Computational Contact Mechanics Finite Element Method

Vladislav A. Yastrebov

MINES Paris, PSL University, CNRS Centre des Matériaux, Evry, France

Athens week @ MINES Paris March 16, 2023

Creative Commons BY Vladislav A. Yastrebov

- Introduction
- Basics of Contact and Friction
- Towards a weak form
- Optimization methods
- Resolution algorithm
- Examples

Introduction

1 Assembled parts, e.g. engines

Aircraft's engine GP 7200 www.safran-group.com

[1] M. W. R. Savage J. Eng. Gas Turb. Power, 134:012501 (2012)

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts

High speed train TGV www.sncf.com

Wilde/ANSYS wildeanalysis.co.uk

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- **3** Gears and bearings

Bearings www.skf.com

[1] F. Massi, J. Rocchi, A. Culla, Y. Berthier Mech. Syst. Signal Pr., 24:1068-1080 (2010)

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- **3** Gears and bearings

Helical gear www.tpg.com.tw

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems

Assembled breaking system www.brembo.com

www.mechanicalengineeringblog.com

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact

Tire-road contact www.michelin.com

 M. Brinkmeier, U. Nackenhorst, S. Petersen, O. von Estorff, J. Sound Vib., 309:20-39 (2008)

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming

Deep drawing www.thomasnet.com

[1] G. Rousselier, F. Barlat, J. W. Yoon Int. J. Plasticity, 25:2383-2409 (2009)

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests

Crash-test www.porsche.com

[1] O. Klyavin, A. Michailov, A. Borovkov www.fea.ru

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- **3** Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests
- 8 Biomechanics

Human articulations www.sportssupplements.net

J. A. Weiss, University of Utah Musculoskeletal Research Laboratories

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests
- 8 Biomechanics
- 9 Granular materials

Sand dunes www.en.wikipedia.org

E. Azema et al, LMGC90

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests
- 8 Biomechanics
- 9 Granular materials
- 10 Electric contacts

Damage at electric contact zone www.taicaan.com

Simulation of electric current www.comsol.com

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests
- 8 Biomechanics
- 9 Granular materials
- 10 Electric contacts
- 11 Tectonic motions

San-Andreas fault, by M. Rightmire www.sciencedude.ocregister.com

 J.D. Garaud, L. Fleitout, G. Cailletaud Colloque CSMA (2009)

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests
- 8 Biomechanics
- 9 Granular materials
- 10 Electric contacts
- 11 Tectonic motions
- 12 Deep drilling

Drill Bit tool RobitRocktools; extraction of geothermal energy (SINTEF, NTNU)

[1] T. Saksala, Int. J. Numer. Anal. Meth. Geomech. (2012)

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests
- 8 Biomechanics
- 9 Granular materials
- 10 Electric contacts
- 11 Tectonic motions
- 12 Deep drilling
- Impact and fragmentation

Impact crater, Arizona www.MrEclipse.com et maps.google.com

Rock type, time = 103.002 s

Simulation of formation of Copernicus crater Yue Z., Johnson B. C., et al. Projectile remnants in central peaks of lunar impact craters. Nature Geo 6 (2013)

- 1 Assembled parts, e.g. engines
- 2 Railroad contacts
- 3 Gears and bearings
- 4 Breaking systems
- 5 Tire-road contact
- 6 Metal forming
- 7 Crash tests
- 8 Biomechanics
- 9 Granular materials
- 10 Electric contacts
- 11 Tectonic motions
- 12 Deep drilling
- Impact and fragmentation

Impact crater, Arizona www.MrEclipse.com et maps.google.com

Rock type, time = 103.002 s

Simulation of formation of Copernicus crater Yue Z., Johnson B. C., et al. Projectile remnants in central peaks of lunar impact craters. Nature Geo 6 (2013)

Physical and mathematical complexity

- Contact interface is hard to observe in situ
- Many things happen in the interface
- Strong thermo-mechanical or fluid-solid coupling in sliding
- Mathematical formulation is also non-trivial, hard to handle analytically
- Robust and accurate computational framework is needed

Basics of Contact and Friction

Notations

Vectors and tensors

• <i>a</i> , α	scalars
• <u>b</u>	vectors
• $\underline{\underline{C}}, \underline{\underline{\beta}}$	2nd order tensors
• ⁴ <u>D</u>	4th order tensors

• $\nabla a = \underline{B}$ gradient operator

- $\underline{a} \cdot \underline{b} = c$ • $\underline{a} \times \underline{b} = \underline{c}$ • $\underline{a} \otimes \underline{b} = \underline{c}$ • $\underline{A} \otimes \underline{b} = \underline{C}$
- scalar (dot) product
 - vector (cross) product
 - tensor product
 - transposition
 - $\nabla \cdot \underline{a} = c$ divergence operator
 - $\underline{\underline{I}} = \underline{\underline{e}}_i \otimes \underline{\underline{e}}_i$ 2nd order identity tensor

Mechanics

• $\nabla \times a = b$

• $\underline{\sigma}$ Cauchy stress tensor

curl (rot) operator

- g, g_n gap, normal gap
- *e* penalty parameter
- λ , λ_n , λ_t lagrange multipliers
- $\sigma_n = (\underline{\underline{\sigma}} \cdot \underline{\underline{n}}) \cdot \underline{\underline{n}}$ contact pressure

• <u>8</u>

Small strain tensor position vector in parent space outward unit normal vector surface tangent vectors Coefficient of friction

V.A. Yastrebov

Lecture 6

$\left(\nabla \cdot \underline{\underline{\sigma}} + \underline{f}_v = 0\right)$	in $\Omega_{1,2}$
$\underbrace{\underline{\sigma}}_{\underline{n}} \cdot \underline{\underline{n}} = \underline{\underline{t}}_0$	on Γ_{f}
$\underline{u} = \underline{u}_0$	on Γ_u
(?	on Γ_c

- Frictionless contact conditions (*intuitive*)
 - No penetration
 - 2 No adhesion
 - 3 No shear transfer

$\left(\nabla \cdot \underline{\underline{\sigma}} + \underline{f}_v = 0\right)$	in $\Omega_{1,2}$
$\underline{\underline{\sigma}} \cdot \underline{\underline{n}} = \underline{\underline{t}}_0$	on Γ_{f}
$\underline{u} = \underline{u}_0$	on Γ_u
(?	on Γ_c

- Frictionless contact conditions (*intuitive*)
 - No penetration
 - 2 No adhesion
 - 3 No shear transfer

$\left(\nabla \cdot \underline{\underline{\sigma}} + \underline{f}_v = 0\right)$	in $\Omega_{1,2}$
$\underline{\underline{\sigma}} \cdot \underline{\underline{n}} = \underline{\underline{t}}_0$	on Γ_{f}
$\underline{u} = \underline{u}_0$	on Γ_u
(?	on Γ_c

- Frictionless contact conditions (*intuitive*)
 - No penetration
 - 2 No adhesion
 - 3 No shear transfer

$\left(\nabla \cdot \underline{\underline{\sigma}} + \underline{f}_{v} = 0\right)$	in $\Omega_{1,2}$
$\underline{\underline{\sigma}} \cdot \underline{\underline{n}} = \underline{\underline{t}}_0$	on Γ_{f}
$\underline{u} = \underline{u}_0$	on Γ_u
(?	on Γ_c

- Frictionless contact conditions (*intuitive*)
 - No penetration
 - 2 No adhesion
 - 3 No shear transfer

$\left(\nabla \cdot \underline{\underline{\sigma}} + \underline{f}_{v} = 0\right)$	in $\Omega_{1,2}$
$\underline{\underline{\sigma}} \cdot \underline{\underline{n}} = \underline{\underline{t}}_0$	on Γ_{f}
$\underline{u} = \underline{u}_0$	on Γ_u
(?	on Γ_c

- Frictionless contact conditions (*intuitive*)
 - 1 No penetration
 - 2 No adhesion
 - 3 No shear transfer

Gap function

■ Gap function *g*

- gap = penetration
- asymmetric function
- defined for
 - separation g > 0
 - contact g = 0
 - penetration g < 0
- governs normal contact

Master and slave split

Gap function is determined for all slave points with respect to the master surface

Gap between a slave point and a master surface

Gap function

■ Gap function *g*

- gap = penetration
- asymmetric function
- defined for
 - separation g > 0
 - contact g = 0
 - penetration g < 0
- governs normal contact

Master and slave split

Gap function is determined for all slave points with respect to the master surface

Normal gap

 $g_n = \underline{n} \cdot \left[\underline{r}_s - \underline{\rho}(\xi_n)\right],$ <u>n</u> is a unit normal vector, <u>r</u>_s slave point, $\underline{\rho}(\xi_n)$ projection point at master surface

Gap between a slave point and a master surface

Definition of the normal gap

Consider existence and uniqueness

Frictionless or normal contact conditions

No penetration

Always non-negative gap

 $g \ge 0$

No adhesion

Always non-positive contact pressure

 $\sigma_n^* \leq 0$

Complementary condition

Either zero gap and non-zero pressure, or non-zero gap and zero pressure

 $g \sigma_n = 0$

■ No shear transfer (automatically)

 $\underline{\sigma}_{t}^{**} = 0$

$$\begin{split} \sigma_n^* &= (\underline{\underline{\sigma}} \cdot \underline{\underline{n}}) \cdot \underline{\underline{n}} = \underline{\underline{\sigma}} : (\underline{\underline{n}} \otimes \underline{\underline{n}}) \\ \sigma_t^{**} &= \underline{\underline{\sigma}} \cdot \underline{\underline{n}} - \sigma_n \underline{\underline{n}} = \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot (\underline{\underline{\underline{I}}} - \underline{\underline{n}} \otimes \underline{\underline{n}}) \end{split}$$

Frictionless or normal contact conditions

No penetration

Always non-negative gap

 $g \ge 0$

No adhesion

Always non-positive contact pressure

 $\sigma_n^* \leq 0$

Complementary condition

Either zero gap and non-zero pressure, or non-zero gap and zero pressure

 $g \sigma_n = 0$

■ No shear transfer (automatically)

 $\underline{\sigma}_{t}^{**} = 0$

$$\begin{split} \sigma_n^* &= (\underline{\underline{\sigma}} \cdot \underline{\underline{n}}) \cdot \underline{\underline{n}} = \underline{\underline{\sigma}} : (\underline{\underline{n}} \otimes \underline{\underline{n}}) \\ \sigma_t^{**} &= \underline{\underline{\sigma}} \cdot \underline{\underline{n}} - \sigma_n \underline{\underline{n}} = \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot (\underline{\underline{\underline{I}}} - \underline{\underline{n}} \otimes \underline{\underline{n}}) \end{split}$$

Improved scheme explaining normal contact conditions

Frictionless or normal contact conditions

In mechanics:

Normal contact conditions \equiv Frictionless contact conditions \equiv Hertz¹_-Signorini,^[2] conditions \equiv Hertz¹_-Signorini,^[2]-Moreau^[3] conditions also known in **optimization theory** as Karush^[4]-Kuhn^[5]-Tucker,^[6] conditions

Improved scheme explaining normal contact conditions

$$g \ge 0, \qquad \sigma_n \le 0, \qquad g\sigma_n = 0$$

¹Heinrich Rudolf Hertz (1857–1894) a German physicist who first formulated and solved the frictionless contact problem between elastic ellipsoidal bodies.

²Antonio Signorini (1888–1963) an Italian mathematical physicist who gave a general and rigorous mathematical formulation of contact constraints.

³Jean Jacques Moreau (1923) a French mathematician who formulated a non-convex optimization problem based on these conditions and introduced pseudo-potentials in contact mechanics.

⁴William Karush (1917–1997), ⁵Harold William Kuhn (1925) American mathematicians, ⁶Albert William Tucker (1905–1995) a Canadian mathematician.

Recall:

- Convective coordinate in parent space $\xi_i \in (-1; 1)$
- Mapping to real space

$$\underline{\rho}(\xi_1,\xi_2,t) = \sum_{i=1}^8 N^i(\xi_1,\xi_2)\underline{\rho}^i(t)$$

Recall:

- Convective coordinate in parent space $\xi_i \in (-1; 1)$
- Mapping to real space

$$\underline{\rho}(\xi_1,\xi_2,t) = \sum_{i=1}^8 N^i(\xi_1,\xi_2)\underline{\rho}^i(t)$$

- Tangential slip velocity <u>v</u>_t must take into account:
 - only tangential component
 - relative rigid body motion
 - master's deformation

$$\underline{\underline{v}}_t = \frac{\partial \underline{\rho}}{\partial \xi_1} \dot{\xi}_1 + \frac{\partial \underline{\rho}}{\partial \xi_2} \dot{\xi}_2$$

where $\partial \rho / \partial \xi_i$ are the tangent vectors of the local basis and ξ_i are the convective coordinates.

Relative slip between a slave point and a deformable master surface

V.A. Yastrebov

Lecture 6

 ξ_2

-(8 -1 $\{\xi_1^*,\xi_2^*\}$

ξ,

PEEE

Recall:

- Convective coordinate in parent space $\xi_i \in (-1; 1)$
- Mapping to real space

$$\underline{\rho}(\xi_1,\xi_2,t) = \sum_{i=1}^8 N^i(\xi_1,\xi_2)\underline{\rho}^i(t)$$

- Tangential slip velocity <u>v</u>_t must take into account:
 - only tangential component
 - relative rigid body motion
 - master's deformation

$$\underline{v}_t = \frac{\partial \underline{\rho}}{\partial \xi_1} \dot{\xi}_1 + \frac{\partial \underline{\rho}}{\partial \xi_2} \dot{\xi}_2$$

where $\partial \rho / \partial \xi_i$ are the tangent vectors of the local basis and ξ_i are the convective coordinates.

Relative slip between a slave point and a deformable master surface

V.A. Yastrebov

Lecture 6

34/186

Recall:

- Convective coordinate in parent space $\xi_i \in (-1; 1)$
- Mapping to real space

$$\underline{\rho}(\xi_1,\xi_2,t) = \sum_{i=1}^8 N^i(\xi_1,\xi_2)\underline{\rho}^i(t)$$

- Tangential slip velocity <u>v</u>_t must take into account:
 - only tangential component
 - relative rigid body motion
 - master's deformation

$$\underline{v}_t = \frac{\partial \underline{\rho}}{\partial \xi_1} \dot{\xi}_1 + \frac{\partial \underline{\rho}}{\partial \xi_2} \dot{\xi}_2$$

where $\partial \rho / \partial \xi_i$ are the tangent vectors of the local basis and ξ_i are the convective coordinates.

Relative slip between a slave point and a deformable master surface

V.A. Yastrebov

Lecture 6

35/186

Recall:

- Convective coordinate in parent space $\xi_i \in (-1; 1)$
- Mapping to real space

$$\underline{\rho}(\xi_1,\xi_2,t) = \sum_{i=1}^8 N^i(\xi_1,\xi_2)\underline{\rho}^i(t)$$

- Tangential slip velocity <u>v</u>_t must take into account:
 - only tangential component
 - relative rigid body motion
 - master's deformation

$$\underline{v}_t = \frac{\partial \underline{\rho}}{\partial \xi_1} \dot{\xi}_1 + \frac{\partial \underline{\rho}}{\partial \xi_2} \dot{\xi}_2$$

where $\partial \rho / \partial \xi_i$ are the tangent vectors of the local basis and ξ_i are the convective coordinates.

Relative slip between a slave point and a deformable master surface

V.A. Yastrebov

Lecture 6

36/186
Relative sliding

Recall:

- Convective coordinate in parent space $\xi_i \in (-1; 1)$
- Mapping to real space

$$\underline{\rho}(\xi_1,\xi_2,t) = \sum_{i=1}^8 N^i(\xi_1,\xi_2)\underline{\rho}^i(t)$$

- Tangential slip velocity <u>v</u>_t must take into account:
 - only tangential component
 - relative rigid body motion
 - master's deformation

$$\underline{\underline{v}}_t = \frac{\partial \underline{\rho}}{\partial \xi_1} \dot{\xi}_1 + \frac{\partial \underline{\rho}}{\partial \xi_2} \dot{\xi}_2$$

where $\partial \rho / \partial \xi_i$ are the tangent vectors of the local basis and ξ_i are the convective coordinates.

Relative slip between a slave point and a deformable master surface

V.A. Yastrebov

Lecture 6

37/186

Relative sliding

Recall:

- Convective coordinate in parent space $\xi_i \in (-1; 1)$
- Mapping to real space

$$\underline{\rho}(\xi_1,\xi_2,t) = \sum_{i=1}^8 N^i(\xi_1,\xi_2)\underline{\rho}^i(t)$$

- Tangential slip velocity <u>v</u>_t must take into account:
 - only tangential component
 - relative rigid body motion
 - master's deformation

$$\underline{\underline{v}}_t = \frac{\partial \underline{\rho}}{\partial \xi_1} \dot{\xi}_1 + \frac{\partial \underline{\rho}}{\partial \xi_2} \dot{\xi}_2$$

where $\partial \rho / \partial \xi_i$ are the tangent vectors of the local basis and ξ_i are the convective coordinates.

Relative slip between a slave point and a deformable master surface

V.A. Yastrebov

Lecture 6

38/186

Relative sliding: example

Consider a one-dimensional example:

P is a projection of *A* on segment $B\overline{C}$.

 $x_P = \xi x_C + (1 - \xi) x_B$ (1)

Velocity of the projection point

$$\dot{x}_{P} = \underbrace{\xi \dot{x}_{C} + (1 - \xi) \dot{x}_{B}}_{\frac{\partial x_{P}}{\partial t}} + \underbrace{(x_{C} - x_{B}) \dot{\xi}}_{\frac{\partial x_{P}}{\partial \xi} \dot{\xi}}$$

Substract the velocity of point x_P for fixed ξ

 $v_t = \dot{x}_P - \frac{\partial x_P}{\partial t} = (x_C - x_B)\dot{\xi} = \frac{\partial x}{\partial \xi}\dot{\xi}$

Compute tangential slip increment

 $\Delta g_t^{n+1} = \left. \frac{\partial x}{\partial \xi} \right|_{\xi^n} \left(\xi^{n+1} - \xi^n \right)$

Relative sliding: example

Consider a one-dimensional example:

P is a projection of *A* on segment $B\overline{C}$.

 $x_P = \xi x_C + (1 - \xi) x_B$ (1)

Velocity of the projection point

$$\dot{x}_P = \underbrace{\xi \dot{x}_C + (1 - \xi) \dot{x}_B}_{\frac{\partial x_P}{\partial t}} + \underbrace{(x_C - x_B) \dot{\xi}}_{\frac{\partial x_P}{\partial \xi} \dot{\xi}}$$

Substract the velocity of point x_P for fixed ξ

 $v_t = \dot{x}_P - \frac{\partial x_P}{\partial t} = (x_C - x_B)\dot{\xi} = \frac{\partial x}{\partial \xi}\dot{\xi}$

Compute tangential slip increment $\Delta g_t^{n+1} = \left. \frac{\partial x}{\partial \xi} \right|_{\xi^n} (\xi^{n+1} - \xi^n)$

the change of another vector field

Amontons-Coulomb's friction

- **No contact** g > 0, $\sigma_n = 0$
- Stick |<u>v</u>_t| = 0 Inside slip surface/Coulomb's cone

 $f = |\underline{\sigma}_t| - \mu |\sigma_n| < 0$

- Slip $|\underline{v}_t| > 0$ On slip surface / Coulomb's cone
 - $f = |\underline{\sigma}_t| \mu |\sigma_n| = 0$
- Complementary condition One is zero another one is not or vice versa

 $|\underline{\boldsymbol{v}}_t|\left(|\underline{\boldsymbol{\sigma}}_t|-\boldsymbol{\mu}|\boldsymbol{\sigma}_n|\right)=0$

Direction of friction Shear and sliding are collinear

 $\underline{v}_t \parallel \underline{\sigma}_t$

Amontons-Coulomb's friction

- **No contact** g > 0, $\sigma_n = 0$
- Stick |<u>v</u>_t| = 0 Inside slip surface/Coulomb's cone

 $f = |\underline{\sigma}_t| - \mu |\sigma_n| < 0$

- Slip $|\underline{v}_t| > 0$ On slip surface/Coulomb's cone $f = |\sigma_t| - \mu |\sigma_n| = 0$
- **Complementary condition** One is zero another one is not or vice versa

 $|\underline{\boldsymbol{v}}_t|\left(|\underline{\boldsymbol{\sigma}}_t|-\boldsymbol{\mu}|\boldsymbol{\sigma}_n|\right)=0$

Direction of friction Shear and sliding are collinear

 $\underline{v}_t \parallel \underline{\sigma}_t$

Amontons-Coulomb's friction

- **No contact** g > 0, $\sigma_n = 0$
- Stick |<u>v</u>_t| = 0 Inside slip surface/Coulomb's cone

 $f = |\underline{\sigma}_t| - \mu |\sigma_n| < 0$

- Slip $|\underline{v}_t| > 0$ On slip surface / Coulomb's cone
 - $f = |\underline{\sigma}_t| \mu |\sigma_n| = 0$
- **Complementary condition** One is zero another one is not or vice versa

 $|\underline{\boldsymbol{v}}_t|\left(|\underline{\boldsymbol{\sigma}}_t|-\mu|\sigma_n|\right)=0$

Direction of friction Shear and sliding are collinear

 $\underline{v}_t \parallel \underline{\sigma}_t$

Scheme of 2D frictional contact

Scheme of 3D frictional contact

$$|\underline{v}_t| \ge 0, \quad |\underline{\sigma}_t| - \mu |\sigma_n| \le 0, \quad |\underline{v}_t| \left(|\underline{\sigma}_t| - \mu |\sigma_n| \right) = 0, \quad \frac{\underline{\sigma}_t}{|\underline{\sigma}_t|} = -\frac{\underline{v}_t}{|\underline{v}_t|}$$

More friction laws

• μ_s static and μ_k kinetic coefficients of friction.

• Rate and state friction law

- Rate $v_t = |\underline{v}_t|$ relative slip velocity
- State $\theta \approx$ internal time
- Dieterich–Ruina–Perrin (1979, 83, 95)
 Frictional resistance

 $\sigma_t^c = |\sigma_n| \left[\mu_s + b\theta + a \ln(v_t/v_0) \right]$

Evolution of the state variable

 $\dot{\theta} = -\frac{v_t}{L} \left[\theta + \ln \left(\frac{v_t}{v_0} \right) \right]$

- Prakash-Clifton friction law (1992,2000)
 - Viscous type evolution of frictional resistance σ_t

$$\bullet \dot{\sigma}_t = -\frac{v_t}{L}(\sigma_t + \mu \sigma_n)$$

Rate and state friction law

Prakash-Clifton regularization

• Rate and state friction law

• Rate and state friction law

- Rate $v_t = |\underline{v}_t|$ relative slip velocity
- State $\theta \approx$ internal time
- Dieterich–Ruina–Perrin (1979, 83, 95)
 Frictional resistance

 $\sigma_t^c = |\sigma_n| \left[\mu_s + b\theta + a \ln(v_t/v_0) \right]$

Evolution of the state variable

 $\dot{\theta} = -\frac{v_t}{L} \left[\theta + \ln \left(\frac{v_t}{v_0} \right) \right]$

- Prakash-Clifton friction law (1992,2000)
 - Viscous type evolution of frictional resistance σ_t

$$\bullet \dot{\sigma}_t = -\frac{v_t}{L}(\sigma_t + \mu \sigma_n)$$

Rate and state friction law

Prakash-Clifton regularization

• Prakash-Clifton friction law (1992,2000)

• Prakash-Clifton friction law (1992,2000)

Towards a weak form

• Balance of momentum and boundary conditions

 $\nabla \cdot \underline{\underline{\sigma}} + \underline{\underline{f}}_v = 0 \text{ in } \Omega = \Omega_1 \cup \Omega_2 + B.C.$

Two solids in contact

• Balance of momentum and boundary conditions

$$\nabla \cdot \underline{\underline{\sigma}} + f_v = 0 \text{ in } \Omega = \Omega_1 \cup \Omega_2 + \text{B.C.}$$

• Balance of virtual works

$$\int_{\partial\Omega} \underline{n} \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\underline{u}} \, d\Gamma \, \left| + \int_{\Omega} \left[\underline{f}_{v} \cdot \delta \underline{\underline{u}} - \underline{\underline{\sigma}} \cdot \cdot \delta \nabla \underline{\underline{u}} \right] d\Omega = 0$$

Two solids in contact

• Balance of momentum and boundary conditions

$$\nabla \cdot \underline{\underline{\sigma}} + \underline{f}_v = 0 \quad \text{in } \Omega = \Omega_1 \cup \Omega_2 \quad + \text{B.C.}$$

• Balance of virtual works

$$\int_{\partial\Omega} \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\underline{u}} \, d\Gamma =$$

$$\int_{\overline{\Gamma}_{c}^{1}} \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\underline{\rho}} d\overline{\Gamma}_{c}^{1} + \int_{\overline{\Gamma}_{c}^{2}} [\underline{\cdot}] \underline{\underline{\sigma}} \cdot \delta \underline{\underline{r}} d\overline{\Gamma}_{c}^{2} + \int_{\Gamma_{f}} \underline{\underline{\sigma}}_{0} \cdot \delta \underline{\underline{u}} d\Gamma_{f}$$

Two solids in contact

• Balance of momentum and boundary conditions

$$\nabla \cdot \underline{\underline{\sigma}} + \underline{f}_v = 0 \quad \text{in } \Omega = \Omega_1 \cup \Omega_2 \quad + \text{B.C.}$$

• Balance of virtual works

$$\int_{\partial\Omega} \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\underline{u}} \, d\Gamma \implies$$

$$\int_{\overline{\Gamma}_{c}^{1}} \underline{n} \cdot \underline{\underline{\sigma}} \cdot \underline{\delta} \underline{\rho} \, d\overline{\Gamma}_{c}^{1} + \int_{\overline{\Gamma}_{c}^{2}} [\underline{\cdot}] \underline{\underline{\sigma}} \cdot \underline{\delta} \underline{\underline{r}} \, d\overline{\Gamma}_{c}^{2} =$$

$$= \int_{\overline{\Gamma}_{c}^{1}} \underline{n} \cdot \underline{\underline{\sigma}} \cdot \delta(\underline{\underline{\rho}} - \underline{\underline{r}}) d\overline{\Gamma}_{c}^{1} = \int_{\overline{\Gamma}_{c}^{1}} \left(\sigma_{n} \delta g_{n} + \sigma_{t}^{T} \delta \xi \right) d\overline{\Gamma}_{c}^{1}$$

Two solids in contact

• Balance of momentum and boundary conditions

$$\nabla \cdot \underline{\underline{\sigma}} + \underline{f}_v = 0 \quad \text{in } \Omega = \Omega_1 \cup \Omega_2 \quad + \text{B.C.}$$

• Balance of virtual works

$$\int_{\partial\Omega} \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot \delta \underline{\underline{u}} \, d\Gamma \implies$$

$$\int_{\overline{\Gamma}^1_c} \underline{n} \cdot \underline{\underline{\sigma}} \cdot \underline{\delta} \underline{\underline{\rho}} d\overline{\Gamma}^1_c + \int_{\overline{\Gamma}^2_c} \underline{\underline{\sigma}} \cdot \underline{\delta} \underline{\underline{r}} d\overline{\Gamma}^2_c =$$

Two solids in contact

$$= \int_{\overline{\Gamma}_{c}^{1}} \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot \delta(\underline{\underline{\rho}} - \underline{\underline{r}}) d\overline{\Gamma}_{c}^{1} = \int_{\overline{\Gamma}_{c}^{1}} \left(\sigma_{n} \delta g_{n} + \underline{\sigma}_{t}^{T} \delta \underline{\xi} \right) d\overline{\Gamma}_{c}^{1}$$
$$\int_{\Omega} \underline{\underline{\sigma}} \cdot \delta \nabla \underline{\underline{u}} d\Omega + \underbrace{\int_{\overline{\Gamma}_{c}^{1}} \left(\sigma_{n} \delta g_{n} + \underline{\sigma}_{t}^{T} \delta \underline{\xi} \right) d\overline{\Gamma}_{c}^{1}}_{Ci} = \int_{\Gamma_{f}} \underline{\underline{\sigma}}_{0} \cdot \delta \underline{\underline{u}} d\Gamma + \int_{\Omega} \underline{\underline{f}}_{v} \cdot \delta \underline{\underline{u}} d\Omega$$
$$\underbrace{Contact term}$$

Lecture 6

• Balance of momentum and boundary conditions

$$\nabla \cdot \underline{\underline{\sigma}} + f_v = 0 \text{ in } \Omega = \Omega_1 \cup \Omega_2 + B.C.$$

• Balance of virtual works 🖤

Two solids in contact

• Functional space

 $\delta \underline{u}, \underline{u} \in \mathbb{H}^1(\Omega)$ Hilbert space of the first order (first derivate is square integrable) and $\delta \underline{u}, \underline{u}$ satisfy boundary conditions

• Balance of momentum and boundary conditions

$$\nabla \cdot \underline{\underline{\sigma}} + f_v = 0 \text{ in } \Omega = \Omega_1 \cup \Omega_2 + B.C.$$

• Balance of virtual works 🖤

• Functional subspace

 $\delta \underline{u}, \underline{u} \in \mathbb{H}^1(\Omega)$ Hilbert space of the first order (first derivate is square integrable) and $\delta \underline{u}, \underline{u}$ satisfy boundary conditions and contact conditions, so we do optimization on a (potentially nonconvex) subset of $\mathbb{H}^1(\Omega)$.

- Optimization problem for $F : \mathbb{V} \to \mathbb{R}$
- Find $u \in \mathbb{V}$ s.t. $\forall v \in \mathbb{V} : F(u) \le F(v)$
- If $F \in C^1$ is convex then such minimizer u is a stationary point $F'|_u = 0$

- Optimization problem for $F : \mathbb{V} \to \mathbb{R}$
- Find $u \in \mathbb{V}$ s.t. $\forall v \in \mathbb{V} : F(u) \le F(v)$
- If $F \in C^1$ is convex then such minimizer u is a stationary point $F'|_u = 0$
- However, finding minimizer of *F* on a subset $\mathbb{K} \subset \mathbb{V}$ changes the story

- Optimization problem for $F : \mathbb{V} \to \mathbb{R}$
- Find $u \in \mathbb{V}$ s.t. $\forall v \in \mathbb{V} : F(u) \le F(v)$
- If $F \in C^1$ is convex then such minimizer u is a stationary point $F'|_u = 0$
- However, finding minimizer of *F* on a subset $\mathbb{K} \subset \mathbb{V}$ changes the story
- If \mathbb{K} is convex, then if $u \in \mathbb{K}$ is a minimizer, $\forall v \in \mathbb{K}, \theta \in [0, 1] : F(u) \le F(u + \theta(v - u))$

- Optimization problem for $F : \mathbb{V} \to \mathbb{R}$
- Find $u \in \mathbb{V}$ s.t. $\forall v \in \mathbb{V} : F(u) \le F(v)$
- If $F \in C^1$ is convex then such minimizer u is a stationary point $F'|_u = 0$
- However, finding minimizer of *F* on a subset $\mathbb{K} \subset \mathbb{V}$ changes the story
- If \mathbb{K} is convex, then if $u \in \mathbb{K}$ is a minimizer, $\forall v \in \mathbb{K}, \theta \in [0, 1] : F(u) \le F(u + \theta(v - u))$
- In the limit

$$\lim_{\theta \to 0} \frac{F(u + \theta(v - u)) - F(u)}{\theta} \ge 0$$

- Optimization problem for $F : \mathbb{V} \to \mathbb{R}$
- Find $u \in \mathbb{V}$ s.t. $\forall v \in \mathbb{V} : F(u) \le F(v)$
- If $F \in C^1$ is convex then such minimizer u is a stationary point $F'|_u = 0$
- However, finding minimizer of *F* on a subset $\mathbb{K} \subset \mathbb{V}$ changes the story
- If \mathbb{K} is convex, then if $u \in \mathbb{K}$ is a minimizer, $\forall v \in \mathbb{K}, \theta \in [0, 1] : F(u) \le F(u + \theta(v - u))$
- In the limit

$$\lim_{\theta \to 0} \frac{F(u + \theta(v - u)) - F(u)}{\theta} = F'(u)(v - u) \ge 0$$

- Optimization problem for $F : \mathbb{V} \to \mathbb{R}$
- Find $u \in \mathbb{V}$ s.t. $\forall v \in \mathbb{V} : F(u) \le F(v)$
- If $F \in C^1$ is convex then such minimizer u is a stationary point $F'|_u = 0$
- However, finding minimizer of *F* on a subset $\mathbb{K} \subset \mathbb{V}$ changes the story
- If \mathbb{K} is convex, then if $u \in \mathbb{K}$ is a minimizer, $\forall v \in \mathbb{K}, \theta \in [0, 1] : F(u) \le F(u + \theta(v - u))$
- In the limit

$$\lim_{\theta \to 0} \frac{F(u + \theta(v - u)) - F(u)}{\theta} = F'(u)(v - u) \ge 0$$

• Variational inequality for minimizer $u \in \mathbb{K} \subset \mathbb{V}$:

$$F'(u)(v-u) \geq 0, \quad \forall v \in \mathbb{K}$$

Example of variational inequality

Minimize F(x) for $x \in \mathbb{K} \subset \mathbb{R}$, then the minimizer u satisfies

 $F'(u)(v-u) \ge 0, \quad \forall v \in \mathbb{K}$

Lecture 6

Variational inequality in contact

- Since $g_n \sigma_n = 0$, then $\sigma_n \delta g_n + \delta \sigma_n g_n = 0$
- The corresponding variational inequality:

$$\int_{\Omega} \underline{\underline{\sigma}} \cdot \cdot \delta \nabla \underline{\underline{u}} \, d\Omega + \int_{\overline{\Gamma}_{c}^{1}} \mathcal{D}_{t}^{T} \delta \underline{\underline{\zeta}} \, d\overline{\Gamma}_{c}^{1} \geq \int_{\Gamma_{f}} \underline{\underline{\sigma}}_{0} \cdot \delta \underline{\underline{u}} \, d\Gamma + \int_{\Omega} \underline{f}_{v} \cdot \delta \underline{\underline{u}} \, d\Omega, \quad \underline{\underline{u}} \in \mathbb{L}, \delta \underline{\underline{u}} \in \mathbb{K}$$

$$\mathbb{L} = \left\{ \underline{u} \in \mathbb{H}^{1}(\Omega) \mid \underline{u} = \underline{u}_{0} \text{ on } \Gamma_{u}, g_{n}(\underline{u}) \ge 0 \text{ on } \Gamma_{c} \right\}$$
$$\mathbb{K} = \left\{ \delta \underline{u} \in \mathbb{H}^{1}(\Omega) \mid \delta \underline{u} = 0 \text{ on } \Gamma_{u}, g_{n}(\underline{u} + \delta \underline{u}) \ge 0 \text{ on } \Gamma_{c} \right\}$$

Back to variational equality (unconstrained)

• Constrained minimization problem

$$\begin{split} \int_{\Omega} \underline{\underline{\sigma}} \cdot \cdot \delta \nabla \underline{\underline{u}} \, d\Omega + \int_{\overline{\Gamma}_{c}^{1}} \underbrace{\underline{\sigma}}_{t}^{T} \delta \underline{\underline{\zeta}} \, d\overline{\Gamma}_{c}^{1} \geq \int_{\Gamma_{f}} \underline{\underline{\sigma}}_{0} \cdot \delta \underline{\underline{u}} \, d\Gamma + \int_{\Omega} \underline{f}_{v} \cdot \delta \underline{\underline{u}} \, d\Omega, \quad \underline{\underline{u}} \in \mathbb{L}, \delta \underline{\underline{u}} \in \mathbb{K} \\ \mathbb{L} = \left\{ \underline{\underline{u}} \in \mathbb{H}^{1}(\Omega) \mid \underline{\underline{u}} = \underline{\underline{u}}_{0} \text{ on } \Gamma_{u}, \, g_{n}(\underline{\underline{u}}) \geq 0 \text{ on } \Gamma_{c} \right\} \\ \mathbb{K} = \left\{ \delta \underline{\underline{u}} \in \mathbb{H}^{1}(\Omega) \mid \delta \underline{\underline{u}} = 0 \text{ on } \Gamma_{u}, \, g_{n}(\underline{\underline{u}} + \delta \underline{\underline{u}}) \geq 0 \text{ on } \Gamma_{c} \right\} \end{split}$$

Back to variational equality (unconstrained)

Constrained minimization problem

$$\int_{\Omega} \underline{\underline{\sigma}} \cdot \cdot \delta \nabla \underline{\underline{u}} \, d\Omega + \int_{\overline{\Gamma}_{c}^{1}} \underbrace{\underline{\sigma}}_{t}^{T} \delta \underline{\underline{\xi}} \, d\overline{\Gamma}_{c}^{1} \geq \int_{\Gamma_{f}} \underline{\underline{\sigma}}_{0} \cdot \delta \underline{\underline{u}} \, d\Gamma + \int_{\Omega} \underline{f}_{v} \cdot \delta \underline{\underline{u}} \, d\Omega, \quad \underline{\underline{u}} \in \mathbb{L}, \delta \underline{\underline{u}} \in \mathbb{K}$$
$$\mathbb{L} = \left\{ \underline{\underline{u}} \in \mathbb{H}^{1}(\Omega) \mid \underline{\underline{u}} = \underline{\underline{u}}_{0} \text{ on } \Gamma_{u}, \, g_{n}(\underline{\underline{u}}) \geq 0 \text{ on } \Gamma_{c} \right\}$$
$$\mathbb{K} = \left\{ \delta \underline{\underline{u}} \in \mathbb{H}^{1}(\Omega) \mid \delta \underline{\underline{u}} = 0 \text{ on } \Gamma_{u}, \, g_{n}(\underline{\underline{u}} + \delta \underline{\underline{u}}) \geq 0 \text{ on } \Gamma_{c} \right\}$$

• Use optimization theory to convert to

$$\int_{\Omega} \underline{\underline{\sigma}} \cdot \cdot \delta \nabla \underline{\underline{u}} \, d\Omega + \int_{\Gamma_c^1} \underbrace{\mathbf{C}(\sigma_n, \sigma_t, g_n, \underline{\xi}, \delta \underline{\underline{u}})}_{\text{Contact term}^*} d\Gamma_c^1 = \int_{\Gamma_f} \underline{\underline{\sigma}}_0 \cdot \delta \underline{\underline{u}} \, d\Gamma + \int_{\Omega} \underline{f}_v \cdot \delta \underline{\underline{u}} \, d\Omega,$$

Unconstrained functional sub-spaces $\mathbb{L} = \left\{ \underline{u} \in \mathbb{H}^{1}(\Omega) \mid \underline{u} = \underline{u}_{0} \text{ on } \Gamma_{u} \right\}$ $\mathbb{K} = \left\{ \delta \underline{u} \in \mathbb{H}^{1}(\Omega) \mid \delta \underline{u} = 0 \text{ on } \Gamma_{u} \right\}$

Contact term^{*} is defined on the *potential contact zone* Γ_c^1 .

Optimization methods

Functional to be minimized $F(\mathbf{x})$ under constraint $g(\mathbf{x}) \ge 0$

- Penalty method
- Lagrange multipliers method
- Augmented Lagrangian method

Functional to be minimized $F(\mathbf{x})$ under constraint $g(\mathbf{x}) \ge 0$

Penalty method

New functional

 $F_p(\mathbf{x}) = F(\mathbf{x}) + \left[\epsilon \left\langle -g(\mathbf{x}) \right\rangle^2 \right] = F(\mathbf{x}) + \begin{cases} 0, & \text{if } g(\mathbf{x}) \ge 0 & non-contact \\ \epsilon g^2(\mathbf{x}), & \text{if } g(\mathbf{x}) < 0 & contact \end{cases}$

where ϵ is the penalty parameter.

Stationary point must satisfy

 $\nabla F_p(\mathbf{x}) = \nabla F(\mathbf{x}) + 2\epsilon \left\langle -g(\mathbf{x}) \right\rangle \nabla g(\mathbf{x}) = 0$

• Solution **tends** to the precise solution as $\epsilon \to \infty$

- Lagrange multipliers method
- Augmented Lagrangian method

Macaulay brackets $\langle x \rangle = \begin{cases} x, & \text{if } x \ge 0 \\ 0, & \text{otherwise} \end{cases}$

Functional to be minimized $F(\mathbf{x})$ under constraint $g(\mathbf{x}) \ge 0$

- Penalty method $F_p(\mathbf{x}) = F(\mathbf{x}) + \epsilon \langle -g(\mathbf{x}) \rangle^2$
- Lagrange multipliers method
 - New functional called Lagrangian

 $\mathcal{L}(\mathbf{x},\lambda) = F(\mathbf{x}) + \lambda g(\mathbf{x})$

Saddle point problem

$$\min_{x} \max_{\lambda} \{\mathcal{L}(\mathbf{x}, \lambda)\} \longrightarrow \mathbf{x}^* \longleftarrow \min_{g(\mathbf{x}) \ge 0} \{F(\mathbf{x})\}$$

Stationary point

$$\nabla_{\mathbf{x},\lambda}\mathcal{L} = \begin{bmatrix} \nabla_{\mathbf{x}}F(\mathbf{x}) + \lambda\nabla_{\mathbf{x}}g(\mathbf{x}) \\ g(\mathbf{x}) \end{bmatrix} = 0 \text{ need to verify } \lambda \le 0$$

Augmented Lagrangian method

Macaulay brackets $\langle x \rangle = \begin{cases} x, & \text{if } x \ge 0 \\ 0, & \text{otherwise} \end{cases}$

Functional to be minimized $F(\mathbf{x})$ under constraint $g(\mathbf{x}) \ge 0$

- Penalty method $F_p(\mathbf{x}) = F(\mathbf{x}) + \epsilon \langle -g(\mathbf{x}) \rangle^2$
- **Lagrange multipliers method** $\mathcal{L}(\mathbf{x}, \lambda) = F(\mathbf{x}) + \lambda g(\mathbf{x})$
- Augmented Lagrangian method [Hestnes 1969], [Powell 1969], [Glowinski & Le Tallec 1989], [Alart & Curnier 1991], [Simo & Laursen 1992]
 - New functional, augmented Lagrangian

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) \\ -\frac{1}{4\epsilon}\lambda^{2}, \end{cases}, & \text{if } \lambda + 2\epsilon g(\mathbf{x}) \leq 0, \text{ contact} \\ \text{if } \lambda + 2\epsilon g(\mathbf{x}) > 0, \text{ non-contact} \end{cases}$$

Stationary point

$$\nabla_{\mathbf{x},\lambda}\mathcal{L}_{a} = \begin{cases} \begin{bmatrix} \nabla_{\mathbf{x}}F(\mathbf{x}) + \lambda\nabla_{\mathbf{x}}g(\mathbf{x}) + 2\epsilon g(\mathbf{x})\nabla g(\mathbf{x}) \\ g(\mathbf{x}) \end{bmatrix} = 0, & \text{if contact} \\ \begin{bmatrix} \nabla_{\mathbf{x}}F(\mathbf{x}) \\ -\frac{\lambda}{\epsilon} \end{bmatrix} = 0, & \text{if non-contact} \end{cases}$$

Macaulay brackets $\langle x \rangle = \begin{cases} x, & \text{if } x \ge 0 \\ 0, & \text{otherwise} \end{cases}$

V.A. Yastrebov

Lecture 6
Optimization methods: example

Optimization methods: example

$$F(x) = x^2 + 2x + 1, \ g(x) = x \ge 0, \ x^* = 0$$

Penalty method

$$F_p(x) = F(x) + \epsilon \langle -g(x) \rangle^2$$

Advantages ©

- simple physical interpretation
- simple implementation
- no additional degrees of freedom
- "mathematically" smooth functional

Drawbacks 🙁

- practically non-smooth functional
- solution is not exact:
 - too small penalty → large penetration
 - too large penalty → ill-conditioning of the tangent matrix
- user has to choose penalty e properly or automatically and/or adapt during convergence

Lagrange multipliers method: example

$$F(x) = x^2 + 2x + 1, \quad g(x) = x \ge 0, \quad x^* = 0$$

Lagrange multipliers method

 $\mathcal{L}(x,\lambda) = F(x) + \boxed{\lambda g(x)} \rightarrow \text{Saddle point} \rightarrow \min_{x} \max_{\lambda} \mathcal{L}(x,\lambda)$ Need to check that $\lambda \leq 0$

Lagrange multipliers method: example

$$F(x) = x^{2} + 2x + 1, \quad g(x) = x \ge 0, \quad x^{*} = 0$$

Lagrange multipliers method

 $\mathcal{L}(x,\lambda) = F(x) + \boxed{\lambda g(x)} \rightarrow \text{Saddle point} \rightarrow \min_{x} \max_{\lambda} \mathcal{L}(x,\lambda)$ Need to check that $\lambda \leq 0$

Advantages 🙂

- exact solution
- no adjustable parameters

Drawbacks 🙁

- Lagrangian is not smooth
- additional degrees of freedom
- not fully unconstrained: $\lambda \leq 0$

$$F(x) = x^{2} + 2x + 1, \quad g(x) = x \ge 0, \quad x^{*} = 0$$

Augmented Lagrangian method

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) + \epsilon g^{2}(\mathbf{x}), & \text{if } \lambda + 2\epsilon g(\mathbf{x}) \leq 0, \text{ contact} \\ -\frac{1}{4\epsilon}\lambda^{2}, & \text{if } \lambda + 2\epsilon g(\mathbf{x}) > 0, \text{ non-contact} \end{cases}$$

Yellow line separates contact and non-contact regions

$$F(x) = x^{2} + 2x + 1, \quad g(x) = x \ge 0, \quad x^{*} = 0$$

Augmented Lagrangian method

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) + \epsilon g^{2}(\mathbf{x}), & \text{if } \lambda + 2\epsilon g(\mathbf{x}) \leq 0, \text{ contact} \\ -\frac{1}{4\epsilon}\lambda^{2}, & \text{if } \lambda + 2\epsilon g(\mathbf{x}) > 0, \text{ non-contact} \end{cases}$$

Yellow line separates contact and non-contact regions

$$F(x) = x^{2} + 2x + 1, \quad g(x) = x \ge 0, \quad x^{*} = 0$$

Augmented Lagrangian method

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) + \epsilon g^{2}(\mathbf{x}), & \text{if } \lambda + 2\epsilon g(\mathbf{x}) \leq 0, \text{ contact} \\ -\frac{1}{4\epsilon}\lambda^{2}, & \text{if } \lambda + 2\epsilon g(\mathbf{x}) > 0, \text{ non-contact} \end{cases}$$

Yellow line separates contact and non-contact regions

$$F(x) = x^{2} + 2x + 1, \quad g(x) = x \ge 0, \quad x^{*} = 0$$

Augmented Lagrangian method

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) + \epsilon g^{2}(\mathbf{x}), & \text{if } \lambda + 2\epsilon g(\mathbf{x}) \leq 0, \text{ contact} \\ -\frac{1}{4\epsilon}\lambda^{2}, & \text{if } \lambda + 2\epsilon g(\mathbf{x}) > 0, \text{ non-contact} \end{cases}$$

Advantages ©

- exact solution
- smoother functional (!)
- fully unconstrained

Drawbacks 🙁

- additional degrees of freedom
- quite sensitive to parameter ϵ
- need to adjust *e* during convergence

Augmented Lagrangian with Uzawa algorithm

Augmented Lagrangian method

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) \\ -\frac{1}{4\epsilon}\lambda^{2}, \end{cases} + \varepsilon g^{2}(\mathbf{x}), \end{cases}$$

if $\lambda + 2\epsilon g(\mathbf{x}) \le 0$, contact if $\lambda + 2\epsilon g(\mathbf{x}) > 0$, non-contact

Fix $\lambda = \lambda_0$

 $\mathcal{L}_a(\mathbf{x},\lambda) = F(\mathbf{x}) + \lambda_0 g(\mathbf{x}) + \epsilon g^2(\mathbf{x}), \text{ if } \lambda_0 + 2\epsilon g(\mathbf{x}) \le 0$

Converge with respect to *x*

Augmented Lagrangian with Uzawa algorithm

Augmented Lagrangian method

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) \\ -\frac{1}{4\epsilon}\lambda^{2}, \end{cases} & \text{if } \lambda + 2\epsilon g(\mathbf{x}) \leq 0, \text{ contact} \\ \text{if } \lambda + 2\epsilon g(\mathbf{x}) > 0, \text{ non-contact} \end{cases}$$

Fix $\lambda = \lambda_0$

 $\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + [\lambda_{0} + \epsilon g(\mathbf{x})] g(\mathbf{x}), \text{ if } \lambda_{0} + 2\epsilon g(\mathbf{x}) \leq 0$

Converge with respect to *x* and update $\lambda_{i+1} = \lambda_i + \epsilon g(\mathbf{x})$

Augmented Lagrangian with Uzawa algorithm

Augmented Lagrangian method

$$\mathcal{L}_{a}(\mathbf{x},\lambda) = F(\mathbf{x}) + \begin{cases} \lambda g(\mathbf{x}) + \epsilon g^{2}(\mathbf{x}), & \text{if } \lambda + 2\epsilon g(\mathbf{x}) \leq 0, \text{ contact} \\ -\frac{1}{4\epsilon}\lambda^{2}, & \text{if } \lambda + 2\epsilon g(\mathbf{x}) > 0, \text{ non-contact} \end{cases}$$

Fix $\lambda = \lambda_0$ Converge with respect to *x* and update $\lambda_{i+1} = \lambda_i + \epsilon g(\mathbf{x})$

 $\mathcal{L}_a(\mathbf{x},\lambda) = F(\mathbf{x}) + \left[\lambda_1 + \epsilon g(\mathbf{x})\right] g(\mathbf{x}), \text{ if } \lambda_1 + 2\epsilon g(\mathbf{x}) \leq 0$

Friction

Friction

"The scream"

V.A. Yastrebov

Friction: methods

- Optimization methods: penalty or augmented Lagrangian method
- Note that the method of Lagrange multipliers cannot be employed here
- Return mapping algorithm for penalty
- Analogy with elasto-plastic formulation problem^[1]

[1] Curnier "A theory of friction" Int J Solids Struct 20 (1984)

Friction: Return mapping algorithm

Return mapping algorithm in 2D for the penalty method

[1] Simo J.C. and Hughes T.J.. Computational inelasticity. Springer (2006)

Friction: Return mapping algorithm

Return mapping algorithm in 2D for the penalty method

[2] Curnier A. A theory of friction. International Journal of Solids and Structures 20 (1984)

Application to contact problems: weak form

$$\int_{\Omega} \underline{\underline{\sigma}} \cdot \delta \nabla \underline{\underline{u}} \, d\Omega + \int_{\Gamma_c^1} \underbrace{\mathbb{C}}_{\text{Contact term}} d\Gamma_c^1 = \int_{\Gamma_f} \underline{\underline{\sigma}}_0 \cdot \delta \underline{\underline{u}} \, d\Gamma + \int_{\Omega} \underline{\underline{f}}_v \cdot \delta \underline{\underline{u}} \, d\Omega,$$
$$\underline{\underline{u}} \in \mathbb{L}, \delta \underline{\underline{u}} \in \mathbb{K}, \qquad \mathbb{L} = \left\{ \underline{\underline{u}} \in \mathbb{H}^1(\Omega) \mid \underline{\underline{u}} = \underline{\underline{u}}_0 \text{ on } \Gamma_u \right\},$$
$$\mathbb{K} = \left\{ \delta \underline{\underline{u}} \in \mathbb{H}^1(\Omega) \mid \delta \underline{\underline{u}} = 0 \text{ on } \Gamma_u \right\}$$

Penalty method

Pressure:
$$\sigma_n = \epsilon g_n$$
, Shear: $\underline{\sigma}_t = \begin{cases} \epsilon \underline{g}_{t'} & \text{if stick } |\sigma_t| < \mu |\sigma_n| \\ \mu \epsilon g_n \delta \underline{g}_t / |\delta \underline{g}_t|, & \text{if slip } |\sigma_t| = \mu |\sigma_n| \end{cases}$

Contact term

$$C = C(g_n, \underline{g}_t, \delta g_n, \delta \underline{g}_t) = \sigma_n \delta g_n + \underline{\sigma}_t \cdot \delta \underline{g}_t$$

Application to contact problems: weak form

$$\int_{\Omega} \underline{\underline{\sigma}} \cdot \delta \nabla \underline{\underline{u}} \, d\Omega + \int_{\Gamma_c^1} \underbrace{\mathbb{C}}_{\text{Contact term}} d\Gamma_c^1 = \int_{\Gamma_f} \underline{\underline{\sigma}}_0 \cdot \delta \underline{\underline{u}} \, d\Gamma + \int_{\Omega} \underline{\underline{f}}_v \cdot \delta \underline{\underline{u}} \, d\Omega,$$
$$\underline{\underline{u}} \in \mathbb{L}, \delta \underline{\underline{u}} \in \mathbb{K}, \qquad \mathbb{L} = \left\{ \underline{\underline{u}} \in \mathbb{H}^1(\Omega) \mid \underline{\underline{u}} = \underline{\underline{u}}_0 \text{ on } \Gamma_u \right\},$$
$$\mathbb{K} = \left\{ \delta \underline{\underline{u}} \in \mathbb{H}^1(\Omega) \mid \delta \underline{\underline{u}} = 0 \text{ on } \Gamma_u \right\}$$

Augmented Lagrangian method

Contact term

$$C = C(g_n, \underline{g}_t, \lambda_n, \underline{\lambda}_t, \delta g_n, \delta \underline{g}_t, \delta \lambda_n, \delta \underline{\lambda}_t)$$

$$C = \begin{cases} -\frac{1}{\epsilon} \left(\lambda_n \delta \lambda_n - \underline{\lambda}_t \cdot \delta \underline{\lambda}_t \right), & \text{if non-contact } \lambda_n + \epsilon g_n \ge 0 \\ \hat{\lambda}_n \delta g_n + g_n \delta \lambda_n + \underline{\lambda}_t \cdot \delta \underline{g}_t + \underline{g}_t \cdot \delta \underline{\lambda}_t, & \text{if stick } |\underline{\lambda}_t| \le \mu |\hat{\sigma}_n| \\ \hat{\lambda}_n \delta g_n + g_n \delta \lambda_n + \mu \hat{\sigma}_n - \mu \hat{\sigma}_n \frac{\underline{\lambda}_t}{|\underline{\lambda}_t|} \cdot \delta \underline{g}_t - \frac{1}{\epsilon} \left(\lambda_t + \mu \hat{\sigma}_n \frac{\underline{\lambda}_t}{|\underline{\lambda}_t|} \right) \cdot \delta \underline{\lambda}_t, & \text{if slip } |\underline{\lambda}_t| \ge \mu |\hat{\sigma}_n| \\ \text{where } \hat{\lambda}_n = \lambda_n + \epsilon g_n \text{ and } \underline{\lambda}_t = \underline{\lambda}_t + \epsilon \underline{g}_t. \end{cases}$$

V.A. Yastrebov

Lecture 6

96/186

Application to contact problems: linearization

• Non-linear equation

$$R(\underline{u},\underline{f}) = 0$$

- Contains $\delta g_n, \delta g_{\mu}$
- Use Newton-Raphson method
- Initial state at step *i*

$$R(\underline{u}^i, \underline{f}^i) = 0$$

• Should be also satisfied at step i + 1

$$R(\underline{u}^{i+1}, \underline{f}^{i+1}) = R(\underline{u}^{i} + \delta \underline{u}, \underline{f}^{i+1}) = 0$$

Linearize

$$R(\underline{u}^{i} + \delta \underline{u}, \underline{f}^{i+1}) = R(\underline{u}^{i}, \underline{f}^{i+1}) + \frac{\partial R(\underline{u})}{\partial \underline{u}} \delta \underline{u} = 0$$

• Finally

$$\delta \underline{u} = - \underbrace{\left[\frac{\partial R(\underline{u})}{\partial \underline{u}}\right]^{-1}}_{\text{contains } \Delta \delta g_n, \, \Delta \delta g_i} R(\underline{u}^i)$$

• NB: Contact problem does not satisfy conditions of Kantorovich theorem on the convergence of Newton's method.

V.A. Yastrebov

Variation of geometrical quantities

Normal gap

• First variation enters in the residual vector:

 $\delta g_n = \underline{n} \cdot (\delta \underline{r}_s - \delta \underline{\rho})$

Second variation enters in the tangent matrix:

$$\Delta \delta g_n = -\underline{\mathbf{n}} \cdot \left(\delta \frac{\partial \underline{\boldsymbol{\rho}}}{\partial \underline{\xi}}^T \Delta \underline{\xi} + \Delta \frac{\partial \underline{\boldsymbol{\rho}}}{\partial \underline{\xi}}^T \delta \underline{\xi} \right) - \Delta \underline{\xi}^T \underbrace{\mathbb{H}}_{\Xi} \delta \underline{\xi} + g_n \left(\Delta \underline{\xi}^T \underbrace{\mathbb{H}}_{\Xi} + \underline{\mathbf{n}} \cdot \Delta \frac{\partial \underline{\boldsymbol{\rho}}}{\partial \underline{\xi}}^T \right) \underbrace{\mathbb{A}}_{\Xi} \left(\underline{\mathbf{n}} \cdot \delta \frac{\partial \underline{\boldsymbol{\rho}}}{\partial \underline{\xi}} + \underbrace{\mathbb{H}}_{\Xi} \delta \underline{\xi} \right)$$

Variation of geometrical quantities

Convective coordinate of the projection

• First variation enters in the residual vector:

$$\delta_{\tilde{z}} = \left[\underbrace{\mathbf{A}}_{\approx} - g_n \underbrace{\mathbf{H}}_{\approx} \right]^{-1} \left(\frac{\partial \underline{\rho}}{\partial \underline{z}} \cdot (\delta \underline{\mathbf{r}}_s - \delta \underline{\rho}) + g_n \underline{\mathbf{n}} \cdot \delta \frac{\partial \underline{\rho}}{\partial \underline{z}} \right)$$

Second variation enters in the tangent matrix:

$$\begin{split} \Delta \delta \, & \stackrel{\circ}{\underset{\sim}{\simeq}} = (g_n \, \underset{\sim}{\underset{\sim}{\boxplus}} - \, \underset{\sim}{\underset{\sim}{\circledast}})^{-1} \left\{ \frac{\partial \rho}{\partial \underset{\sim}{\underset{\approx}{\varepsilon}}} \cdot \left(\delta \frac{\partial \rho}{\partial \underset{\sim}{\underset{\approx}{\xi}}}^T \Delta \, \underset{\sim}{\underset{\sim}{\varepsilon}} + \Delta \frac{\partial \rho}{\partial \underset{\sim}{\underset{\approx}{\xi}}}^T \delta \, \underset{\sim}{\underset{\sim}{\approx}} \right) + \Delta \, \underset{\sim}{\underset{\sim}{\underset{\sim}{\simeq}}}^T \left(\frac{\partial \rho}{\partial \underset{\sim}{\underset{\approx}{\xi}}} \cdot \frac{\partial^2 \rho}{\partial \underset{\approx}{\underset{\approx}{\xi}}} \right) \delta \, \underset{\sim}{\underset{\sim}{\varepsilon}} - g_n \Delta \, \underset{\sim}{\underset{\sim}{\varepsilon}}^T \left(\frac{n}{\partial \underset{\sim}{\underset{\sim}{\vartheta}}} \cdot \frac{\partial \rho}{\partial \underset{\approx}{\underset{\approx}{\xi}}} \right) \delta \, \underset{\sim}{\underset{\sim}{\varepsilon}} + \Delta \, \underset{\sim}{\underset{\sim}{\vartheta}} \delta \, \underset{\sim}{\underset{\sim}{\varepsilon}} \right) - g_n \Delta \, \underset{\sim}{\underset{\sim}{\varepsilon}}^T \left(\underline{n} \cdot \frac{\partial \rho}{\partial \underset{\approx}{\underset{\approx}{\xi}}} \right) \delta \, \underset{\sim}{\underset{\sim}{\varepsilon}} + \left[g_n \left(\delta \frac{\partial \rho}{\partial \underset{\sim}{\underset{\approx}{\varepsilon}} + \frac{\partial^2 \rho}{\partial \underset{\approx}{\underset{\approx}{\xi}}} \right) \cdot \frac{\partial \rho}{\partial \underset{\approx}{\underset{\approx}{\xi}}} - \delta g_n \, \underset{\approx}{\underset{\approx}{\lg}} \right] \left(\underline{n} \cdot \delta \frac{\partial \rho}{\partial \underset{\approx}{\underset{\approx}{\varepsilon}} + \, \underset{\approx}{\underset{\approx}{\natural}} \delta \, \underset{\sim}{\underset{\approx}{\varepsilon}} \right) + \\ + \left[g_n \left(\Delta \frac{\partial \rho}{\partial \underset{\approx}{\underset{\approx}{\varepsilon}} + \frac{\partial^2 \rho}{\partial \underset{\approx}{\underset{\approx}{\xi}}} 2 \Delta \, \underset{\approx}{\underset{\approx}{\varepsilon}} \right) \cdot \frac{\partial \rho}{\partial \underset{\approx}{\underset{\approx}{\varepsilon}}} T \, \underset{\approx}{\underset{\sim}{\varepsilon}} - \Delta g_n \, \underset{\approx}{\underset{\approx}{\lg}} \right] \left(\underline{n} \cdot \delta \frac{\partial \rho}{\partial \underset{\approx}{\underset{\approx}{\varepsilon}}} + \, \underset{\approx}{\underset{\approx}{\natural}} \delta \, \underset{\approx}{\underset{\approx}{\varepsilon}} \right) \right\}$$

Example

- Use penalty method to enforce Dirichlet BC
- Use penalty method to enforce contact constraints
- First, detect contact elements
- Second, construct updated residual vector and tangent matrix

Detection

- Important and time consuming part
- With which master segment the slave node can/will come in contact?
- Need to know it in advance
- To reduce time:
 - Bounding boxes for the global search
 - Maximal distance of detection

Slave and master

- Important and time consuming part
- With which master segment the slave node can/will come in contact?
- Need to know it in advance
- To reduce time:
 - Bounding boxes for the global search
 - Maximal distance of detection

Slave in close zone

- Important and time consuming part
- With which master segment the slave node can/will come in contact?
- Need to know it in advance
- To reduce time:
 - Bounding boxes for the global search
 - Maximal distance of detection

NTS contact element

- Important and time consuming part
- With which master segment the slave node can/will come in contact?
- Need to know it in advance
- To reduce time:
 - Bounding boxes for the global search
 - Maximal distance of detection

Contact occurs

- Important and time consuming part
- With which master segment the slave node can/will come in contact?
- Need to know it in advance
- To reduce time:
 - Bounding boxes for the global search
 - Maximal distance of detection

- Important and time consuming part
- With which master segment the slave node can/will come in contact?
- Need to know it in advance
- To reduce time:
 - Bounding boxes for the global search
 - Maximal distance of detection

- Important and time consuming part
- With which master segment the slave node can/will come in contact?
- Need to know it in advance
- To reduce time:
 - Bounding boxes for the global search
 - Maximal distance of detection

- Important and time consuming part
- With which master segment the slave node can/will come in contact?
- Need to know it in advance
- To reduce time:
 - Bounding boxes for the global search
 - Maximal distance of detection

- Important and time consuming part
- With which master segment the slave node can/will come in contact?
- Need to know it in advance
- To reduce time:
 - Bounding boxes for the global search
 - Maximal distance of detection

- Important and time consuming part
- With which master segment the slave node can/will come in contact?
- Need to know it in advance
- To reduce time:
 - Bounding boxes for the global search
 - Maximal distance of detection

- Important and time consuming part
- With which master segment the slave node can/will come in contact?
- Need to know it in advance
- To reduce time:
 - Bounding boxes for the global search
 - Maximal distance of detection

nodes under surface

All-to-all approach

■ Node-to-segment detection ⇒ iterative solution

- Node-to-segment detection ⇒ iterative solution
- Detection based on the closest node:
 - 1 find the closest master
 node;
 - 2 find a projection on segments adjacent to this node.
- Widely accepted simplification
- Simple treatment of blind spots

- Node-to-segment detection ⇒ iterative solution
- Detection based on the closest node:
 - 1 find the closest master
 node;
 - 2 find a projection on segments adjacent to this node.
- Widely accepted simplification
- Simple treatment of blind spots

- Node-to-segment detection ⇒ iterative solution
- Detection based on the closest node:
 - 1 find the closest master
 node;
 - 2 find a projection on segments adjacent to this node.
- Widely accepted simplification
- Simple treatment of blind spots

■ "Blind" algorithm ⇒ one-by-one

- "Blind" algorithm ⇒ one-by-one
- Reduce the number of elements to check:
 - Detection bounding box
 intersection of master
 - and slave bounding boxes

- "Blind" algorithm ⇒ one-by-one
- Reduce the number of elements to check:
 - Detection bounding box

 intersection of master and slave bounding boxes

- "Blind" algorithm ⇒ one-by-one
- Reduce the number of elements to check:
 - Detection bounding box
 - intersection of master and slave bounding boxes
 - Distribute nodes in buckets (cells) ⇒ Bucket sort method [1]
 - For each slave node check only in several buckets

[1] Benson, Hallquist, 1991

- "Blind" algorithm ⇒ one-by-one
- Reduce the number of elements to check:
 - Detection bounding box
 - intersection of master and slave bounding boxes
 - Distribute nodes in buckets (cells) ⇒ Bucket sort method [1]
 - For each slave node check only in several buckets

[1] Benson, Hallquist, 1991

- Strong connection between:
 - finite element mesh *L*,
 - maximal detection distance L,
 - bucket's size 2L.
- User friendly algorithm
- Complexity *O*(*N*)

Relations between the master mesh, maximal detection distance and bucket's dimensions

Meshes for numerical tests

- Master-slave may be unknown in advance:
 - complex geometry;
 - large sliding;
 - self-contact.

Nickel foam microstructure

Microstructure of gecko's adhesive toe (adapted from Autumn Lab, Lewis& Clark Colledge, Portland, Oregon)

- Master-slave may be unknown in advance:
 - complex geometry;
 - large sliding;
 - self-contact.

Nickel foam microstructure

Microstructure of gecko's adhesive toe (adapted from Autumn Lab, Lewis& Clark Colledge, Portland, Oregon)

- Master-slave may be unknown in advance:
 - complex geometry;
 - large sliding;
 - self-contact.

Nickel foam microstructure

Microstructure of gecko's adhesive toe (adapted from Autumn Lab, Lewis& Clark Colledge, Portland, Oregon)

- Unknown master-slave
- The same algorithm
- Account of the nodal normals

Finite Element Analyses of post-buckling behavior of thin-walled structures (self-contact, finite strain plasticity) Zset/Zébulon

Parallelization

- Distributed memory computer architecture
- ⇒ Distributed contact surface
- No information about the entire contact surface

Parallelization

- Distributed memory computer architecture
- ⇒ Distributed contact surface
- No information about the entire contact surface

Detection by a single CPU

- SDMR Single Detection, Multiple Resolution
- Not optimal
- Simple data exchange

Detection by a single CPU

- SDMR Single Detection, Multiple Resolution
- Not optimal
- Simple data exchange

- MDMR Multiple Detection, Multiple Resolution
- More optimal
- Complex data exchange

- Global detection bounding box
- Split into N equal overlapping parts
- One bucket overlap
- Test

- Global detection bounding box
- Split into N equal overlapping parts
- One bucket overlap

Test

- Global detection bounding box
- Split into N equal overlapping parts
- One bucket overlap

- Global detection bounding box
- Split into N equal overlapping parts
- One bucket overlap

Methods based on the closest node detection are not robust

- find the closest master node
- find a projection on the adjacent segments
- Counterexample
- Closest segment is not always attached to the closest node
 - not regular meshtriangular mesh
- Carefull use or improvement

Methods based on the closest node detection are not robust

- find the closest master node
- find a projection on the adjacent segments
- Counterexample
- Closest segment is not always attached to the closest node
 - not regular mesh
 triangular mesh
 - triangular mesh
- Carefull use or improvement

Methods based on the closest node detection are not robust

- find the closest master node
- find a projection on the adjacent segments
- Counterexample
- Closest segment is not always attached to the closest node
 - not regular mesh
 triangular mesh
 - triangular mesh
- Carefull use or improvement

Methods based on the closest node detection are not robust

- find the closest master node
- find a projection on the adjacent segments
- Counterexample
- Closest segment is not always attached to the closest node
 - not regular meshtriangular mesh
- Carefull use or improvement

Methods based on the closest node detection are not robust

- find the closest master node
- find a projection on the adjacent segments
- Counterexample
- Closest segment is not always attached to the closest node
 - not regular mesh
 triangular mesh
 - triangular mesh
- Carefull use or improvement

Methods based on the closest node detection are not robust

- find the closest master node
- find a projection on the adjacent segments
- Counterexample
- Closest segment is not always attached to the closest node
 - not regular mesh
 triangular mesh
 - triangular mesh
- Carefull use or improvement

Methods based on the closest node detection are not robust

- find the closest master node
- find a projection on the adjacent segments
- Counterexample
- Closest segment is not always attached to the closest node
 - not regular mesh
 triangular mesh
 - triangular mesh
- Carefull use or improvement

When simple detection fails...

Methods based on the closest node detection are not robust

Idea:

- find the closest master node
- find a projection on the adjacent segments
- Counterexample
- Closest segment is not always attached to the closest node
 - not regular meshtriangular mesh
- Carefull use or improvement

When simple detection fails...

Methods based on the closest node detection are not robust

Idea:

- find the closest master node
- find a projection on the adjacent segments
- Counterexample
- Closest segment is not always attached to the closest node
 - not regular meshtriangular mesh
- Carefull use or improvement

When simple detection fails...

Methods based on the closest node detection are not robust

Idea:

- find the closest master node
- find a projection on the adjacent segments
- Counterexample
- Closest segment is not always attached to the closest node
 - not regular mesh
 - triangular mesh
- Carefull use or improvement

zones where the detection does not work

Tyre-road problem

- Tyre 100 000 slave nodes
- Road 200 000 master segments
- Detection 1.5-2 seconds

Contact elements for different loads Zset/Zébulon

FE mesh of a tire 550 000 nodes, 105 000 slave nodes Zset/Mesher

Example II

- Two curved surfaces in contact
 - 10⁶ against 10⁶ contact nodes
 - All-to-all *T*_{all-to-all} >180 hours
 - Bucket sort performance depends on geometry:

FE mesh of one of the contacting surfaces Zset/Mesher

Example II

- Two curved surfaces in contact
 - 10⁶ against 10⁶ contact nodes
 - All-to-all *T*_{all-to-all} >180 hours
 - Bucket sort performance depends on geometry:

Geometry	Nodes in bounding box	CPU time	Gain, T _{all-to-all} /T _{bucket}
	2 100 000	35 minutes	>300 times
	340 000	1 minute	>10 500 times
	50 000	4 seconds	>160 000 times

- Strong **mesh refinement** is required
 - especially at unknown edges of contact zones

Typical mesh for fretting analysis [L. Sun, H. Proudhon, G. Cailletaud, 2011] $2D \sim 30\ 000\ DoFs, \ 3D \sim 5\ 000\ 000\ DoFs$

- Strong **mesh refinement** is required
 - especially at unknown edges of contact zones

Infinite contact pressure and/or its derivative

- Strong **mesh refinement** is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems
 Infinite looping

Initial guess $R(x_0, f_0) = 0$

- Strong **mesh refinement** is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems Infinite looping

Too rapid change in boundary conditions $R(x_0, f_1) \neq 0$

- Strong **mesh refinement** is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems Infinite looping

Iterations of Newton-Raphson method $R(x_0, f_1) + \frac{\partial R}{\partial x}\Big|_{x_0} \delta x = 0 \rightarrow \delta x = -\frac{\partial R}{\partial x}\Big|_{x_0}^{-1} R(x_0, f_1) \rightarrow x^1 = x_0 + \delta x$

- Strong **mesh refinement** is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems

Infinite looping

Iterations of Newton-Raphson method $R(x^{1},f_{1}) + \frac{\partial R}{\partial x}\Big|_{x^{1}} \delta x = 0 \rightarrow \delta x = -\frac{\partial R}{\partial x}\Big|_{x^{1}}^{-1} R(x^{1},f_{1}) \rightarrow x^{2} = x^{1} + \delta x$

- Strong **mesh refinement** is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems

Infinite looping

- Strong **mesh refinement** is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems
 Convergence to a "false" solution

Initial guess $R(x_0, f_0) = 0$

- Strong **mesh refinement** is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems
 Convergence to a "false" solution

Too rapid change in boundary conditions $R(x_0, f_1) \neq 0$

- Strong **mesh refinement** is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems Convergence to a "false" solution

Iterations of Newton-Raphson method $R(x_0, f_1) + \frac{\partial R}{\partial x}\Big|_{x_0} \,\delta x = 0 \rightarrow \delta x = - \frac{\partial R}{\partial x}\Big|_{x_0}^{-1} R(x_0, f_1) \rightarrow x^1 = x_0 + \delta x$

- Strong **mesh refinement** is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems Convergence to a "false" solution

Iterations of Newton-Raphson method $R(x^{1},f_{1}) + \frac{\partial R}{\partial x}\Big|_{x^{1}} \delta x = 0 \rightarrow \delta x = -\frac{\partial R}{\partial x}\Big|_{x^{1}}^{-1} R(x^{1},f_{1}) \rightarrow x^{2} = x^{1} + \delta x$

- Strong **mesh refinement** is required
 - especially at unknown edges of contact zones
- **Slow change** of boundary conditions:
 - strong non-linearities of contact/friction problems
 - non-uniqueness of solution for frictional problems Convergence to a "false" solution

Convergence, but is it a "true" solution ?

Infinite looping, e.g.

- Change of the contact state (contact/non-contact, stick/slip)
- Interplay between stiffness, friction and augmented Lagrangian coefficients^[1]
- Combination of non-linearities (e.g., plasticity+contact)

Alart P., Journal de Mathématiques Pures et Appliqués 76 (1997)

V.A. Yastrebov

Lecture 6

- Simulation of a deep drawing problem
- Finite strain plasticity + frictional contact

- Simulation of a deep drawing problem
- Finite strain plasticity + frictional contact

- Simulation of a deep drawing problem
- Finite strain plasticity + frictional contact

Simulation of a deep drawing problemFinite strain plasticity + frictional contact

Non-conservative problem, history of loading is crucial

Non-conservative problem, history of loading is crucial

Press in 100 increments, $u_z \sim t^2$

Non-conservative problem, history of loading is crucial

Shift in 100 increments, $u_z \sim t$

Non-conservative problem, history of loading is crucial

Comparison with: press in 1 increment, shift in 2 increments

Before sticking, every point of the contact interface has to pass through the slip zone. It is impossible when loaded too fast.

Warning friction!

- For dissimilar materials, the *friction matters* even in normal contact
- The problem is thus path-dependent, the B.C. should be changed slowly

Warning friction!

[1] A.G. Shvarts, PhD thesis, MINES ParisTech (2019)

Lecture 6

Shallow ironing test

- Deformable-ondeformable frictional sliding
- Results obtained by different groups^{1,2,3,4,5,6} differ significantly
- Local and global friction coefficients may differ

[1] Fischer K. A., Wriggers P., "Mortar based frictional contact formulation for higher order interpolations using the moving friction cone", Computer Methods in Applied Mechanics and Engineering, vol. 195, p. 5020-5036, 2006.

[2] Hartmann S., Oliver J., Cante J. C., Weyler R., Hernández J. A., "A contact domain method for large deformation frictional contact problems. Part 2: Numerical aspects", Computer Methods in Applied Mechanics and Engineering, vol. 198, p. 2607-2631, 2009.

[3] Yastrebov V. A., "Computational contact mechanics: geometry, detection and numerical techniques", Thèse CdM & Onera, 2011.

[4] Kudawoo A. D., "Problèmes industriels de grande dimension en mécanique numérique du contact : performance, fiabilité et robustesse", Thèse @ LMA & LAMSID, 2012.

[5] Poulios K., Renard Y., "A non-symmetric integral approximation of large sliding frictional contact problems of deformable bodies based on ray-tracing", soumis, 2014.

[6] Zhou Lei's blog, http://kt2008plus.blogspot.de

Shallow ironing test

Shallow ironing test

- No agreement between authors
- Dif. authors used dif. meshes (quadrilateral lin./sq., triangular lin.)
- Dif. authors used either finite or infinitesimal strain formulation

Shallow ironing test

- No agreement between authors
- Dif. authors used dif. meshes (quadrilateral lin./sq., triangular lin.)
- Dif. authors used either finite or infinitesimal strain formulation

Examples of contact problems

With analytical solution

- ★ linear elasticity
- ★ with/without friction

From literature

- ★ post-buckling 2D
- \star finite strains
- ★ elasticity / plasticity
- ★ with/without friction

New

- ★ multi-contacts
- ★ post-buckling 3D
- \star finite strains
- ★ elasticity / plasticity
- * with/without friction

V.A. Yastrebov

Self-contact problem

Finite element analysis of a post-buckling behavior of a thin walled tube Collection of non-linearities: buckling instability, self-contact, finite strain plasticity

Lecture 6

Reading

- It's just a tip of the "Computational Contact Mechanics" iceberg
- Contact discretization and integration
- Smoothing techniques
- Energy conservative methods for dynamics

Infinitesimal deformation / infinitesimal sliding

Contact discretization techniques

Reading

- It's just a tip of the "Computational Contact Mechanics" iceberg
- Contact discretization and integration
- Smoothing techniques
- Energy conservative methods for dynamics

$\mathcal{L}_a(x,\lambda)$

Thank you for your attention!

www.yastrebov.fr