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Introduction




Industrial and natural contact problems

Assembled parts, e.g. engines

Aircraft’s engine GP 7200
www. safran-group. com

[1] M. W. R. Savage
J. Eng. Gas Turb. Power, 134:012501 (2012)
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Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Wilde/ANSYS wildeanalysis. co.uk
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Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Gears and bearings

Bearings
www. skf. com

Prelfad
[1] F. Massi, ]. Rocchi, A. Culla, Y. Berthier
Mech. Syst. Signal Pr., 24:1068-1080 (2010)
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Industrial and natural contact problems

Cie=t

Assembled parts, e.g. engines

Railroad contacts

Gears and bearings

www.mscsoftware. com
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Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Gears and bearings

Breaking systems
Assembled breaking system
www. brembo. com

www.mechanicalengineeringblog.com
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Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Gears and bearings

Breaking systems

Tire-road contact

18

[1] M. Brinkmeier, U. Nackenhorst, S. Petersen,
O. von Estorff, ]. Sound Vib., 309:20-39 (2008)
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Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Gears and bearings

Breaking systems

Tire-road contact

Metal forming

[1] G. Rousselier, F. Barlat, ]. W. Yoon
Int. |. Plasticity, 25:2383-2409 (2009)
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Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Gears and bearings

Breaking systems

Tire-road contact

@ Metal forming
Crash tests

[1] O. Klyavin, A. Michailov, A. Borovkov
www. fea.ru
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Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Gears and bearings

Breaking systems

Tire-road contact

@ Metal forming ,
Human articulations

CraSh tests wwi. sportssupplements.net

H Biomechanics

J. A. Weiss, University of Utah
Musculoskeletal Research Laboratories
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Industrial and natural contact problems

Assembled parts, e.g. engines

Railroad contacts

Gears and bearings
Breaklng SyStemS Sand dunes www. en.wikipedia.org
Tire-road contact

@ Metal forming

Crash tests

B Biomechanics

Bl Granular materials

E. Azema et al, LMGC90
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Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts
Gears and bearings

Breaking systems

Tire-road contact
@A Metal forming D o -
Crash tests

H Biomechanics

Bl Granular materials

Electric contacts

Simulation of electric current
wiww . comsol. com
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Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Gears and bearings

Breaking systems

Tire-road contact

Metal forming

Crash tests

Biomechanics

Bl Granular materials

Electric contacts

Tectonic motions

R Bk AP
[1]].D. Garaud, L. Fleitout, G. Cailletaud
Colloque CSMA (2009)
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Industrial and natural contact problem

Assembled parts, e.g. engines
Railroad contacts
Gears and bearings

Breaking systems

{ ®
. ¥
Tire-road contact
@A Metal formjng Drill Bit tool Robi tRocktools;
extraction of geothermal energy (SINTEF , NTNU)
Crash tests S s maaes o
Sl N R

H Biomechanics
Bl Granular materials

Electric contacts

Tectonic motions A
[1] T. Saksala, Int. ]. Numer. Anal. Meth.

Deep drllllng Geomech. (2012)
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Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts
Gears and bearings

Breaking systems

Tire-road contact - Impact crater, Arizona
www.MrEclipse. com et maps.google.com

Metal forming

Crash tests

Biomechanics

Rock type, time = 103.002 5

Bl Granular materials

Electric contacts

Simulation of formation of Copernicus crater

TeCtoniC motions Yue Z., Johnson B. C., et al. Projectile
remnants in central peaks of lunar impact
Deep drllllng craters. Nature Geo 6 (2013)

Impact and fragmentation
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Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts
Gears and bearings

Breaking systems

Tire-road contact - Impact crater, Arizona
www.MrEclipse. com et maps.google.com

Metal forming

Crash tests

Biomechanics

Rock type, time = 103.002 5

Bl Granular materials

Electric contacts

Simulation of formation of Copernicus crater

TeCtoniC motions Yue Z., Johnson B. C., et al. Projectile
remnants in central peaks of lunar impact
Deep drllllng craters. Nature Geo 6 (2013)

Impact and fragmentation
etc.
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Physical and mathematical complexity

m Contact interface is hard to observe in situ

Many things happen in the interface

Strong thermo-mechanical or fluid-solid coupling in sliding
m Mathematical formulation is also non-trivial, hard to handle analytically

m Robust and accurate computational framework is needed
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Basics of Contact and Friction




Vectors and tensors

o,
ebh

e |
I

[ ]
IS

<

a=B
=b

eV X

(1S

Mechanics

la

® 3, 8n

®c

o A A, A
°0,=(g-n)n

V.A. Yastrebov

scalars ea-b=c
vectors eaxb=c
2nd order tensors ea®b=C
4th order tensors o AT
gradient operator eV-a=c
curl (rot) operator el=¢®e¢
Cauchy stress tensor e ¢
gap, normal gap o &
penalty parameter on

i 20 90
lagrange multipliers e 5=, ;=

contact pressure

of u

Lecture 6

scalar (dot) product
vector (cross) product

tensor product
transposition

divergence operator

2nd order identity tensor

Small strain tensor

position vector in parent space
outward unitnormal vector
surface tangent vectors
Coefficient of friction

21/186



Equilibrium and contact conditions

m Balance of momentum

V-g+f,=0  inQi, %
o-n=t on Iy b

= 0 - |
— T Q' ]
u=u, onl, QF
? onT, A r
. . T— »/1/_',— o
m Frictionless contact =i .
o . oy //’ 2
conditions (intuitive) R DE
No penetration \ | RARRRRT

No adhesion
No shear transfer
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Equilibrium and contact conditions

m Balance of momentum i
V‘Q"f‘ﬁ] =0 in erz //// It
gn=t,  only e
u= EO on F“ gl\_"l r! /,’/

? onl; T /nr“
m Frictionless contact /y‘\’_

conditions (intuitive) g N
No penetration @ ¢ I}E
No adhesion ( (RERAER

No shear transfer -
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Equilibrium and contact conditions

m Balance of momentum i
V‘g-f-]:y =0 in erz ///// !
g-n=t, on Iy o Q! /?
u=u, onT, gr;z jﬁ:\m

? onl’, T /
m Frictionless contact r’
conditions (intuitive) 'WWW
No penetration o r I}E
No adhesion ( (RERAER

No shear transfer -
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Equilibrium and contact conditions

m Balance of momentum
V.og+f,=0 in Q-

o-n=1 on Iy
u=1u, onl, g\ru
? onT, %ﬁj\m
m Frictionless contact 2
conditions (intuitive) W\;\;m
No penetration P L, I}E
No adhesion ‘ KA’K@_M

No shear transfer
2 *
;
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Equilibrium and contact conditions

m Balance of momentum
V-a+f,=0 in Oy

o-n=1 on Iy
u=1u, onl, g\ru
? onl, Aélj:\ﬁ_t
m Frictionless contact 2
conditions (intuitive) W\;\;m
No penetration P L, I}E
No adhesion ‘ KA{@‘EE

No shear transfer —
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m Gap function g
B gap = - penetration g>0 4
®m asymmetric function non-contact
m defined for
e separation g > 0
e contact g =0
e penetration g < 0 £ <0
B governs normal contact penetration
Gap between a slave point and a master surface

g=0

contact

m Master and slave split
Gap function is determined for all
slave points with respect to the
master surface



m Gap function g
B gap = - penetration g>0 4
®m asymmetric function non-contact
m defined for
e separation g > 0
e contact g =0
e penetration g < 0 A 8<0

g=0

contact

B governs normal contact penetration
Gap between a slave point and a master surface

m Master and slave split
Gap function is determined for all

slave points with respect to the ”
24 ~
master surface &
& p&)

m Normal gap

AL

En =1 [L —B(én)],
n is a unit normal vector, 7,
slave point, p(&,) projection

Definition of the normal gap

Consider existence and uniqueness
point at master surface



Frictionless or normal contact conditions

m No penetration
Always non-negative gap

g=0

m No adhesion
Always non-positive contact pressure

o, <0

n —

m Complementary condition
Either zero gap and non-zero pressure, or

non-zero gap and zero pressure Scheme explaining normal

contact conditions

g0,=0
m No shear transfer (automatically)
e
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Frictionless or normal contact conditions

. G,
m No penetration "
Always non-negative gap _ 0 NON-CONtACt—————»
>0,0,=0
g>0 = g>y,
m No adhesion = \é
Always non-positive contact pressure % = Testricted!
0, <0 0 regions
m Complementary condition

Either zero gap and non-zero pressure, or
non-zero gap and zero pressure Improved scheme explaining
normal contact conditions
g0,=0

m No shear transfer (automatically)




Frictionless or normal contact conditions

In mechanics:

Gn
Normal contact conditions 0 ST
. = . g>0,0,=0
Frictionless contact conditions 3
= Se
HertzL-Signorini, 2! conditions ‘go' restricted
= 0 regions
HertzL-Signorini,[?'-Moreau," conditions
also known in optimization theory as
Karushe-KuhnB)-Tucker, ! conditions Improved scheme explaining

normal contact conditions

gz 0, on <0, 8on = 0

Heinrich Rudolf Hertz (1857-1894) a German physicist who first formulated and solved the frictionless contact
problem between elastic ellipsoidal bodies.

2 Antonio Signorini (1888-1963) an Italian mathematical physicist who gave a general and rigorous mathematical
formulation of contact constraints.

3Jean Jacques Moreau (1923) a French mathematician who formulated a non-convex optimization problem based
on these conditions and introduced pseudo-potentials in contact mechanics.

4William Karush (1917-1997), >Harold William Kuhn (1925) American mathematicians,

6 Albert William Tucker (1905-1995) a Canadian mathematician.



Relative sliding

Recall:

e Convective coordinate in parent

space &; € (—=1;1) %

e Mapping to real space é
1

. :
p&, & =Y NE apn L]
i=1 h

V.A. Yastrebov Lecture 6 32/186



Relative sliding

Recall:

e Convective coordinate in parent
space &; € (—=1;1)

e Mapping to real space

8
P, &, 1) = ) N(E1, &)p()
i=1

m Tangential slip velocity v,
must take into account:

e only tangential component o T T—*

e relative rigid body motion

e master’s deformation
dp . Op
0

— — C — C
==—c¢1t+t =62
= 9& dén

of the local basis and & are the convec- >

o
_ |
where dp/dé; are the tangent vectors
tive coordinates.

Relative slip between a slave point and a
deformable master surface



Relative sliding

Recall:

e Convective coordinate in parent
space &; € (—=1;1)

e Mapping to real space

8
P, &, 1) = ) N(E1, &)p()
i=1

m Tangential slip velocity v,
must take into account:

e only tangential component O

e relative rigid body motion

R

e master’s deformation
dp . Op
0

— — C — C
==—c¢1t+t =62
= 9& dén

o

where dp/dé; are the tangent vectors

of the local basis and & are the convec- g0
tive coordinates.

O
A
¢

i

Relative slip between a slave point and a
deformable master surface



Relative sliding

Recall:
e Convective coordinate in parent
space &; € (—=1;1)

e Mapping to real space é
-1

8
P, &, 1) = ) N(E1, &)p()
i=1

m Tangential slip velocity v,
must take into account:

e only tangential component o T

e relative rigid body motion

Iy

R

e master’s deformation
dp . dp .

v, ==&+ =&
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O ¢
where dp/dé; are the tangent vectors -
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of the local basis and &; are the convec- >0 S
tive coordinates.
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Relative sliding

Recall:
e Convective coordinate in parent
space &; € (—=1;1)
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Relative sliding

Recall:
e Convective coordinate in parent
space &; € (—=1;1)

e Mapping to real space é
-1

8
P, &, 1) = ) N(E1, &)p()
i=1

m Tangential slip velocity v,
must take into account:

e only tangential component o T

e relative rigid body motion

Iy

R

e master’s deformation
dp . dp .

v, ==&+ =&
= 9& & &

o ,
) T T_>
where dp/dé; are the tangent vectors = P

of the local basis and & are the convec- §0 S
tive coordinates.

Relative slip between a slave point and a
deformable master surface



Relative sliding: example

Consider a one-dimensional example:

P is a projection of A on segment BC. Aé
xp=&xc+ 1=y (1) 8P S
Velocity of the projection point = |
ip = &ic + (1= &)ig + (xc — x)¢ E |
—_—  — e —
xp J\,, : . . . . X
ot g C Example of a one-dimensional relative slip

Substract the velocity of point xp for fixed &

— 1 Ixp _ c_odx¢
vt =%p — 5 = (xc — xp)& = 53¢

Compute tangential slip increment

n+l _ Jdx cn+l _ &n
AgiT = 9 | en (& <)
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Relative sliding: example

Consider a one-dimensional example:

P is a projection of A on segment BC. Aé
xp=&xc+ 1=y (1) 8P S
Velocity of the projection point = |
fp = Exc + (1 - E)ip + (xc — xp)é E |
—_—  — e —
X

dx P ox ,, .
ot & & Example of a one-dimensional relative slip

Substract the velocity of point xp for fixed &
. ox . ox &

vr =Xp — f = (Xc — xB)E = §5&

Compute tangential slip increment

n+l _ Jdx <n+l &n
AgT = 9E éz,( <)

‘f\\\

Fisherman'’s analogy: observing sea flow around
the boat.
Lie derivative: the change of a vector field along
the change of another vector field
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Amontons-Coulomb’s friction

ol
m No contactg >0, 0, =0

m Stick [v,| =0 Hloy|
Inside slip surface/Coulomb’s cone

f = |Q,\ - [U|O_u| <0

m Slip [v,[ >0
On slip surface/ Coulomb’s cone

vV
f=lo| - oy =0 Il

m Complementary condition I

One is zero another one is not or 1
vice versa

|gf| ( |g(| - [Lll(ju‘) =0

m Direction of friction
Shear and sliding are collinear

yr ” g[ 0 G,

Scheme explaining frictional contact
conditions
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Amontons-Coulomb’s friction

ol
m No contactg >0, 0, =0
m Stick v,/ =0 ulo,| slip
Inside slip surface/Coulomb’s cone ;
v restricted
f=lo|-ulo, <0 9 .
S = regions
m Slip [v,[ >0
On slip surface/ Coulomb’s cone 0
\%
f=lo) -l =0 vl
. fo71
m Complementary condition u
One is zero another one is not or T restricted
vice versa :
region
[2,1(lg] = plowl ) = 0 %,
m Direction of friction
Shear and sliding are collinear stick
v g, 0

O,
Improved scheme explaining
frictional contact conditions



Amontons-Coulomb’s friction

GrT G,
m No contactg >0, g, =0 “‘Gnll slip i Ha|
m Stick ‘vt‘ =0 = rest.:jcted 3 atan(L4)
. . , Z regions V, F0, O,
Inside slip surface/Coulomb’s cone H9
—slip —ulo,| > |G|

f = |Q,\ - [U|O_u| <0
Scheme of 2D frictional contact
Vi On

m Slip [v,[ >0
On slip surface/ Coulomb’s cone
f = |Q,\ - /~l|(7u| =0
m Complementary condition

One is zero another one is not or
vice versa

|gf| ( |g(| - [Lll(ju‘) =0

m Direction of friction
Shear and sliding are collinear

JUIARS '

v o Scheme of 3D frictional contact
gf 21‘
120, o] plon <0, [v)(lg,]-plonl)=0, ==-=k
o, o,|
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More friction laws

e Static criteria

o o/l 2l o/l
slip. \ max|o,|
J&.
,,,,,,,,,,,, max|g;|
sticl stick stick M.
stick /{o
0 o, [UA o, o,

(@) (b) © @

(a) Tresca  (b) Amontons-Coulomb  (c) Coulomb-Orowan  (d) Shaw
e Kinetic criteria

o] o] o]
o,] o] o]
s Hs Hs | =slip
M b lip M| lip— |-
3 s S
i i I [
0 w0 w0 Tog( v +%) 12
() (b) ©) (d)
(a,b) velocity weakening (c) velocity weakening-strengthening

(d) Linear slip weakening

e 1, static and iy kinetic coefficients of friction.
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Rate and state friction and regularization

e Rate and state friction law

m Rate v, = [v,| - relative slip velocity
m State 0 — ~ internal time
m Dieterich—-Ruina—Perrin (1979, 83, 95)

Frictional resistance

0f = oyl [us + b0 + aln(vy/vy)]
Evolution of the state variable

0=-%[0+In(2)|

e Prakash-Clifton friction law (1992,2000) i

m Viscous type evolution of frictional
resistance o;

m 6=~ (0, + o)

Prakash-Clifton regularization
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Rate and state friction and regularization

e Rate and state friction law

05
Slip velocity ===--=-

04 |

03 1

Slip velocity

02| e e R

0.1 fmrmmmmemmeed 4

0

0.8

0.7
0.6
05
0.4

Frictional resistance

03

Res'\s(ance‘

0.2 L L L L L
500 600 700 800 900 1000 1100 1200

Time
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Rate and state friction and regularization

e Rate and state friction law

m Rate v, = [v,| - relative slip velocity
m State 0 — ~ internal time
m Dieterich—-Ruina—Perrin (1979, 83, 95)

Frictional resistance

0f = oyl [us + b0 + aln(vy/vy)]
Evolution of the state variable

0=-%[0+In(2)|

e Prakash-Clifton friction law (1992,2000) i

m Viscous type evolution of frictional
resistance o;

m 6=~ (0, + o)

Prakash-Clifton regularization
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Rate and state friction and regularization

e Prakash-Clifton friction law (1992,2000)

500

400

300 | Bl

200 - e e 1

Contact pressure

100 femmeemeect ] ]

500

- T
Resistance

Frictional resistance

0 1 1 1 1 1 1
500 600 700 800 900 1000 1100 1200
Time
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Rate and state friction and regularization

e Prakash-Clifton friction law (1992,2000)

500

400 |-

300 1

Contact pressure

200 - o m———————— 1

100 pomrm et b ]

T T
Normalized resistance

05 |

Normalized frictional resistance

0 1
500 600 700 800 900 1000 1100 1200
Time
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Towards a weak form




From strong to a weak form

e Balance of momentum and boundary conditions

V'Q+f;v:() nQ=0,U0Q, +B.C. /‘LZ%
= L /‘// I;
T«
ﬁtr“ !
L 7;//1_?___,_

Two solids in contact
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From strong to a weak form

e Balance of momentum and boundary conditions

V-g+f,=0 inQ=0Q,UQ +BC %
CAA P
e Balance of virtual works Q Azr T g
. T
fﬁ.g-éydr +f[f:v'5¥—g“5vy] dQ =0 /E—‘
Q Q @ r Ff%

Two solids in contact
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From strong to a weak form

e Balance of momentum and boundary conditions
V.g—f—fz,:() nQ=0,UQ, +B.C. P {é%

e Balance of virtual works Q

fg~g-6gdl“ =
0 =
S 1}%
- N | W .
fnlg-bpdrhf[-]gvrdff +fao~budrf
= 2% == - = Two solids in contact
I 2 Iy
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From strong to a weak form

e Balance of momentum and boundary conditions

V~g+fp =0 nQ=0Q,UQ, +B.C.
Q!
e Balance of virtual works Q ﬁA(r,, ]
n-o-oudl |=
f7 = = /,ﬂl—d’—‘\\\
90 5 .
e r 1}%
fn-g-bpa’l"}+f[-]g~brdl"% =
- = = =~ Two solids in contact
I ?

= fﬂ g-5(p—1) drl = f(a,,bg,, + g76& ) dar!

= Il
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From strong to a weak form

e Balance of momentum and boundary conditions

e Balance of virtual works &

;'*”’/ﬁrﬂ//
fn-gﬁgdf = /y‘\_q

o0 P
S

L,
B B { /@Km‘~~;
fn-g-bpdl"} +f[-](_7~brd1"% =
- == = = Two solids in contact
Tl 2

ag-6(p—1) drl = f(a,,()g,, + g76& ) dar!

o
a

= Il

fg--DVlideL f(a,,bg,,+ gfog)dﬂ :fgg-bgdr+ffv-bgd£)
Q Q

Tl Ty

Contact term

Lecture 6
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From strong to a weak form

e Balance of momentum and boundary conditions

.- ol ’}
e Balance of virtual works Q ﬁA(r,, ] ;
1 T
T 1 o /ET
o--0VudQ) + ((7 09, + 0,0& )dF. = v
f: L4 nO8n L2105 C ‘//,1:[2__‘\\\\
Q Tl ¢ \
Ct f the internal £e L Ff%
- 1ﬂ|1g(‘ 0! ne mterna L‘hL‘l’gy ! S
Contact term //@ﬂ -
Two solids in contact
fg(. ‘oudl  + ff - SudQ
I Q
—_—

Jir o
. al w /ol <
Virtual work of external forces Virtual work of volume forces

e Functional space

ou, u € H'(Q) Hilbert space of the first order (first derivate is square
integrable) and o, u satisfy boundary conditions
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From strong to a weak form

e Balance of momentum and boundary conditions

. ol ]
e Balance of virtual works Q ﬁA(r,, ] ;
. L -
fgnngdQ + f(a,,bg,l + g,’bé )dﬂ > /‘—"\_q
= ~ - 2 Ny
Q T e L
2
) F < r I;
Change of the internal energy [ MAﬁm‘ -

Contact term o

fgg -oudl + ff - oudQ
Q
—— e

Two solids in contact

Iy
[ —
Virtual work of external forces

e Functional subspace

ou, u € H'(Q) Hilbert space of the first order (first derivate is square
integrable) and ou, u satisfy boundary conditions and contact conditions, so
we do optimization on a (potentially nonconvex) subset of H!(Q).

Virtual work of volume forces

V.A. Yastrebov Lecture 6 57/186



Variational inequality

m Optimization problem for F : V — R
m Findue Vst YoeV: Fu) < F(v)

m If F € C!is convex then such minimizer u is a stationary point F’|, = 0
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Variational inequality

m Optimization problem for F : V — R
m Findue Vst YoeV: Fu) < F(v)
m If F € C!is convex then such minimizer u is a stationary point F’|, = 0

m However, finding minimizer of F on a subset K C V changes the story
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Variational inequality

m Optimization problem for F : V — R

m Findue Vst YoeV: Fu) < F(v)

m If F € C!is convex then such minimizer u is a stationary point F’|, = 0
m However, finding minimizer of F on a subset IK C V changes the story

m If K is convex, then if # € K is a minimizer,
Voel, 0¢€[0,1]: F(u) < F(u+ 0(v—u))
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Variational inequality

m Optimization problem for F : V — R
m Findue Vst YoeV: Fu) < F(v)
m If F € C!is convex then such minimizer u is a stationary point F’|, = 0
m However, finding minimizer of F on a subset IK C V changes the story
m If K is convex, then if # € K is a minimizer,

Voel, 0¢€[0,1]: F(u) < F(u+ 0(v—u))
m In the limit

lim F(u+ 6(v —u)) — F(u) 50
0-0 0
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Variational inequality

m Optimization problem for F : V — R

m Findue Vst YoeV: Fu) < F(v)

m If F € C!is convex then such minimizer u is a stationary point F’|, = 0
m However, finding minimizer of F on a subset IK C V changes the story

m If K is convex, then if # € K is a minimizer,
Voel, 0¢€[0,1]: F(u) < F(u+ 0(v—u))
m In the limit
. F(u+06(v—-u))—F(u)
lim
60 0

=Fu)(v-u)=0
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Variational inequality

m Optimization problem for F : V — R

m Findue Vst YoeV: Fu) < F(v)

m If F € C!is convex then such minimizer u is a stationary point F’|, = 0
m However, finding minimizer of F on a subset IK C V changes the story

m If K is convex, then if # € K is a minimizer,
Voel, 0¢€[0,1]: F(u) < F(u+ 0(v—u))
m In the limit
. F(u+06(v—-u))—F(u)
lim
60 0

=Fu)(v-u)=0

m Variational inequality for minimizer 1 € K C V:

Fu@w-u)>0, YvekK
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Example of variational inequality

F F

=Y
®Y

/

v X

|
K

v u X

K K

Minimize F(x) for x € K C IR, then the minimizer u satisfies

‘ F(u(v—u)>0, YovekK
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Variational inequality in contact

m Since g,0, = 0, then 0,,0g, + 00,3, =0

m The corresponding variational inequality:

fg~ OVudQ + f ngéé ar! > fg0~(‘3gulf+ffzmégd(), uel,ouekK
Q

2 Tl Iy

u, onTy, g,(u) > 0on 1"(.}

L={ueH(Q |u=
| u=0 onl,, g,(u+ou)>0on 1"(}

{Ou e H'(Q)
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Back to variational equality (unconstrained)

e Constrained minimization problem

fg--owdsufgfog drt > fgo-bgdl‘wafp-éng, uel,oucK
T, Q

Q T
JL] {u € HY(Q) | ;uo only, g,(u) >0o0n 1"[}
Q) |9

u
K = {(‘)u eHY(Q) |6u=0 onT,, g,(u+06u)>0o0n F(.}
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Back to variational equality (unconstrained)

e Constrained minimization problem

fg--owdu+fgfog drl > fgo-@dr+ffp-midu, uel,oucK
T

Q T ‘ Q
L= {u e HY(Q) | =u, onl,, g,(u) > 0on T.}
Q[0

u
K = {(‘)g e HYQ) |ou=0 onT,, gn(u+0u)>0o0nT, }

e Use optimization theory to convert to

fc:r —OVudQ + f C(04,01,8n, &,0m) |dT} = fgg -oudrl + ff‘ - oudQ,
0

Tr

Q r!
c

Contact term”
Unconstrained functional sub-spaces
L= {EEIHl(Q) |y:go onfl,}
K = {ou € H'(Q) [6u=0 onT,|

Contact term" is defined on the potential contact zone ..

67/186
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Optimization methods




Optimization methods: recall

Functional to be minimized F(x) under constraint g(x) > 0

m Penalty method
m Lagrange multipliers method
m Augmented Lagrangian method
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Optimization methods: recall

Functional to be minimized F(x) under constraint g(x) > 0

m Penalty method

e New functional

F,(x) = F(X) +| e {~g(¥))* | = F(x) + {

0, if g(x) >0 non-contact

eg*(x), ifg(x) <0 contact

where € is the penalty parameter.
e Stationary point must satisfy
VF,(x) = VF(x) + 2e (—g(x)) Vg(x) = 0

e Solution tends to the precise solution as € — o
m Lagrange multipliers method
m Augmented Lagrangian method

x, ifx>0

M lay brackets (x) =
acaulay brackets (x) {O, otherwise
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Optimization methods: recall

Functional to be minimized F(x) under constraint g(x) > 0

m Penalty method F,(x) = F(x) +| e (~g(x))”

m Lagrange multipliers method

e New functional called Lagrangian

L(x,A) = F(x) + m

e Saddle point problem

min max{{(x,A)} — x* «— min{F(x)}
X A g(x)=0

e Stationary point

ViF(x) + AV,g(x)
8(x)

m Augmented Lagrangian method

VL = [ ] =0 need toverify 1 <0

x, ifx>0

M lay brackets (x) =
acaulay brackets (x) {O, otherwise
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Optimization methods: recall

Functional to be minimized F(x) under constraint g(x) > 0

m Penalty method F,(x) = F(x) +| e (~g(x))”

m Lagrange multipliers method £(x, 1) = F(x) +

m Augmented Lagrangian method
[Hestnes 1969], [Powell 1969], [Glowinski & Le Tallec 1989], [Alart & Curnier 1991], [Simo & Laursen 1992]

e New functional, augmented Lagrangian

2 1 >
£a(x, A) = F(x) + Ag(x) [+]eg”(x) | if A +2eg(x) <0, contact

—=A% if A + 2eg(x) > 0, non-contact

e Stationary point

ViE(x) + AV, g(x) + 2€g(x)Vg(x)}

=0, if contact

7(x

vx//\L‘n - é( )
ViF(x) ' ‘
1 |=0 if non-contact

<
x, ifx>0
Macaulay brackets (x) = toony . &Uzawa algorithm
0, otherwise
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Optimization methods: example

30 T T T T T

25

f(x)

Functional : f(x) = x* + 2x + 1
Constrain: g(x) =x >0
Solution : x* =0
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Optimization methods: example

30 T T

25

f(x)

Functional : f(x) = x? + 2x + 1
Constrain : g(x) =x >0
Solution : x* =0
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Penalty method: example

F(x)=x2+2x+1, gx)=x>0, x'=0

m Penalty method
Fy(x) = F(x) + | (=g(x))’

Lecture 6

V.A. Yastrebov



Penalty method: example

F(x) =x*> +2x +1, gx)=x>0, x'=0
m Penalty method

Fp(x) = F(x) +| e (~g(x))

30

f(x)
a

. - f(x)
‘ . ; . . ob e souion @ |
-4 2 0 2 4 4 2 0 2 4
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Penalty method: example

F(x)=x*+2x+1, gx)=x>0, x*=0
m Penalty method
Fy(x) = F(x) + | e (~g(x))’

30

25 -

20

r=1
f(x) oo
. solution |. 4

2 4
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Penalty method: example

F(x)=x2+2x+1, gx)=x>0, x'=0
m Penalty method

Fp(x) = F(x) +| e (~g(x))

30

25 |-

()
@
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Penalty method: example

F(x)=x2+2x+1, gx)=x>0, x'=0
m Penalty method

Fp(x) = F(x) +| e (~g(x))

30

25 |-

()
@

1250 eeeeee
r=10
=1 ——

f(x) o
| soluion @

! . ! . . "
-4 2 0 2 4 4 2 0 2 4
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Penalty method: example

F(x)=x2+2x+1, gx)=x>0, x'=0
m Penalty method

Fp(x) = F(x) +| e (~g(x))

Advantages © Drawbacks ®
m simple physical interpretation m practically non-smooth
m simple implementation functional
m no additional degrees of freedom = solution is not exact:
m “mathematically” smooth ® too small penalty —
functional large penetration

B too large penalty —
ill-conditioning of the
tangent matrix

m user has to choose penalty e
properly or automatically and/or
adapt during convergence
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Lagrange multipliers method: example

F(x)=x2+2x+1, gx)=x>0, x*=0

m Lagrange multipliers method

L(x,A) = F(x) +| Ag(x) | — Saddle point — mxin m/\ax L(x, A)
Need to check that A <0

V.A. Yastrebov Lecture 6 81/186



Lagrange multipliers method: example

F(x) =x*> +2x +1, gx)=x>0, x'=0
m Lagrange multipliers method

L(x, 1) = F(x) +|Ag(x) | — Saddle point — mxm m/\axL(x, A)
Need to check that A <0

Advantages © Drawbacks ®
m exact solution m Lagrangian is not smooth
m no adjustable parameters m additional degrees of freedom

m not fully unconstrained: 1 <0
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Augmented Lagrangian method: example

F(x) =x>+2x+1, gx)=x>0, x*=0
m Augmented Lagrangian method

2 .
L. 1) = F(x) + Ag(x) [+]eg(x) | if A +2eg(x) <0, contact
-1A2 if A + 2e¢(x) > 0, non-contact

Yellow line separates contact and non-contact regions
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Augmented Lagrangian method: example

F(x) =x>+2x+1, gx)=x>0, x*=0
m Augmented Lagrangian method

2 .
L. 1) = F(x) + Ag(x) [+]eg(x) | if A +2eg(x) <0, contact

-1A2 if A + 2e¢(x) > 0, non-contact

Yellow line separates contact and non-contact regions
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Augmented Lagrangian method: example

F(x) =x>+2x+1, gx)=x>0, x*=0
m Augmented Lagrangian method

2 : .
L. 1) = F(x) + Ag(x) [+]eg(x) | if A +2eg(x) <0, contact

-1A2 if A + 2e¢(x) > 0, non-contact

Yellow line separates contact and non-contact regions
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Augmented Lagrangian method: example

F(x) =x*> +2x +1, gx)=x>0, x'=0

m Augmented Lagrangian method

£, A) = F(x) + { Ag(X) [+]eg’(x) |, if A +2eg(x) <0, contact
-£A% if A + 2eg(x) > 0, non-contact
Advantages © Drawbacks ®
m exact solution m additional degrees of freedom
m smoother functional (!) m quite sensitive to parameter €
m fully unconstrained m need to adjust € during

convergence
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Augmented Lagrangian with Uzawa algorithm

m Augmented Lagrangian method

- 2 | > ;
£, 1) = FX) +{ Ag(x) [+]eg(x) |, if A +2eg(x) <0, contact

-=A% if A + 2eg(x) > 0, non-contact

Fix A = /\0
La(x, ) = F(x) + A0g(x) + €g*(x), if Ag + 2€g(x) <0

Converge with respect to x
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Augmented Lagrangian with Uzawa algorithm

m Augmented Lagrangian method

- 2 | > ;
£, 1) = FX) +{ Ag(x) [+]eg(x) |, if A +2eg(x) <0, contact

-=A% if A + 2eg(x) > 0, non-contact

Fix A = /\0
La(x, A) = F(x) + [Ao + €g(x)] g(x), if Ap + 2eg(x) <0

Converge with respect to x and update 1,1 = A; + €g(x)
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Augmented Lagrangian with Uzawa algorithm

m Augmented Lagrangian method

- 2 | > ;
£, 1) = FX) +{ Ag(x) [+]eg(x) |, if A +2eg(x) <0, contact

-=A% if A + 2eg(x) > 0, non-contact

Fix A = /\0
Converge with respect to x and update 1,1 = A; + €g(x)

La(x, A) = F(x) + [A1 + €g(x)] g(x), if A1 + 2eg(x) <0
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Friction.......
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Friction

"The scream”
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Friction: methods

m Optimization methods: penalty or augmented Lagrangian method

m Note that the method of Lagrange multipliers cannot be employed here
m Return mapping algorithm for penalty

m Analogy with elasto-plastic formulation problem!!]

[1] Curnier “A theory of friction” Int ] Solids Struct 20 (1984)
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Friction: Return mapping algorithm

m Return mapping algorithm in 2D for the penalty method

Qiﬂrial
o M
G A i .
St +1 i
o] 7% i+1 Jria=ei2
uloy, o 1Ot
A s
oy
A o /
' Agr /,Ag;ei: Ayisi
—ulot B e S——
‘ HIo| “ 5™ griragr
-ploy |

As in plasticity!!]

[1] Simo J.C. and Hughes T.J.. Computational inelasticity. Springer (2006)



Friction: Return mapping algorithm

m Return mapping algorithm in 2D for the penalty method

G, A (9 |
i , 1 .
] i+1 ] i+1
m On S m On <
i i+l i i+1 i1 ~
77 Gy trial Oy G O O tial Oy
7/14|Gi+1| M|0i+1|
n n
i i
ﬂulcnl Mlcnl

Analogy with non-associated plastic flow!?]

[2] Curnier A. A theory of friction. International Journal of Solids and Structures 20 (1984)
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Application to contact problems: weak form
fg~-éngQ+f dr! :fgo«sgerrf@.(sng,
rl — 0

Q 1 iy
° Contact term

uel,duclk, ]L:{EGIH](Q) |g:g0 onF“},
K = {ou e H'(Q) [6u=0 onT,|
m Penalty method
€g, if stick |oy| < oy

Pressure: 0, = €g,, Shear: ¢, = S
uegnog /10g |, if slip lou] = ploy|

Contact term

C = C(gm&,(ng(S&) = (7”5&, + Qi ° (S(gf
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Application to contact problems: weak form

fg~-6ngQ+f dl”}:fgo-égdl"+ffz,~6yd(),
r! Q

Q 1 iy
° Contact term

uel,duclk, ]L:{EGIH](Q) |g:y0 onF“},
K = {ou e H'(Q) [6u=0 onT,|

m Augmented Lagrangian method
Contact term
C = Clgur 8, Aus Ay 8, 08, O, 0A,)

—% (A,,OA,, -A- Oi‘f) , if non-contact A, + €gy > 0

ﬁ,,bg,, + 9n0A, + & . Ogt +gr . b&, if stick @I < ul6al

; LA 1 LA
AnOgn + nOAn + oy — udy 5= - 08 — ¢ | At + pon=—1-04,,
Al =t Az

if slip |A,| > pl6,]

where 1, = A, + €g, and 3[ =A+ €g,
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Application to contact problems: linearization

e Non-linear equation

R(w,f) =0
e Contains 0g,, <5g[
e Use Newton-Raphson method
o Initial state at step i o
R@',f)=0
e Should be also satisfied at step 7 + 1
R(yi+l,fi+l) — R(Ei + OH/fH]) =0
e Linearize
' i+1 i1y . IR(w)
R@' +6u,f*) = R@/, 1) du =0
- ou
e Finally
u = ROI™ -
ou = — u (u
— e

contains Adg,, Abg[

o NB: Contact problem does not satisfy conditions of Kantorovich theorem
on the convergence of Newton’s method.
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Variation of geometrical quantities

Normal gap
m First variation enters in the residual vector:

|00 =1-(01, = 5p)

m Second variation enters in the tangent matrix:

T T
dp dp
Adgn=—n-|65= AL +AZ= 5 -ALTHSE+
B x
T dp
tgn|ATH +n-A== [Aln 6=+ Hoe
<~ = - ‘9,‘5 ~ |—= é N2
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Variation of geometrical quantities

Convective coordinate of the projection
m First variation enters in the residual vector:
dp (9p]

-1
o¢ = (4 -] (59 gra

m Second variation enters in the tangent matrix:

dp ( dpT opT dp I
o= |oom AL +AT b |+ AT 2 = |0g -
<

Aéé = (gnI;I -

23

o T

azp (72
g 05508 +A=S 0t
<

dp P o’
Su[d57 + 5508 |- 57 A — 0l

+

&

dp )
n AE + BézAé -

+




m Use penalty method to enforce Dirichlet BC
m Use penalty method to enforce contact constraints
m First, detect contact elements

m Second, construct updated residual vector and tangent matrix

Contact between two elements



Detection




Introduction

m Important and time

consuming part ‘\:Te_s/

m With which master

segment the slave node

can/will come in contact? /:nrsegme;s\'
m Need to know it in

advance

m To reduce time:

m Bounding boxes for the
global search

m Maximal distance of
detection

Slave and master



Introduction
m Important and time
consuming part .\'\‘/‘
m With which master

segment the slave node g
can/will come in contact?

m Need to know it in
advance
m To reduce time:

m Bounding boxes for the
global search

m Maximal distance of
detection

Slave in close zone



Introduction

m Important and time
consuming part

m With which master
segment the slave node g
can/will come in contact?

m Need to know it in
advance
m To reduce time:

m Bounding boxes for the
global search

m Maximal distance of
detection

NTS contact element
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Introduction

m Important and time
consuming part

m With which master
segment the slave node
can/will come in contact?

Contact

m Need to know it in
advance
m To reduce time:

m Bounding boxes for the
global search

m Maximal distance of
detection

Contact occurs



Introduction

m Important and time
consuming part
m With which master
segment the slave node
can/will come in contact?
m Need to know it in
advance
m To reduce time:
m Bounding boxes for the
global search
m Maximal distance of
detection

Multi-plate contact
Z-set/Zébulon




Introduction

m Important and time
consuming part

m With which master
segment the slave node
can/will come in contact?

m Need to know it in
advance
m To reduce time:

m Bounding boxes for the
global search

m Maximal distance of
detection
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Introduction

m Important and time
consuming part

m With which master
segment the slave node
can/will come in contact?

m Need to know it in
advance
m To reduce time:

m Bounding boxes for the
global search

m Maximal distance of
detection

Multi-plate contact
Z-set/Zébulon

V.A. Yastrebov Lecture 6 108/186



Introduction

m Important and time
consuming part

m With which master
segment the slave node
can/will come in contact?

m Need to know it in
advance
m To reduce time:

m Bounding boxes for the
global search

m Maximal distance of
detection

Multi-plate contact
Z-set/Zébulon
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Introduction

m Important and time
consuming part

m With which master
segment the slave node
can/will come in contact?

m Need to know it in
advance
m To reduce time:

m Bounding boxes for the
global search

m Maximal distance of
detection

i o “
Multi-plate contact
Z-set/Zébulon
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Introduction

m Important and time
consuming part

m With which master
segment the slave node
can/will come in contact?

m Need to know it in
advance
m To reduce time:

m Bounding boxes for the
global search

m Maximal distance of
detection

Multi-plate contact
Z-set/Zébulon
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Introduction

m Important and time
consuming part

m With which master
segment the slave node

can/will come in contact? !

m Need to know it in
advance
m To reduce time:

m Bounding boxes for the
global search

m Maximal distance of
detection

penetration volume intersection

segment in volume

1 4

nodes in volume

4* +

nodes under surface
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All-to-all approach

due to symmetry

m Growth rate O(N x M)
m Not robust
m Blind spots

m Slow

[] master projection zone D blind spots

<} normals to master <] S symmetry
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Closest node approach

m Node-to-segment
detection = iterative o o
solution o

V.A. Yastrebov Lecture 6 114/186



Closest node approach

m Node-to-segment
detection = iterative ° o
solution °
m Detection based on the b e
closest node: e ©®
find the closest master o
node; ° o
find a projection on
segments adjacent to ®
this node.
m Widely accepted o "
simplification o o
m Simple treatment of blind
spots
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Closest node approach

m Node-to-segment
detection = iterative
solution
m Detection based on the
closest node:
find the closest master
node; L
find a projection on i
segments adjacent to
this node.
m Widely accepted
simplification
m Simple treatment of blind
spots
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Closest node approach

m Node-to-segment
detection = iterative
solution

m Detection based on the
closest node:

find the closest master

node; s ’
find a projection on ‘

segments adjacent to

this node.

m Widely accepted
simplification

m Simple treatment of blind
spots
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Acceleration of detection

m “Blind” algorithm =

one-by-one e
o (]
L]
° ® o
L/ &)
L] ()
® ® o
o _o—* o .
°
] [ ]
® O
o (9]
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Acceleration of detection

m “Blind” algorithm =

one-by-one R
B Reduce the number of ° .
elements to check: : ° e
m Detection bounding box 8 9 » °
- intersection of master ® ® o
and slave bounding * e, .
boxes °
@ (<]
® )
() ~ ®
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Acceleration of detection

m “Blind” algorithm =

one-by-one
® Reduce the number of o .
elements to check: : )
m Detection bounding box 8
- intersection of master ® ®* o
and slave bounding * e,

boxes
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Acceleration of detection

m “Blind” algorithm =
one-by-one

B Reduce the number of e .
elements to check: v )

m Detection bounding box ®
- intersection of master ® o
and slave bounding 4.‘ °
boxes

m Distribute nodes in
buckets (cells) = Bucket
sort method [1]

m For each slave node
check only in several
buckets

[1] Benson, Hallquist, 1991
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Acceleration of detection

m “Blind” algorithm =
one-by-one

m Reduce the number of
elements to check:

m Detection bounding box

- intersection of master . )
and slave bounding %
boxes

m Distribute nodes in
buckets (cells) = Bucket
sort method [1]

m For each slave node
check only in several
buckets

[1] Benson, Hallquist, 1991

V.A. Yastrebov Lecture 6 122/186



Acceleration of detection

m Strong connection
between:

m finite element mesh L,

® maximal detection
distance L,
m bucket’s size 2L.

m User friendly algorithm

m Complexity O(N)

V.A. Yastrebov

Lecture 6

= Of 2L
Relations between the master mesh, maximal
detection distance and bucket’s dimensions

Meshes for numerical tests



Unknown master-slave

m Master-slave may be
unknown in advance:
m complex geometry;
m large sliding; ; \ ,
m self-contact. ' S To LI

Nickel foam microstructure

Microstructure of gecko’s adhesive toe
(adapted from Autumn Lab, Lewis& Clark Colledge, Portland, Oregon)
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Unknown master-slave

m Master-slave may be
unknown in advance:
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m Unknown master-slave
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m Account of the nodal
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buckling behavior of thin-walled structures

(self-contact, finite strain plasticity) Zset/Zébulon

Finite Element Analyses of post
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Parallelization

m Distributed memory
computer architecture

m = Distributed contact
surface

m No information about the
entire contact surface
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Parallelization

m Distributed memory
computer architecture

m = Distributed contact
surface

m No information about the
entire contact surface

Data exchange
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Detection by a single CPU

= SDMR
Single Detection,
Multiple Resolution

m Not optimal

m Simple data
exchange

contact

V.A. Yastrebov

Preliminary step
and data exchange

Detection

Data exchange

off

off

70%

10%)
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Detection by a single CPU

= SDMR
Single Detection,
Multiple Resolution

m Not optimal

Preliminary step
and data exchange

m Simple data -—

Detection

Data exchange

exchange
oonm =

contact

off

off

70%

10%)
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Distributed detection

= MDMR
Multiple Detection,
Multiple Resolution

m More optimal

Preliminary step
and data exchange
Data exchange

I I I Detection

m Complex data Proc

exchange
-

contact

>

(20% 60% 20% )
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Distributed detection 11

3

T
Linear gain

. . L Average gain -~} g
m Global detection bounding S e 1
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Distributed detection 11
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Distributed detection 11
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When simple detection fails. . .

Methods based on the closest node detection are not robust

m Idea:

m find the closest master
node

m find a projection on the
adjacent segments

m Counterexample

m Closest segment is not
always attached to the
closest node

m not regular mesh
m triangular mesh

4 slave node

m Carefull use or
improvement
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When simple detection fails. . .

Methods based on the closest node detection are not robust

m Idea:

m find the closest master
node

m find a projection on the
adjacent segments

m Counterexample

m Closest segment is not
always attached to the
closest node

m not regular mesh
m triangular mesh
m Carefull use or
improvement
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Example I

m Tyre-road problem
m Tyre — 100 000 slave nodes
m Road -200 000 master segments
m Detection 1.5-2 seconds

Contact elements for different loads

Zset/Zébulon FE mesh of a tire
/ 550000 nodes, 105000 slave nodes

Zset/Mesher
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Example II

m Two curved surfaces in contact

m 10° against 10° contact nodes
m All-to-all T,j.¢0-.n >180 hours
m Bucket sort performance depends on geometry:

FE mesh of one of the contacting surfaces
Zset/Mesher
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Example II

m Two curved surfaces in contact

m 10° against 10° contact nodes
m All-to-all T,j.¢0-.n >180 hours
m Bucket sort performance depends on geometry:

Geometry Nodes in CPU time Gain,
bounding box Tatt-to-an / Toucket

2100000 35 minutes >300 times

340000 1 minute >10500 times

1)

50000 4 seconds >160 000 times
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Particularities: mesh and convergence

m Strong mesh refinement is required
e especially at unknown edges of contact zones

Typical mesh for fretting analysis [L. Sun, H. Proudhon, G. Cailletaud, 2011]
2D ~ 30000 DoFs, 3D ~ 5000000 DoFs

V.A. Yastrebov Lecture 6 151/186



Particularities: mesh and convergence

m Strong mesh refinement is required
e especially at unknown edges of contact zones

—a! o —q g
| N—:l'azl—xz | | gn"vvaz_xz |

On

doy,
ox

doy,
ox

—> 0
x—a

— 0
x—a

0, — —00
xX—a

Infinite contact pressure andjor its derivative



Particularities: mesh and convergence

m Strong mesh refinement is required
e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Infinite looping

Residual

Initial guess R(xy, fo) =0
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Particularities: mesh and convergence

m Strong mesh refinement is required
e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Infinite looping

Residual

/ XO i

Too rapid change in boundary conditions R(xg,f1) # 0
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Particularities: mesh and convergence

m Strong mesh refinement is required
e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Infinite looping

Residual

X]/ XO i

Iterations of Newton-Raphson method

-1
R(x[),fl) + ‘Z)_Ii X0 ox=0—bx=- ?9_5 xo R(xOrfl) - xl =Xy + ox
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Particularities: mesh and convergence

m Strong mesh refinement is required
e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Infinite looping

Residual

X];/ XO ‘ JXZ X

Iterations of Newton-Raphson method

RGA) + K| 6x=0— ox = - B[R f) - 22 =21 +6x
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Particularities: mesh and convergence

m Strong mesh refinement is required
e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Infinite looping

Residual

Xl'/ XO ‘V.Xz X

Infinite looping
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Particularities: mesh and convergence

m Strong mesh refinement is required
e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Convergence to a “false” solution

\ﬁo X

Initial guess R(xy, fo) =0

Residual
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Particularities: mesh and convergence

m Strong mesh refinement is required
e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Convergence to a “false” solution

NIVl
NJ

XO X

Residual

Too rapid change in boundary conditions R(xg,f1) # 0
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Particularities: mesh and convergence

m Strong mesh refinement is required
e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Convergence to a “false” solution

Residual
L

)

Iterations of Newton- Ruphson method

R(xo,f1)+‘3—§ ,0x=0— 0=~ ?915 R(xo,f1) = x' = xo + 6x
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Particularities: mesh and convergence

m Strong mesh refinement is required
e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Convergence to a “false” solution

Residual
y”

2% L
VA

Iterations of Newton-Raphson method

RGA) + K| 6x=0— ox = - B[R f) - 22 =21 +6x
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Particularities: mesh and convergence

m Strong mesh refinement is required
e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Convergence to a “false” solution

Residual
y”

Convergence, but is it a “true” solution ?
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Convergence problems: examples

m Infinite looping, e.g.

\
» F e Vo oV

0—6 Q\\”OA Ao""”‘o

moohRA A A A A A A A

Ommm=() active master segment O master node A slave node

m Change of the contact state (contact/non-contact, stick/slip)

m Interplay between stiffness, friction and augmented Lagrangian
coefficients!!!

m Combination of non-linearities (e.g., plasticity+contact)

Alart P, Journal de Mathématiques Pures et Appliqués 76 (1997)



Convergence problems: examples

m Simulation of a deep drawing problem

m Finite strain plasticity + frictional contact
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Convergence problems: examples

m Simulation of a deep drawing problem
m Finite strain plasticity + frictional contact

t=100, =200,

inc=178, inc=472,
d=-10, d=-20,
P,..=10% P,.=17%

t=200, =420,

inc=1353, inc=1414,
d=-33.5, d=-28,
p,, =32% / p,.=32%

0 5% 10% 15% 20%

accumulated plastic strain
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Convergence problems: examples

m Simulation of a deep drawing problem
m Finite strain plasticity + frictional contact

200 T T T

@
S
T

| iy
i

Reaction on the punch
3 8
. .

40

0 50 100 150 200 250 300 350

Displacement of the punch
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Cylinder-plane frictional contact

m Non-conservative problem, history of loading is crucial
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Cylinder-plane frictional contact

m Non-conservative problem, history of loading is crucial

sig22 at maximal normal load Normal loading
EE | 1 0.001

BT T
Sat

T T
Contact pressure x CoF
Shear traction ~ +

fiE 0.0008

0.0006

0.0004

0.0002 -

Stress
o
T

aximal normal load

sigl2 at m:
PR | |

-0.0002

-0.0004 |

-0.0006

-0.0008

-0.001 L L L L L

Press in 100 increments, 1, ~ 12
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inder-plane frictional contact

m Non-conservative problem, history of loading is crucial

Shear loading

0.001

ig22 at m‘axi‘mal tan%ential load

Contact pressure x COF
Shear traction

0.0008

0.0006

0.0004

0.0002

Stress.
o

-0.0002

-0.0004

-0.0006

-0.0008

0,001 L L L L L

Shift in 100 increments, u, ~ t
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Cylinder-plane frictional contact

m Non-conservative problem, history of loading is crucial

50‘inc
7
1inc

Comparison with: press in 1 increment, shift in 2 increments

Before sticking, every point of the contact interface has to pass
through the slip zone. It is impossible when loaded too fast.
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Warning friction!

m For dissimilar materials, the friction matters even in normal
contact

m The problem is thus path-dependent, the B.C. should be
changed slowly

(1999) (2003)

2]
=)
o
- p—
N
=
. p—
elastic o
5]
[72)
=
o X-coordinate (mm)
e L T LG BCINE.
=
o = - !
= gm ;
M 5 P i
[ i
@ m A a i
4 e n (computed)
T 00 P A — e pn (exact)
B ok w N #  M(computed)
.

-1.0-0.8-0.6-04-0.2 0.00.2 0.4 0.6 0.8 1.0

(2008) (2017)
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Warning friction!

Normalized tractions

0.0016

0.0014

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

O-I .ulo-nl
loaded in 1 step —— ----

loaded in 100 steps ~—— ----

0.0008.00

V.A. Yastrebov

0.01 0.02 0.03
x/A
[1] A.G. Shvarts, PhD thesis, MINES ParisTech (2019)
Lecture 6

0.04

0.05
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Sphere-plane frictional contact: cycling

“\\\\\\\\\\\ \\\\\\\ll\\ﬂlN"WWIHIIIIII /IIIIIIII[[]m
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Normal displacement Tangent displacement
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Sphere-plane frictional contact: cycling

0.681

0,0805

Stress

-8.8085 -

-8.801
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Sphere-plane frictional contact: cycling
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Sphere-plane frictional contact: cycling

0.681

0,0805

Stress

-8.8085 -

-8.801

V.A. Yastrebov Lecture 6 177/186



Shallow ironing test

m Deformable-on-
deformable frictional
sliding

slave

m Results obtained by
different groups!>345¢
differ significantly

h,

m Local and global friction
coefficients may differ A

[1] Fischer K. A., Wriggers P., “Mortar based frictional contact formulation for higher order interpolations using the

moving friction cone”, Computer Methods in Applied Mechanics and Engineering, vol. 195, p. 5020-5036, 2006.

[2] Hartmann S., Oliver J., Cante J. C., Weyler R., Hernandez J. A., “A contact domain method for large deformation

frictional contact problems. Part 2: Numerical aspects”, Computer Methods in Applied Mechanics and Engineering,
vol. 198, p. 2607-2631, 2009.

[3] Yastrebov V. A., “Computational contact mechanics: geometry, detection and numerical techniques”, These CdM
& Onera, 2011.

[4] Kudawoo A. D., "Problemes industriels de grande dimension en mécanique numérique du contact :
performance, fiabilité et robustesse”, These @ LMA & LAMSID, 2012.

[5] Poulios K., Renard Y., ”A non-symmetric integral approximation of large sliding frictional contact problems of
deformable bodies based on ray-tracing”, soumis, 2014.

[6] Zhou Lei’s blog, http://kt2008plus.blogspot.de



Shallow ironing test
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Shallow ironing test

m No agreement between authors

m Dif. authors used dif. meshes (quadrilateral lin./sq., triangular lin.)

authors used either finite or infinitesimal strain formulation

m Dif.
Vertical
reaction
v
=}
=}
o=
=
Q
<
Q
o~
Horizontal
reaction
1
Normal load Tangent load
Time step
V.A. Yastrebov Lecture 6

Tardieu, Kudawoo, 2011
Poulios, Renard, 2014
Hartmann, Oliver, 2009
Zhou, 2014

Fischer, Wriggers, 2006
Yastrebov, 2009

Zhou, 2014

Fischer, Wriggers, 2006
Yastrebov, 2009
Hartmann, Oliver, 2009
Tardieu, Kudawoo, 2011
Poulios, Renard, 2014
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Shallow ironing test

m No agreement between authors
m Dif. authors used dif. meshes (quadrilateral lin./sq., triangular lin.)

m Dif. authors used either finite or infinitesimal strain formulation

‘ Global friction
Vertical
feaction 0.59 Zhou, 2014
é 0.53 Fischer, Wriggers, 2006
o
g 0.47 Yastrebov, 2009
Q
[ 0.38 Hartmann, Oliver, 2009
0.34 Tardieu, Kudawoo, 2011
Horizontal
reaction 0.30 Poulios, Renard, 2014
( ‘ I ‘
Normal load Tangent load
Time step

Local coefficient of friction y; = 0.3
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Examples of contact problems

With analytical solution

* linear elasticity
* with/without friction

From literature

* post-buckling 2D

* finite strains

* elasticity / plasticity
* with/without friction

New

* multi-contacts

* post-buckling 3D

* finite strains

* elasticity / plasticity
* with/without friction

: Material
- Set 8 structure
= analysis suite
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Self-contact problem

6 T T T T T

_|symmetry

Reaction,

accumulated plastic deformation

0% 45%

0 ! L L L L L i !
0 10 20 30 40 50 60 70 80 90 100

Displacement, mm

Finite element analysis of a post-buckling behavior of a thin walled tube

Collection of non-linearities: buckling instability, self-contact, finite strain plasticity

™
-set|:
-
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m It's jU_St a tlp of the ”Computational Infinitesimal deformation / infinitesimal sliding
Contact Mechanics” iceberg

m Contact discretization and
integration

m Smoothing techniques General case

m Energy conservative methods for
dynamics

Segment-to-segment Contact domain method
Contact discretization techniques
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m It'sjust a tip of the “Computational
Contact Mechanics” iceberg

FINITE ELEMENT

m Contact discretization and
integration

m Smoothing techniques

Kikuchi, Oden (1988)

Zhong (1993)

m Energy conservative methods for
dynamics

Computational
Contact Mechanics

Second Edition

Wriggers, 2%ed. (2006)

Wriggers (2002)

Computational
Contact and Impact
Mechanics

Numerical methods in
Contact Mechanics

Laursen (2002)

WILEY
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La(x, A) Thank you for your attention!

www.yastrebov.fr



