumbusch. Numerical Simulation in Molecular Dynamics: Numerics, Algorithms,

Parallelization, Applications, Springer (2007)

[2] “Atomistic modelling of metals: introduction and applications” by P.M. Derlet (Condensed Matter Theory

Group, Paul Scherrer Institut, Switzerland), Summer school in Bad Herrenalb, Germany, 2009

[3] D.C. Rapaport. The art of molecular dynamics simulation. Cambridge University Press (2004)
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Merci!

Merci de votre attention!


