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Introduction




Industrial and natural contact problems

Assembled parts, e.g. engines

Aircraft’s engine GP 7200
www. safran-group. com

[1] M. W. R. Savage
J. Eng. Gas Turb. Power, 134:012501 (2012)
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www.safran-group.com

Industrial and natural contact problems

Assembled parts, e.g. engines

Railroad contacts

Wilde/ANSYS wildeanalysis.co.uk
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www.sncf.com
wildeanalysis.co.uk

Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Gears and bearings

www. skf. com

Prelfad
[1] F. Massi, ]. Rocchi, A. Culla, Y. Berthier
Mech. Syst. Signal Pr., 24:1068-1080 (2010)
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www.skf.com

Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Gears and bearings

Helical gear www. tpg. com. tw

www.mscsoftware. com
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www.tpg.com.tw
www.mscsoftware.com

Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Gears and bearings

Breaking systems
Assembled breaking system
www. brembo. com

www.mechanicalengineeringblog.com
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www.brembo.com
www.mechanicalengineeringblog.com

Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Gears and bearings

Breaking systems

Tire-road contact

Tire-road contact www.michelin. com

@

1si 0

[1] M. Brinkmeier, U. Nackenhorst, S. Petersen,
O. von Estorff, ]. Sound Vib., 309:20-39 (2008)
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www.michelin.com

Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Gears and bearings

Breaking systems

Tire-road contact

Metal forming

[1] G. Rousselier, F. Barlat, ]. W. Yoon
Int. |. Plasticity, 25:2383-2409 (2009)
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www.thomasnet.com

Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Gears and bearings

Breaking systems

Tire-road contact

B Metal forming
Crash tests

[1] O. Klyavin, A. Michailov, A. Borovkov
www. fea.ru
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www.porsche.com
www.fea.ru

Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Gears and bearings

Breaking systems

Tire-road contact

Metal forming
Human articulations

CraSh tests wwi. Sportssupplements.net

Biomechanics

J. A. Weiss, University of Utah
Musculoskeletal Research Laboratories
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www.sportssupplements.net

Industrial and natural contact problems

Assembled parts, e.g. engines

Railroad contacts

Gears and bearings
Breaklng SYStems Sand dunes www. en.wikipedia.org
Tire-road contact

B Metal forming

Crash tests

H Biomechanics

Bl Granular materials

E. Azema et al, LMGC90
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www.en.wikipedia.org

Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts
Gears and bearings

Breaking systems

Tire-road contact
Metal forming D o "
Crash tests
Biomechanics

B Granular materials

Electric contacts

Simulation of electric current
wiww . comsol. com
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www.taicaan.com
www.comsol.com

Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts

Gears and bearings

Breaking systems

Tire-road contact

Metal forming
Crash tests
Biomechanics

San-Andreas fault, by M. Rightmire
www.sciencedude.ocregister.com

Granular materials
Electric contacts

Tectonic motions

K NN oS i ¥ e
[1]].D. Garaud, L. Fleitout, G. Cailletaud
Colloque CSMA (2009)
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www.sciencedude.ocregister.com

Railroad contacts
Gears and bearings
Breaking systems
Tire-road contact
Metal forming
Crash tests
Biomechanics

B Granular materials
Electric contacts
Tectonic motions
Deep drilling

V.A. Yastrebov

Industrial and natural contact problem

Assembled parts, e.g. engines

>~

Drill Bit tool RobitRocktools;
extraction of geothermal energy (SINTEF, NTNU)

[1] T. Saksala, Int. ]. Numer. Anal. Meth.
Geomech. (2012)
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Robit Rocktools
SINTEF,NTNU

Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts
Gears and bearings

Breaking systems

Tire-road contact 7 Impact crater, Arizona
www.MrEclipse. com et maps.google.com

Metal forming

Crash tests

;] Biomechanics

Rock type, fime = 103.002 5

Granular materials

Electric contacts

Simulation of formation of Copernicus crater

Tectonic motions Yue Z., Johnson B. C., et al. Projectile
Deep dl‘lﬂlng remnants in central peaks of lunar impact

. craters. Nature Geo 6 (2013)
[E Impact and fragmentation
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www.MrEclipse.com
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Industrial and natural contact problems

Assembled parts, e.g. engines
Railroad contacts
Gears and bearings

Breaking systems

Tire-road contact 7 Impact crater, Arizona
www.MrEclipse. com et maps.google.com

Metal forming

Crash tests

;] Biomechanics

Rock type, fime = 103.002 5

Granular materials

Electric contacts
. . Simulation of formation of Copernicus crater
Tectonic motions Yue Z., Johnson B. C., et al. Projectile

Deep drllhng remnants in central peaks of lunar impact

. craters. Nature Geo 6 (2013)
[E Impact and fragmentation

etc.
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Physical and mathematical complexity

m Contact interface is hard to observe in situ

Many things happen in the interface

Strong thermo-mechanical or fluid-solid coupling in sliding

m Mathematical formulation is also non-trivial

50
Mechanical loads @ Thermal ;? % Environment “‘ Electric |—‘
—> ' '
Phase transformation Oxidation  Quantum Wetting Lubrication Contamination

N
/1

y A ‘
3rd body Electric current / Wear Plasticity induced  Frictional heat production /
Joule heating roughness heat transfer (diffusive/balistic+conv./radiat.)

Interface between two solids in contact

V.A. Yastrebov 19/75



Basics of Contact and Friction




Vectors and tensors

[ et scalars ea-b=c scalar (dot) product

ob vectors eaxb=c vector (cross) product

o Cf 2nd order tensors ea®b=C tensor product

04: 4th order tensors o éT transposition

eVa=B gradient operator eV a=c divergence operator

eVxa=Db curl (rot) operator el=¢ ®e,  2ndorderidentity tensor

Mechanics

o0 Cauchy stress tensor e £ Small strain tensor

°©9, 9 gap, normal gap o & position vector in parent space

°c penalty parameter on outward unitnormal vector
- 20 20

e A A, A lagrange multipliers e 3 9 surface tangent vectors

e 0,=(0-n)-n contact pressure of, 1l Coefficient of friction

V.A. Yastrebov 2175



Equilibrium and contact conditions

m Balance of momentum

V-g+ﬁ]20 in£21,2 -
‘n=t, on Iy P

o ,
u=1u, only gal;’/ / Q! ’\‘
? on FC - r _
m Frictionless contact ‘/Ff_¥
conditions (intuitive) Qz F\E
i l—; !

No penetration ‘ P CCLI
No adhesion .
No shear transfer

V.A. Yastrebov 22/75



Equilibrium and contact conditions

m Balance of momentum
V-a+£ =0 in Q
o+fo 12 %%
g-n=t on I Y :
u=1u, only 2?11 /

L
? onlI, e o
T n
m Frictionless contact 1
=

conditions (intuitive) T

No penetration

T,
No adhesion ( P CTLTT
No shear transfer L
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Equilibrium and contact conditions

m Balance of momentum
V-g+]_%=0 in£21,2 ///,//%%
o-n=t, on Iy o )
u=u, only, gl"u

? on T, ﬂﬁﬂ‘t
... r
m Frictionless contact 2
conditions (intuitive) TWWW
No penetration o - 1}%

No adhesion G EBBEE

No shear transfer "
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Equilibrium and contact conditions

m Balance of momentum
V‘g+fv=0 in Q-

o-n=t, on Iy
E = EO on Fl, ﬁjl—;l ////
? onT, jrﬁlj:\iﬂv
m Frictionless contact I
conditions (intuitive) W
No penetration PR I}E

No adhesion : AR

No shear transfer .

A
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Equilibrium and contact conditions

m Balance of momentum
V-og+f,=0 in Q-

o-n=t, on Iy
E = EO on Fl, ﬁjl—;l ///
? onT, jl;j:\m
m Frictionless contact I
conditions (intuitive) W
No penetration PR I}E

No adhesion : SRR

No shear transfer =

V.A. Yastrebov 26/75



m Gap function g
B gap = — penetration g>0 4
m asymmetric function non-contact
m defined for
e separation g > 0
e contact g =0
e penetration g < 0 £ <0
B governs normal contact penetration
Gap between a slave point and a master surface

g=0

contact

m Master and slave split
Gap function is determined for all
slave points with respect to the
master surface

V.A. Yastrebov
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m Gap function g
B gap = — penetration g>0 4
m asymmetric function non-contact
m defined for
e separation g > 0
e contact g =0 /
e penetration g < 0 A 8<0

g=0

contact

B governs normal contact penetration
Gap between a slave point and a master surface

m Master and slave split

Gap function is determined for all A L

slave points with respect to the nA

_ n
¢ pE)

master surface

m Normal gap
gn=n-[r,-p)],

n is a unit normal vector, .
slave point, p(&,) projection
point at master surface

Definition of the normal gap

Consider existence and uniqueness

V.A. Yastrebov
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Frictionless or normal contact conditions

m No penetration
Always non-negative gap 0

g=0

m No adhesion
Always non-positive contact pressure

0, <0

m Complementary condition
Either zero gap and non-zero pressure, or

non-zero gap and zero pressure Scheme explaining normal

contact conditions
g0,=0

m No shear transfer (automatically)

oy=(c-n)-n=0:

o

I
ISy
1=
\
N
B

V.A. Yastrebov 29/75



Frictionless or normal contact conditions

. G,
m No penetration "
Always non-negative gap _0 NON-CONtAC mmmmm t
g2>0 - g>0,0,=0
m No adhesion = \b/:
Always non-positive contact pressure %o’ il
0, <0 0 regions
m Complementary condition

Either zero gap and non-zero pressure, or
non-zero gap and zero pressure Improved scheme explaining

normal contact conditions
g0,=0

m No shear transfer (automatically)

V.A. Yastrebov 30/75



Frictionless or normal contact conditions

In mechanics:

Gn
Normal contact conditions 0 o
- - y £>0,0,=0
Frictionless contact conditions 3
= Se
HertzL-Signorini, 2! conditions ‘go“ restricted
= 0 regions
HertzL-Signoriniy[?-Moreaug" conditions
also known in optimization theory as
Karushe¥-Kuhn%)-Tucker, [ conditions ~ Improved scheme explaining

normal contact conditions

320, o, <0, go, =0

1Heinrich Rudolf Hertz (1857-1894) a German physicist who first formulated and solved the frictionless contact
problem between elastic ellipsoidal bodies.

2 Antonio Signorini (1888-1963) an Italian mathematical physicist who gave a general and rigorous mathematical
formulation of contact constraints.

3Jean Jacques Moreau (1923) a French mathematician who formulated a non-convex optimization problem based
on these conditions and introduced pseudo-potentials in contact mechanics.

4William Karush (1917-1997), >Harold William Kuhn (1925) American mathematicians,
6 Albert William Tucker (1905-1995) a Canadian mathematician.

V.A. Yastrebov



Relative sliding

Recall:
e Convective coordinate in parent )
space &; € (—=1;1) %
e Mapping to real space é
B
1, (—‘2/ Z Nl é (‘;2 B &)7 S
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Relative sliding

Recall:

e Convective coordinate in parent
space &; € (—=1;1)

e Mapping to real space

r‘—sZ/ g Nlé <E2P

m Tangential slip velocity v,
must take into account:

e only tangential component 0 T T—'

e relative rigid body motion

e master’s deformation
dp . 3;0 .
v —& <2
_f &,1 (9 |
T T—'
where dp/dé; are the tangent vectors

of the local basis and &; are the convec- ™
tive coordinates.

Relative slip between a slave point and a

deformable master surface
V.A. Yastrebov 33/7!
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Relative sliding: example

Consider a one-dimensional example:

P is a projection of A on segment BC. Aé
xp=&xc+(1-&wp (1) 8P S
Velocity of the projection point = |
ip = &xc + (1 — &)xp + (x¢ — xB)E 8 ‘
—_— e —
dxp Ixp ¢ . . . . X
ot 9 S Example of a one-dimensional relative slip

Substract the velocity of point xp for fixed &
dxp _ (9
0

v =Xp— Sf = (xc —xp)é =
Compute tangential slip increment

Ix
Ag11+1 — ox ((IH—] Uz)

< &

V.A. Yastrebov
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Relative sliding: example

Consider a one-dimensional example:

P is a projection of A on segment BC. Aé
xp=&xc+(1-&wp (1) 8P S
Velocity of the projection point = |
ip = &xc + (1 — &)xp + (x¢ — xB)E 8 ‘
—_— e —
dxp Ixp ¢ . . . . X
ot 9 S Example of a one-dimensional relative slip

Substract the velocity of point xp for fixed &
o (),\” 2] ¢ (9
v =Xp— GF = (xc —xB)é = G

Compute tangential slip increment

Ix
Ag11+1 — ox ((IH—] Uz)

< &

‘, i¥

Fisherman'’s analogy: observing sea flow around
the boat.
Lie derivative: the change of a vector field along
the change of another vector field

V.A. Yastrebov 35/75



Amontons-Coulomb’s friction

m No contactg >0, 0, =0 o
m Stick [v,| =0 ulo,|
Inside slip surface/Coulomb’s cone
f=lo, —plonl <0
m Slip [v,| > 0
On slip surface/ Coulomb’s cone 0 vl
f = |Qt| - H|On| =0 Il loi|
eps H
m Complementary condition T

Either zero velocity and negative
slip criterion, or non-zero velocity

and zero slip criterion

|2f| ( |Qt| - H|(7n|) =0

0 o,
Scheme explaining frictional contact
conditions

V.A. Yastrebov 36/75



Amontons-Coulomb’s friction

o]
m No contactg >0, 0, =0 o
m Stick [v,| =0 ulo,| slip
Inside slip surface/Coulomb’s cone .
p surface/ v restricted
f =lo,l = plonl <0 ;—‘: regions
m Slip [v,| > 0
On slip surface/ Coulomb’s cone 0 vl
f = |gt| — ‘u|gn| = O |gt|
eps H
m Complementary condition T restricted
Either zero velocity and negative region
slip criterion, or non-zero velocity Yy
and zero slip criterion S
stick
2,1 (lg,| - ploul ) = 0

0 o,
Improved scheme explaining
frictional contact conditions
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Amontons-Coulomb’s friction

m No contact¢ >0, g, =0
m Stick [v,| =0
Inside slip surface/Coulomb’s cone
f=lo, —plonl <0
Slip [o,| > 0
On slip surface/ Coulomb’s cone
f = |Qt| - H|On| =0
Complementary condition
Either zero velocity and negative

slip criterion, or non-zero velocity
and zero slip criterion

|2f| ( |Qt| - H|(7n|) =0

GtT G,
Hlo;) | slip i Hio)
X /11)
=4 restricted = atan(L0)
% regions V, %0, G,
. e
—slip —to,| Hlo,l

Scheme of 2D frictional contact

Vil Gn

Scheme of 3D frictional contact

lol 20, lg,l—plonl <0, [z,

(Y%

=t

(lol = lonl) =0 0=

V.A. Yastrebov
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More friction laws

e Static criteria

] ] o] o/l
slip. max|g,|
) ﬁ ,,,,,,,,, max|g;|
i stick stick g
stick /{o
0 g, 0 o, Gy Gn
(a) (b) (c) ()

(a) Tresca  (b) Amontons-Coulomb  (c) Coulomb-Orowan  (d) Shaw

e Kinetic criteria

o] loil lol
o, o] o,
Hs Hs Hs | =slip
Hi I lip. M lip— |-
2
: . S

1
2 %
o? oT 0
v v log( vl +v) g
(a) (b) © (d)
(a,b) velocity weakening (c) velocity weakening-strengthening

(d) Linear slip weakening

e 1, static and i kinetic coefficients of friction.

V.A. Yastrebov



Rate and state friction and regularization

e Rate and state friction law

m Rate v; = |v,| - relative slip velocity

m State 0 — ~ internal time

m Dieterich-Ruina—Perrin (1979, 83, 95) e
Frictional resistance ti

0 = oyl [us + b6 + aln(vy/vo)] e W

Evolution of the state variable
0=-%[0+m(Z)|
e Prakash-Clifton friction law (1992,2000)

m Viscous type evolution of frictional
resistance o,

m G5, = —%(0; + poy) e e

Prakash-Clifton regularization

V.A. Yastrebov 40/75



Rate and state friction and regularization

e Rate and state friction law

0.5

04 |

03 1

Slip velocity

02 e e e ey 1

0.1 fmrmmmme el 4

0

0.8

0.7
0.6
05
0.4

Frictional resistance

0.3

Hes\s(ancg

0.2 L L L L L
500 600 700 800 900 1000 1100 1200

Time
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Rate and state friction and regularization

e Rate and state friction law

m Rate v; = |v,| - relative slip velocity

m State 0 — ~ internal time

m Dieterich-Ruina—Perrin (1979, 83, 95) e
Frictional resistance ti

0 = oyl [us + b6 + aln(vy/vo)] e W

Evolution of the state variable
0=-%[0+m(Z)|
e Prakash-Clifton friction law (1992,2000)

m Viscous type evolution of frictional
resistance o,

m G5, = —%(0; + poy) e e

Prakash-Clifton regularization
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Rate and state friction and regularization

e Prakash-Clifton friction law (1992,2000)

500

400 ]

300 4

Contact pressure

200 fremm e e e ,

100 e meemeet e ]

500

T
Resistance

Frictional resistance

0 L L L L L L
500 600 700 800 900 1000 1100 1200
Time
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Rate and state friction and regularization

e Prakash-Clifton friction law (1992,2000)

500

400

300 [ Bl

Contact pressure

200 Pt g

B E— . ]

T T
Normalized resistance

0 L L L L L L
500 600 700 800 900 1000 1100 1200
Time

Normalized frictional resistance
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The simplest example

Problem: find the point trajectory for a given force evolution

N Fiy
N
4N
/ \
/ S
S

s
Uy o

T777777777 77777
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Towards a weak form




From strong to a weak form

e Balance of momentum and boundary conditions

V.g+f,=0 inQ=0Q;UQ, +B.C. %
Q!
4T,
(0% L UE

Two solids in contact

V.A. Yastrebov 47/75



From strong to a weak form

e Balance of momentum and boundary conditions

V-o+ f,=0 nQ=0Q;UQ, +BC
f— e ////,/ l—;'
e Balance of virtual worksa AZ Q'
T L
fﬁ ~g-oudl |+ f[f “ou—g- (Wy] aQ=0 T
o0 o) y o r UE

Two solids in contact

V.A. Yastrebov 48/75



From strong to a weak form

e Balance of momentum and boundary conditions
Vog+ fo=0 inQ=0Q; U +BC %%

Y o)
e Balance of virtual works Q gl"“
3 .-
f G- 6udl .
n-o-ouad =
n-o-ou v
20 I; .
o L F/E
fﬂ‘g~r3pdf}+fg-g~6gdf? +fg0~<5gdff L e
2 T 2 - N Two solids in contact

V.A. Yastrebov 49/75



From strong to a weak form

e Balance of momentum and boundary conditions

V-o+f,=0 nQ=Q,UQ, +B.C Lé%
C A 5
T«
e Balance of virtual works Q gl"“
3 L
f o-oudl |= /ﬂrd
n-o-ou
a0 I,
L@ g DE
fﬂ-gﬁpdﬂ--&-fggégdff. = s
> T > B Two solids in contact
rl r?
= f@(:i-é(p—g)dﬂ :f(o,,ég,,+ alo& )df}
¥ ¥
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From strong to a weak form

e Balance of momentum and boundary conditions

Vig+f,=0 inQ=0Q,UQ +BC.

e Balance of virtual works Q

fg-c_rbgdl‘ =
- T

20
Q? T,
f’i'g'(SPdf3+fK'Q'<3de% - \\MJ/KKKA/MB -
> T > B Two solids in contact
r 2
= fg g-5(p—1) darl = f(o,,ég,, + g16& ) dr!
Tl T}
fg~ OVudQ + f(a,,éj,, + g{(‘ié ) drl | = fgu ~oudl + ffL -oudQ
Q i I Q
Contact term
51/75
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From strong to a weak form

e Balance of momentum and boundary conditions
Vog+ fo=0 inQ=0Q; U +BC %%

e Balance of virtual works Q ﬁ‘r y
: I
fg --0Vu aQ + f(gnbgn + ngOé ) drzl = 1
Q T b 2 o
Q T} o I
: 2
Change of the internal energy v// @ 1T, DE
Contact term g P
fgo - oudl + ff‘ - oudQ Two solids in contact
Iy Q
[ — S———

Virtual work of external forces Virtual work of volume forces
e Functional space
ou € H'(Q) Hilbert space of the first order

and ou satisfy boundary and contact conditions.

V.A. Yastrebov 50/75



Towards variational inequality

m Contact term

f(o,,ég,, + g16& )df}.
fﬁ,,ég,l drl =0

Tl
Il

Contact configuration 6,0, =0, 0, <0

f o -OVudQ + f gl6& dT! > f 0o - Oudl + f fo - oudQ,
Q

Q Tl f

K = {ou e H'(Q) |6u=0 onT,, g,(u+5u)20onT,}

V.A. Yastrebov



Towards variational inequality

m Contact term

f(o,,ég,, + g16& )df}.
fﬁ,,ég,l drl =0

Tl
Il

Virtual change of the configuration

fg~-6Vde+f gl6& dTl > fgo-ogdf-%ffp-bgd(l,
Q

Q Tl f

K = {ou e H(Q) |61 =0 onT,, g,(u+0ow)>0onT,]

V.A. Yastrebov



Towards variational inequality

m Contact term

f(o,,ég,, + g16& )df}.
fﬁ,,ég,l drl =0

Tl
Il

Normal term in separation 6g, > 0

fg-~6vgd(2+f gl6& dTl > fgo-ogdf-%ffp-bgd(l,
Q

Q Tl f

K = {ou e H(Q) |61 =0 onT,, g,(u+0ow)>0onT,]

V.A. Yastrebov



Towards variational inequality

m Contact term

f(o,,ég,, + g16& )df}.
fﬁ,,ég,l drl =0

Tl
Il

Normal term in sliding 6, = 0

fg~-6Vde+f gl6& dTl > fgo-ogdf-%ffp-bgd(l,
Q

Q Tl f

K = {ou e H(Q) |61 =0 onT,, g,(u+0ow)>0onT,]

56/75
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Back to variational equality (unconstrained)

e Constrained minimization problem

fg--ngdQJrfg,TOE drt > fgo-bgdr+ffz,-blic1£2,

Q 1 Ty Q

T
JK:{(‘SEEJHl(Q) |(‘5g:0 onT,, g,,(g+(5y)200n1}}

e Use optimization theory to convert to

f(:T - OVudQ + f C(0,,01,8n, &,0m) |dT = fgg -oudl + ff -oudQ,
Q

Q r! Iy

Contact term”
Unconstrained functional space K = {Dy e HY(Q) | ou=0 onl, }

Contact term” is defined on the potential contact zone I'!.

V.A. Yastrebov



Optimization methods




Optimization methods: recall

Functional to be minimized F(x) under constraint g(x) > 0

m Penalty method
m Lagrange multipliers method
m Augmented Lagrangian method

V.A. Yastrebov



Optimization methods: recall

Functional to be minimized F(x) under constraint g(x) > 0

m Penalty method

e New functional

0, if g(x) >0  non-contact
Fy(x) = F(x) +| e (—g(x))* | = FO) +1 .
€g*(x), ifg(x) <0 contact

where € is the penalty parameter.
e Stationary point must satisfy
VF,(x) = VF(x) + 2¢ (—g(x)) Vg(x) =0

e Solution tends to the precise solution as € — oo

m Lagrange multipliers method

m Augmented Lagrangian method

x, ifx>0

M lay brackets (x) =
acaulay brackets (x) {O, otherwise

V.A. Yastrebov 60/75



Optimization methods: recall

Functional to be minimized F(x) under constraint g(x) > 0

m Penalty method F,(x) = F(x) +| e (~g(x))”

m Lagrange multipliers method

e New functional called Lagrangian

L(x,A) = F(x) +

e Saddle point problem

min m?x{ﬁ(x, A} — X" — r(n)ir}){F(x)}
X / 8(x)>!

e Stationary point

ViF () + AV,g(x)
8(x)

m Augmented Lagrangian method

Vi L = [ ] =0 need toverify A <0

x, ifx>0

M lay brackets (x) =
acaulay brackets (x) {O, otherwise
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Optimization methods: recall

Functional to be minimized F(x) under constraint g(x) > 0

m Penalty method F,(x) = F(x) +| e (~g(x))’

m Lagrange multipliers method £(x, 1) = F(x) +

m Augmented Lagrangian method
[Hestnes 1969], [Powell 1969], [Glowinski & Le Tallec 1989], [Alart & Curnier 1991], [Simo & Laursen 1992]

e New functional, augmented Lagrangian

£, A) { + m if A +2eg(x) > 0, contact

-=A% if A + 2eg(x) < 0, non-contact
e Stationary point

[wx) + AVig(x) + 2eg(x>Vg<x>} 0, ifcontact

X
Vx/,\La = g( )
ViF(x) .
= 0, if non-contact
x, ifx>0
Macaulay brackets (x) = Yoot . QUzawa algorithm
0, otherwise
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Optimization methods: example

30

25

20

f(x)
o

Functional : f(x) = x* + 2x + 1
Constrain: g(x) =x >0
Solution : x* =0
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Optimization methods: example

30 T T

25 +

20

f(x)
o

Functional : f(x) = x? + 2x + 1
Constrain : g(x) =x >0
Solution : x* =0
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Penalty method: example

F(x)=x2+2x+1, gx)=x>0, x'=0

m Penalty method
Fy(@) = F) + | € (~g(x))”

V.A. Yastrebov



Penalty method: example

F(x)=x*+2x+1, gx)=x>0, x*=0
m Penalty method
Fy(x) = F(x) +| e (~g(x))’

30

25

20

f(x)

. - f(x) -
ob | R _solton @ ]
-4 2 0 2 4
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Penalty method: example

F(x)=x*+2x+1, gx)=x>0, x*=0
m Penalty method
Fy(x) = F(x) +| e (~g(x))’

30

25

1(x)
o

r=1 ——
f(x) oo
0F \ N solution |. 4

2 4
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Penalty method: example

F(x)=x*+2x+1, gx)=x>0, x*=0
m Penalty method
Fy(x) = F(x) +| e (~g(x))’

30

25 -

f(x)
@
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F(x)=x2+2x+1, gx)=x>0, x'=0

m Penalty method

Fy(x) = F(x) +

Penalty method: example

V.A. Yastrebov

2
€(=8(x))
30 : ! —
5L\
20
g
10 H
‘ . \\ r=50 «eeeeee
5r B r=10 ,
. r=1
e f(x)
o+ ) ) i N solution |. 4
0 2 4
X
€=>50
69/75




Penalty method: example

F(x)=x*+2x+1, gx)=x>0, x*=0

m Penalty method
Fp(x) = F(x) +| e (-g(x))”
Advantages © Drawbacks ®

m simple physical interpretation m practically non-smooth
functional

m simple implementation

m no additional degrees of freedom ® solution is not exact:

m too small penalty —
large penetration

m too large penalty —
ill-conditioning of the
tangent matrix

m “mathematically” smooth
functional

m user has to choose penalty e
properly or automatically and/or
adapt during convergence
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Lagrange multipliers method: example

F(x)=x2+2x+1, gx)=x>0, x*=0

m Lagrange multipliers method

L(x,A) = F(x) +| Ag(x) | — Saddle point — mxm m/\ax L(x, A)
Need to check that A <0

V.A. Yastrebov 71/75



Lagrange multipliers method: example

F(x) =x*> +2x +1, gx)=x>0, x'=0
m Lagrange multipliers method

L(x,A) = F( A ddl int i L(x, A
(x,A) (x) + — Saddle point — min miax (x,A)
Need to check that A <0

Advantages © Drawbacks ®
m exact solution m Lagrangian is not smooth
m no adjustable parameters m additional degrees of freedom

m not fully unconstrained: 1 <0

V.A. Yastrebov 7275



Augmented Lagrangian method: example

F(x) =x>+2x+1, gx)=x>0, x*=0
m Augmented Lagrangian method

2 .
L. 1) = F(x) + { )\ig(xz) + , if A +2eg(x) > 0, contact
4e”" 7

-=A if A + 2eg(x) < 0, non-contact

Yellow line separates contact and non-contact regions
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Augmented Lagrangian method: example

F(x) =x>+2x+1, gx)=x>0, x*=0
m Augmented Lagrangian method

2 .
L. 1) = F(x) + { )\fq(xz) + , if A +2eg(x) > 0, contact
4’ 7

-=A if A + 2eg(x) < 0, non-contact

Yellow line separates contact and non-contact regions
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Augmented Lagrangian method: example

F(x) =x*> +2x +1, gx)=x>0, x'=0

m Augmented Lagrangian method

La(x,A) = x)+{+m if A +2eg(x) 2 0, contact

if A + 2eg(x) < 0, non-contact

Advantages © Drawbacks ®
m exact solution m additional degrees of freedom
m smooth functional (!) m quite sensitive to parameter €
m fully unconstrained m need to adjust € during
convergence

V.A. Yastrebov 76/75



Application to contact problems: weak form
fg--ngdQ+f dr! :fgongerrf@.ogdg),
rl — 0

Q 1 Ty
Contact term

K = {oE €eHY(Q) |6u=0 on r,,}
m Penalty method
€g, if stick oy < p|o,|
Pressure: 0, = €g,, Shear: ¢, = LA f ) Hsh
yeg,,b&/lb&\, if slip loy| = plo,l

Contact term

C= C(gm(gt/ (ngbgt) = Uzrégn + o, o(gr
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Application to contact problems: weak form

fg~-ngdQ+f dl"}:fgo-égdl"+ffz,~6gd£),
r! Q

Q 1 Ty
Contact term

K = {bg €eHY(Q) |6u=0 on r,,}
m Augmented Lagrangian method

Contact term
C= C(gm g[/ /\n/ 41/ bgm bg[/ b/\lll OL‘[)

—} (A,,(SA,, -A,- O'Af) , if non-contact Ay, + €gy > 0

Andgn + gndAy + Ay - 0g,+g,- oAy, if stick |A,| < ulél

. A A .
Audgn + gnOAy + by — uéy ﬁ w‘)g[ - % (/\, + by ‘;\:t] <0A,, ifslip|A,| = plGal
42

Atl

where A, = A, + €g, and & =A+ €g,

~
e
~3
Qg
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Use penalty method to enforce Dirichlet BC

Use penalty method to enforce contact constraints
m First, detect contact elements

m Second, construct updated residual vector and tangent matrix

Contact between two elements

V.A. Yastrebov 79/75



Detection




Introduction

m Important and time

consuming part ‘\:Te_s/

m With which master

segment the slave node
can/will come in contact? /:nrsegm;s\‘
m Need to know it in

advance
Slave and master

m To reduce time:
m Bounding boxes for the
global search
m Maximal distance of
detection
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Introduction
m Important and time
consuming part w
m With which master

segment the slave node d
can/will come in contact?

m Need to know it in

advance ,
Slave in close zone

m To reduce time:
m Bounding boxes for the
global search
m Maximal distance of
detection
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Introduction

m Important and time
consuming part

m With which master
segment the slave node a
can/will come in contact?

m Need to know it in

advance
NTS contact element

m To reduce time:
m Bounding boxes for the
global search
m Maximal distance of
detection
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Introduction

m Important and time
consuming part

m With which master
segment the slave node
can/will come in contact?

Contact

m Need to know it in

advance
Contact occurs

m To reduce time:
m Bounding boxes for the
global search
m Maximal distance of
detection
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Introduction

m Important and time
consuming part
m With which master
segment the slave node
can/will come in contact?
m Need to know it in
advance
m To reduce time:
m Bounding boxes for the
global search
m Maximal distance of
detection

Multi-plate contact
Zset/Zébulon
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Introduction

m Important and time
consuming part

m With which master
segment the slave node
can/will come in contact?

m Need to know it in
advance
m To reduce time:

m Bounding boxes for the
global search

m Maximal distance of
detection

Multi-plate contact
Zset/Zébulon
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Introduction

m Important and time
consuming part

m With which master
segment the slave node
can/will come in contact?

m Need to know it in
advance
m To reduce time:

m Bounding boxes for the
global search

m Maximal distance of
detection

Multi-plate contact
Zset/Zébulon
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Introduction

m Important and time
consuming part

m With which master
segment the slave node
can/will come in contact?

m Need to know it in
advance
m To reduce time:

m Bounding boxes for the
global search

m Maximal distance of
detection

Zset/Zébulon
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Introduction

m Important and time
consuming part

m With which master
segment the slave node
can/will come in contact?

m Need to know it in
advance
m To reduce time:

m Bounding boxes for the
global search

m Maximal distance of
detection

L
Multi-plate contact
Zset/Zébulon
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Introduction

m Important and time
consuming part

m With which master
segment the slave node
can/will come in contact?

m Need to know it in
advance
m To reduce time:

m Bounding boxes for the
global search

m Maximal distance of
detection

Multi-plate contact
Zset/Zébulon
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Introduction

m Important and time 748 <
consuming part 1 |
m With which master
penetration volume intersection
segment the slave node
can/will come in contact?

m Need to know it in
advance

segment in volume

1P 4

nodes in volume
X e K
Ll
pramrs A

nodes under surface

m To reduce time:
m Bounding boxes for the
global search
m Maximal distance of
detection
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All-to-all approach

due to symmetry

m Growth rate O(N x M)
m Not robust
m Blind spots

m Slow

master projection zone blind spots

<t normals to master <{s symmetry
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Closest node approach

m Node-to-segment
detection = iterative o o
solution ®

V.A. Yastrebov 93/75



Closest node approach

m Node-to-segment
detection = iterative
solution o ®
m Detection based on the °
closest node: °
find the closest master ® ®
node; ® ® o
find a projection on ® ° °
segments adjacent to
this node. ® e
m Widely accepted
simplification
m Simple treatment of blind
spots
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Closest node approach

m Node-to-segment
detection = iterative
solution
m Detection based on the
closest node:
find the closest master
node; g g
find a projection on ——,
segments adjacent to
this node.
m Widely accepted
simplification
m Simple treatment of blind
spots
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Closest node approach

m Node-to-segment
detection = iterative
solution

m Detection based on the
closest node:

find the closest master

node; s o
find a projection on '

segments adjacent to

this node.

m Widely accepted
simplification

m Simple treatment of blind
spots
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Acceleration of detection

m “Blind” algorithm =

one-by-one s
p [ ]
(]
o * .
A [}
L] ]
° ® o
o _o ® - J
()
L] &
[} ]
[ ] ~ ©]
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Acceleration of detection

m “Blind” algorithm =

one-by-one o« ® o
m Reduce the number of » o
elements to check: : ® e
m Detection bounding box ° L o
- intersection of master ° ® o
and slave bounding e, o
boxes e
) @
® @
° ~ °
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Acceleration of detection

m “Blind” algorithm =

one-by-one
m Reduce the number of d o
elements to check: :
m Detection bounding box °
- intersection of master ° L
and slave bounding ° e,

boxes
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Acceleration of detection

m “Blind” algorithm =
one-by-one

m Reduce the number of ] °
elements to check:

m Detection bounding box s
- intersection of master ° o
and slave bounding _1 °
boxes

m Distribute nodes in
buckets (cells) = Bucket
sort method [1]

m For each slave node
check only in several
buckets

[1] Benson, Hallquist, 1991
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Acceleration of detection

m “Blind” algorithm =
one-by-one

m Reduce the number of
elements to check:

m Detection bounding box

- intersection of master N *—o
and slave bounding %N
boxes

m Distribute nodes in
buckets (cells) = Bucket
sort method [1]

m For each slave node
check only in several
buckets

[1] Benson, Hallquist, 1991
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Acceleration of detection

m Strong connection
between:

m finite element mesh L,

m maximal detection
distance L,

m bucket’s size 2L.

m User friendly algorithm ~ Lo

. Relations between the master mesh, maximal
u CompleXIty O(N ) detection distance and bucket’s dimensions

Meshes for numerical tests

V.A. Yastrebov 102/75



Unknown master-slave

m Master-slave may be
unknown in advance:
m complex geometry;
m large sliding;
m self-contact. ' Zplmm b

Nickel foam microstructure

Microstructure of gecko’s adhesive toe
(adapted from Autumn Lab, Lewis& Clark Colledge, Portland, Oregon)

V.A. Yastrebov 103/75



Unknown master-slave

m Master-slave may be
unknown in advance:
m complex geometry;
m large sliding;
m self-contact. ' Zplmm b

Nickel foam microstructure

Microstructure of gecko’s adhesive toe
(adapted from Autumn Lab, Lewis& Clark Colledge, Portland, Oregon)

V.A. Yastrebov 104/75



Unknown master-slave

m Master-slave may be
unknown in advance:
m complex geometry;
m large sliding;
m self-contact. ' Zplmm b

Nickel foam microstructure

Microstructure of gecko’s adhesive toe
(adapted from Autumn Lab, Lewis& Clark Colledge, Portland, Oregon)
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Finite Element Analyses of post-buckling behavior of thin-walled structures

(self-contact, finite strain plasticity) Zset/Zébulon

107/75
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Parallelization

m Distributed memory
computer architecture

m = Distributed contact
surface

m No information about the
entire contact surface

V.A. Yastrebov 108/75



Parallelization

m Distributed memory
computer architecture

m = Distributed contact
surface

m No information about the
entire contact surface

Data exchange

+ Data exchange — Data exchange
Proc 1 Proc i
RAM RAM RAM

V.A. Yastrebov 109/75



Detection by a single CPU

= SDMR
Single Detection,
Multiple Resolution

m Not optimal

Preliminary step
and data exchange
Detection
Data exchange

m Simple data Proc

exchange

() I | )
4 [on off
[on off 4
[ off off
[ off off

(15% 70% 10%)

contact

—JC__JL_ _J__J
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Detection by a single CPU

= SDMR
Single Detection,
Multiple Resolution

m Not optimal

Preliminary step
and data exchange
Detection
Data exchange

m Simple data Proc

exchange

a2
[on off
[on off Y
contact , [ off off
[ off off

(15% 70% 10%)

—JC__JL_ _J__J
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Distributed detection

= MDMR .8
Multiple Detection, 38 - &
Multiple Resolution g g % 5:
m More optimal é 3 3 iﬁ
m Complex data proc &8 A

exchange

contact

—_

-

o
=}
-
—

[on

,—
(=}
=

>3

o
=
U | G

5

—
o
=]

(20% 60% 20% )
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Distributed detection 11

3

T
Linear gain

. . L Average gain g
m Global detection bounding £ z fommooreeus i @ 1
box =l ]
=l 4
m Split into N equal S, o
. g . ]
overlapping parts =0 A~ |
m One bucket overlap S et - ]
m Test v Iilum%er;fp;oce;sor; T
I 1
] P
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Distributed detection 11

3

g T
. . L Average gain -l 3
m Global detection bounding S| omeeostotas I
box =l ]
g0 1
m Split into N equal Sl e
. g .l ‘
overlapping parts 50 A
m One bucket overlap S
m Test v Iilum%er SOprS‘OCe;SOI‘; T
Proc II
I w—
A L
P
U S S
4 (‘I‘x.’
-r/‘_ 1
o i
I
U
Proc1
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Distributed detection 11

10 T T T T T T T T
Linear gain »
. . L Average gain -~ -
m Global detection bounding 0] s 0
S 8t o . ]
box ! ]
gl 4
oy o]
m Split into N equal & | . ]
overlapping parts g T A . :
m One bucket overlap S et - ]
m Test v Iilum%er 5of p;oce;sor; T
Proc I Proc II Proc II
] I i I |
] | ; I
| ) » i @ 4
A\ g ,/ g ,
4 aeal - ool 4 ’;——o//
e S g 1oy
o g )
/ > =
o O
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Distributed detection 11

10 T T T T T T T
Linear gain ——— »
. . L Average gain -l -
m Global detection bounding 0] s 0
< 8 . ]
box ! ]
g.0 4
m Split into N equal S, . .
overlapping parts g il P
m One bucket overlap Ser g
m Test v Iilum%er 5of p;oce;sor; T
Proc I Proc II Proc II
“ . ] 4 | 4
a\« . a\‘ o ' A
I}/‘_? o ’ <:| 4/‘_.:;"%\1()_ |:> \\ffLmn’,—
o o A .
o o !
U
ProcI
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When simple detection fails. . .

Methods based on the closest node detection are not robust

m [dea:

m find the closest master
node

m find a projection on the
adjacent segments

m Counterexample

m Closest segment is not
always attached to the
closest node

m not regular mesh
m triangular mesh

4 slave node

m Carefull use or
improvement
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When simple detection fails. . .

Methods based on the closest node detection are not robust

m [dea:

m find the closest master
node

m find a projection on the
adjacent segments

m Counterexample

m Closest segment is not
always attached to the
closest node

m not regular mesh
m triangular mesh

m Carefull use or { ) master node and its closest region
improvement
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When simple detection fails. . .
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When simple detection fails. . .

Methods based on the closest node detection are not robust

m [dea:

m find the closest master
node

m find a projection on the
adjacent segments

m Counterexample

m Closest segment is not
always attached to the
closest node

m not regular mesh
m triangular mesh

[ ] Carefull use or . zones where the detection does not work
improvement
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When simple detection fails. . .

Methods based on the closest node detection are not robust

m [dea:

m find the closest master
node

m find a projection on the
adjacent segments

m Counterexample

m Closest segment is not
always attached to the
closest node

m not regular mesh
m triangular mesh

| | Carefull use or . zones where the detection does not work
improvement
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When simple detection fails. . .

Methods based on the closest node detection are not robust

m [dea:

m find the closest master
node

m find a projection on the
adjacent segments

m Counterexample

m Closest segment is not
always attached to the
closest node

m not regular mesh
m triangular mesh

| | Carefull use or . zones where the detection does not work
improvement
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Example I

m Tyre-road problem
m Tyre — 100 000 slave nodes
m Road -200 000 master segments
m Detection 1.5-2 seconds

&g 4 y
; ¥ r
Er £E -

Contact elements for different loads
Zset/Zébulon

FE mesh of a tire
550 000 nodes, 105000 slave nodes
Zset/Mesher
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Example II

m Two curved surfaces in contact

m 10° against 10° contact nodes
| All'tO'all Tall-to-all >180 hours
m Bucket sort performance depends on geometry:

FE mesh of one of the contacting surfaces
Zset/Mesher
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Example 11

m Two curved surfaces in contact

m 10° against 10° contact nodes
| All'tO'all Tall-to-all >180 hours
m Bucket sort performance depends on geometry:

Geometry Nodes in CPU time Gain,
bounding box Tatt-to-ant/ Toucket

‘ 2100000 35 minutes >300 times

‘ 340000 1 minute >10500 times

50000 4 seconds >160000 times
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Friction

"The scream”
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Friction: methods

m Optimization methods: penalty or augmented Lagrangian method
m Note that the method of Lagrange multipliers cannot be employed here
m Return mapping algorithm for penalty

m Analogy with elasto-plastic formulation problern[II

[1] Curnier “A theory of friction” Int ] Solids Struct 20 (1984)
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Friction: Return mapping algorithm

m Return mapping algorithm in 2D for the penalty method

gr‘lrial
o
oA :
St i+1 i
2, L 1=E, U
loi*!] % i+1 Jria=eiy
.U’Gn - gt
1o,
qi/
a o =t A gtl gtz+1
7 | o , o
v ST gt Agitayis
—ulot|l ———— —
-pilo, |

As in plasticity!]

[1] Simo J.C. and Hughes T.J.. Computational inelasticity. Springer (2006)
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Friction: Return mapping algorithm

m Return mapping algorithm in 2D for the penalty method

| o |
1 i . 1 .
] i+1 S ] i+1
rAN— 5> o <
Gl Gl
(S5 (6]
i - i i+l ] ~
O; O trial O o; O O trial Oy
i+l i+1
-ploy ploy™|
i i
ﬂulcnl Mlcnl
Analogy with non-associated plastic flow!?]
[2] Curnier A. A theory of friction. International Journal of Solids and Structures 20 (1984)
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Application to contact problems: linearization

e Non-linear equation

R, f) = 0

e Contains 6g,, 6g1

e Use Newton-Raphson method

e Initial state at step i ‘
R, f) =0

e Should be also satisfied at step i + 1

R(Ei+l,fi+1) — R(Ei + by,fzﬂ) -0

e Linearize

) . o IR(1
R +ou, f*') = R, f*) + (,i : ou=0
e Finally -
- RW|™ L
e e

contains Adg,, Abgt

e NB: Contact problem does not satisfy conditions of Kantorovich theorem
on the convergence of Newton’s method.
V.A. Yastrebov
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Variation of geometrical quantities

Normal gap

m First variation enters in the residual vector:

0gn = n - (0r; — 6p)

m Second variation enters in the tangent matrix:

r?p’ ap r
Aoy =—mn- 0== /\E +A

—= o0& |- A&THoE
7 % oc | =AE fsh«+

ap) dp
+gu|Ac"H +n-Ass | A |n-dgE o+ HO
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Variation of geometrical quantities

Convective coordinate of the projection
m First variation enters in the residual vector:

_1(9p dp
o6 =[A —guH| |57 (Or,~0p)+ gum-057

23

m Second variation enters in the tangent matrix:

. 3;_) QBT QET‘ . 8;_) 32g ]
Ao = (guH - AN = |oo= AL+ A= og |+ AT = == |0t -

op o’ J

+ gn[6§+a£—26§] g é—égn% [g A£+I;IA§)+
dp é?zp apr dp

+(gn Anga_g_zAé]'% A -Agul (g 6£+I;I(S§]}
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Particularities: mesh and convergence

m Strong mesh refinement is required
e especially at unknown edges of contact zones

Typical mesh for fretting analysis [L. Sun, H. Proudhon, G. Cailletaud, 2011]
2D ~ 30000 DoFs, 3D ~ 5000000 DoFs
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Particularities: mesh and convergence

m Strong mesh refinement is required
e especially at unknown edges of contact zones

—a! I —a g
| Ni:;—ﬂ | | Gn"vvaz_xz |

On

doy,
ox

doy,
ox

Oy — —0
x—a

(o]
X—a

xX—a

Infinite contact pressure andjor its derivative
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Particularities: mesh and convergence

m Strong mesh refinement is required

e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Infinite looping
E
S -~
4 X, X
e

Initial guess R(xo, fo) =0
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Particularities: mesh and convergence

m Strong mesh refinement is required

e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Infinite looping

Residual

/ XO *

Too rapid change in boundary conditions R(xg,f1) # 0
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Particularities: mesh and convergence

m Strong mesh refinement is required

e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Infinite looping

Residual

Iterations of Newton-Raphson method

IR _ __ R 1_
R(xo, f1) + % 0 ox=0-0x=- 9 - R(xp, f1) = x* = x0 + 0x

V.A. Yastrebov
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Particularities: mesh and convergence

m Strong mesh refinement is required

e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Infinite looping

Residual

Xj;/ o X

Iterations of Newton-Raphson method

-1
R(x',f1) + ‘3{5 aox=0-06x=- % L R(x', f1) = 2% = x! +6x

V.A. Yastrebov
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Particularities: mesh and convergence

m Strong mesh refinement is required

e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Infinite looping

Residual

Infinite looping
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Particularities: mesh and convergence

m Strong mesh refinement is required

e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Convergence to a “false” solution

Residual

\fo X

Initial guess R(xo, fo) =0
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Particularities: mesh and convergence

m Strong mesh refinement is required

e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Convergence to a “false” solution

Residual
L

\/XO *

Too rapid change in boundary conditions R(xg,f1) # 0
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Particularities: mesh and convergence

m Strong mesh refinement is required

e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Convergence to a “false” solution

YR

Residual

Iterations of Newton-Raphson method

IR _ __ R 1_
R(xo, f1) + % 0 ox=0-0x=- 9 - R(xp, f1) = x* = x0 + 0x

V.A. Yastrebov
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Particularities: mesh and convergence

m Strong mesh refinement is required

e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Convergence to a “false” solution

xw X, X

Residual

Iterations of Newton-Raphson method

-1
R(x',f1) + ‘3{5 aox=0-06x=- % L R(x', f1) = 2% = x! +6x
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Particularities: mesh and convergence

m Strong mesh refinement is required

e especially at unknown edges of contact zones
m Slow change of boundary conditions:

e strong non-linearities of contact/ friction problems
e non-uniqueness of solution for frictional problems

Convergence to a “false” solution

Residual
y”

Convergence, but is it a “true” solution ?
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Convergence problems: examples

m Infinite looping, e.g.

Y
E:N <€

0_6 N"OA AO”’"”’O

momh A A A A A Ak

O active master segment O master node A slave node

m Change of the contact state (contact/non-contact, stick/slip)

m Interplay between stiffness, friction and augmented Lagrangian
coefficients!!!

m Combination of non-linearities (e.g., plasticity+contact)
Alart P, Journal de Mathématiques Pures et Appliqués 76 (1997)
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Convergence problems: examples

m Simulation of a deep drawing problem

m Dinite strain plasticity + frictional contact

V.A. Yastrebov 151/75



Convergence problems: examples

m Simulation of a deep drawing problem

m Dinite strain plasticity + frictional contact
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Convergence problems: examples

m Simulation of a deep drawing problem
m Dinite strain plasticity + frictional contact

=100, =200,

inc=178, inc=472,
d=-10, d=-20,
p =10% p,.=17%

max

=200, =420,

inc=1353, inc=1414,
d=-33.5, d=-28,
p,.=32% / p,, =32%

0 5% 10% 15% 20%

accumulated plastic strain
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Convergence problems: examples

m Simulation of a deep drawing problem
m Dinite strain plasticity + frictional contact

200 T T T T T T

N
o
T
L

Reaction on the punch
2
o

80 | —— -
o
60 |- " .
40 + .
0t g
0 Wl 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Displacement of the punch
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Cylinder-plane frictional contact

m Non-conservative problem, history of loading is crucial

ANAANNNRARRARA 1
\\\\Q T

%
l’lllll’lllllln’,"','h %
Y
e
%
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Cylinder-plane frictional contact

m Non-conservative problem, history of loading is crucial

sig2?2 at max1mal normal load Normal loacing
- o001 . . ‘

Contact prgssute x CoF
\ ‘ Shear traction =

I

L
]

l N \ i 0.0008 |
| (L] 1o
! \ 0.0006
i i "{‘ﬂ | 0.0004
0.0002 | £
sigl2 at max1ma1 normal load g 0
‘ \ ‘ C/L\ -0.0002

: f | -0.0004 |-

-0.0006

-0.0008

- -0.001

Press in 100 increments, 1, ~ 2
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Cylinder-plane frictional contact

m Non-conservative problem, history of loading is crucial

Shear loading
0,001

ig22 at maximal t

T T
Contact pressure x CoF
Shear traction

0.0008 -

0.0006 -

0.0004 -

0.0002

Stress
o

igl2 at maximal ‘ta‘rig[e\n‘ti\a\l load
[ R

-0.0002 |

-0.0004

-0.0006

-0.0008

-0.001

-0.02 -0.01 0 0.01 0.02

Shift in 100 increments, u, ~ t
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Cylinder-plane frictional contact

m Non-conservative problem, history of loading is crucial

5()‘inc

7

i
1 inc

Comparison with: press in 1 increment, shift in 2 increments

Before stick every point of the contact interface has to pass through the
slip zone. It is impossible when loaded too fast.
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Sphere-plane frictional contact: cycling

\\\\\\\\ \\\\\\\ll\\l‘l\WW‘fIJIIIIIIIIII IIIIIIIIIII""
1

Normal displacement Tangent displacement

IIIIIII T T T T T T T T T T T
\““"u“\i; ‘\J!!'I,I’I’I%IIIIIIIIIIIII III;;III 7
- 'ZI
I
\\\\\\\\\\\Q\\\\‘\‘ ) it ’Z;//
\\\\\\\\\\\\ \\“‘ n:, "I :///
\\
1 1 1 1 1 1 1 1 1 1 1
10 30 S0 70 90 110
Time
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Sphere-plane frictional contact: cycling

0.001

V.A. Yastrebov 160/75



Sphere-plane frictional contact: cycling

£
““\\\\\\ \\\\\\\\\\\“\\‘l‘l‘“‘}“mﬂﬂlﬂlllllll ///Illllllllm g‘)
\ H [
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III;;IIIIIIIIII § T T T T T T T T T T T
i 3
f’fﬂ'ﬂ%%%’,"’"l: '// ’/// 5
:

Z 1 1 1 1 1 1 L 1 1 1 1

10 30 50 70 90 110
Time
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Sphere-plane frictional contact: cycling

0.001

0.0005 [
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Shallow ironing test

m Deformable-on-
deformable frictional
sliding

slave

m Results obtained by
different groups!>3456
differ significantly

h,

m Local and global friction
coefficients may differ A

[1] Fischer K. A., Wriggers P., “Mortar based frictional contact formulation for higher order interpolations using the
moving friction cone”, Computer Methods in Applied Mechanics and Engineering, vol. 195, p. 5020-5036, 2006.

[2] Hartmann S., Oliver J., Cante J. C., Weyler R., Hernandez J. A., “A contact domain method for large deformation
frictional contact problems. Part 2: Numerical aspects”, Computer Methods in Applied Mechanics and Engineering,
vol. 198, p. 2607-2631, 2009.

[3] Yastrebov V. A., “Computational contact mechanics: geometry, detection and numerical techniques”, These CdM
& Onera, 2011.

[4] Kudawoo A. D., “Problemes industriels de grande dimension en mécanique numérique du contact :
performance, fiabilité et robustesse”, Thse @ LMA & LAMSID, 2012.

[5] Poulios K., Renard Y., ”A non-symmetric integral approximation of large sliding frictional contact problems of
deformable bodies based on ray-tracing”, soumis, 2014.

[6] Zhou Lei’s blog, http://kt2008plus.blogspot.de
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Shallow ironing test
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Shallow ironing te

m No agreement between authors
m Dif. authors used dif. meshes (quadrilateral lin./sq., triangular lin.)

m Dif. authors used either finite or infinitesimal strain formulation

Reactions

Vertical
reaction

Horizontal
reaction

1

V.A. Yastrebov

Normal load Tangent load

Time step

Tardieu, Kudawoo, 2011
Poulios, Renard, 2014
Hartmann, Oliver, 2009
Zhou, 2014

Fischer, Wriggers, 2006
Yastrebov, 2009

Zhou, 2014

Fischer, Wriggers, 2006
Yastrebov, 2009
Hartmann, Oliver, 2009
Tardieu, Kudawoo, 2011
Poulios, Renard, 2014
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Shallow ironing test

m No agreement between authors
m Dif. authors used dif. meshes (quadrilateral lin./sq., triangular lin.)

m Dif. authors used either finite or infinitesimal strain formulation

Global friction

Vertical

reaction 0.59 Zhou, 2014

(.53 Fischer, Wriggers, 2006

0.47 Yastrebov, 2009

Reactions

0.38 Hartmann, Oliver, 2009

0.34 Tardieu, Kudawoo, 2011
Horizontal
reaction

0.30 Poulios, Renard, 2014

L L L

1

Normal load Tangent load

Time step

Local coefficient of friction u; = 0.3

V.A. Yastrebov 166/75



Examples of contact problems

With analytical solution

* linear elasticity
* with/without friction

From literature

* post-buckling 2D

* finite strains

* elasticity / plasticity
* with/without friction

New

* multi-contacts

* post-buckling 3D

* finite strains

* elasticity / plasticity
* with/without friction

g Material
- Set & structure
analysis suite

V.A. Yastrebov



Self-contact problem

6 T T T T T T T T
2
5 H N
s/ 7
5L ‘symmetry i
=
X 4
~
c
o
o3
)
]
@
O,
24
1k
accumulated plastic deformation
0% 45%
0 L L I L L L L L L
0 10 20 30 40 50 60 70 80 920 100

Displacement, mm

Finite element analysis of a post-buckling behavior of a thin walled tube

Collection of non-linearities: buckling instability, self-contact, finite strain plasticity

- .
=set |5
-
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m It's just a tlp Of the ”Computational Infinitesimal deformation / infinitesimal sliding

Contact Mechanics” iceberg m

m Contact detection

m Contact discretization and
integration General case

m Smoothing techniques

m Energy conservative methods for
dynamics Node-to-segment

Segment-to-segment Contact domain method
Contact discretization techniques
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m It's just a tip of the “Computational
Contact Mechanics” iceberg

FINITE ELEMENT

m Contact detection

m Contact discretization and
integration

Kikuchi, Oden (1988)

Zhong (1993)

m Smoothing techniques

m Energy conservative methods for
dynamlcs Computational
Contact Mechanics

Second Edition

Wriggers, 2%ed. (2006)

Wriggers (2002)

Computational
Contact and Impact
Mechanics

Numerical methods in
Contact Mechanics

Laursen (2002)

WILEY
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m It's just a tip of the “Computational
Contact Mechanics” iceberg

FINITE ELEMENT

m Contact detection

m Contact discretization and
integration

Kikuchi, Oden (1988)

Zhong (1993)

m Smoothing techniques

m Energy conservative methods for
dynamlcs Computational

m Several advanced topics Contact Mechanics

see Yastrebov_CEMEF .pdf, page 18.

Second Edition

Wriggers, 2%ed. (2006)

Wriggers (2002)

Computational
Contact and Impact
Mechanics

Numerical methods in
Contact Mechanics

Laursen (2002)

WILEY
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La(x, A) Thank you for your attention!

In October 2 PhD positions open in
(computational) contact mechanics.

www.yastrebov.fr



