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Introduction



Industrial and natural contact problems

1 Assembled parts, e.g. engines

Aircraft’s engine GP 7200

www.safran-group.com

[1] M. W. R. Savage

J. Eng. Gas Turb. Power, 134:012501 (2012)
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Industrial and natural contact problems

1 Assembled parts, e.g. engines

2 Railroad contacts

High speed train TGV www.sncf.com

Wilde/ANSYS wildeanalysis.co.uk

V.A. Yastrebov 5/75

www.sncf.com
wildeanalysis.co.uk


Industrial and natural contact problems

1 Assembled parts, e.g. engines

2 Railroad contacts

3 Gears and bearings

Bearings

www.skf.com

[1] F. Massi, J. Rocchi, A. Culla, Y. Berthier

Mech. Syst. Signal Pr., 24:1068-1080 (2010)
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Industrial and natural contact problems

1 Assembled parts, e.g. engines

2 Railroad contacts

3 Gears and bearings

Helical gear www.tpg.com.tw

www.mscsoftware.com
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Industrial and natural contact problems

1 Assembled parts, e.g. engines

2 Railroad contacts

3 Gears and bearings

4 Breaking systems
Assembled breaking system

www.brembo.com

www.mechanicalengineeringblog.com
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Industrial and natural contact problems

1 Assembled parts, e.g. engines

2 Railroad contacts

3 Gears and bearings

4 Breaking systems

5 Tire-road contact

Tire-road contact www.michelin.com

[1] M. Brinkmeier, U. Nackenhorst, S. Petersen,

O. von Estorff, J. Sound Vib., 309:20-39 (2008)
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Industrial and natural contact problems

1 Assembled parts, e.g. engines

2 Railroad contacts

3 Gears and bearings

4 Breaking systems

5 Tire-road contact

6 Metal forming
Deep drawing www.thomasnet.com

[1] G. Rousselier, F. Barlat, J. W. Yoon
Int. J. Plasticity, 25:2383-2409 (2009)
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Industrial and natural contact problems

1 Assembled parts, e.g. engines

2 Railroad contacts

3 Gears and bearings

4 Breaking systems

5 Tire-road contact

6 Metal forming

7 Crash tests

Crash-test www.porsche.com

[1] O. Klyavin, A. Michailov, A. Borovkov
www.fea.ru
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Industrial and natural contact problems

1 Assembled parts, e.g. engines

2 Railroad contacts

3 Gears and bearings

4 Breaking systems

5 Tire-road contact

6 Metal forming

7 Crash tests

8 Biomechanics

Human articulations
www.sportssupplements.net

J. A. Weiss, University of Utah
Musculoskeletal Research Laboratories
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Industrial and natural contact problems

1 Assembled parts, e.g. engines

2 Railroad contacts

3 Gears and bearings

4 Breaking systems

5 Tire-road contact

6 Metal forming

7 Crash tests

8 Biomechanics

9 Granular materials

Sand dunes www.en.wikipedia.org

E. Azema et al, LMGC90
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Industrial and natural contact problems

1 Assembled parts, e.g. engines

2 Railroad contacts

3 Gears and bearings

4 Breaking systems

5 Tire-road contact

6 Metal forming

7 Crash tests

8 Biomechanics

9 Granular materials

10 Electric contacts

Damage at electric contact zone
www.taicaan.com

Simulation of electric current
www.comsol.com
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Industrial and natural contact problems

1 Assembled parts, e.g. engines

2 Railroad contacts

3 Gears and bearings

4 Breaking systems

5 Tire-road contact

6 Metal forming

7 Crash tests

8 Biomechanics

9 Granular materials

10 Electric contacts

11 Tectonic motions

San-Andreas fault, by M. Rightmire
www.sciencedude.ocregister.com

[1] J.D. Garaud, L. Fleitout, G. Cailletaud
Colloque CSMA (2009)
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Industrial and natural contact problems

1 Assembled parts, e.g. engines

2 Railroad contacts

3 Gears and bearings

4 Breaking systems

5 Tire-road contact

6 Metal forming

7 Crash tests

8 Biomechanics

9 Granular materials

10 Electric contacts

11 Tectonic motions

12 Deep drilling

Drill Bit tool RobitRocktools;
extraction of geothermal energy (SINTEF,NTNU)

[1] T. Saksala, Int. J. Numer. Anal. Meth.
Geomech. (2012)
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Industrial and natural contact problems

1 Assembled parts, e.g. engines

2 Railroad contacts

3 Gears and bearings

4 Breaking systems

5 Tire-road contact

6 Metal forming

7 Crash tests

8 Biomechanics

9 Granular materials

10 Electric contacts

11 Tectonic motions

12 Deep drilling

13 Impact and fragmentation

Impact crater, Arizona
www.MrEclipse.com et maps.google.com

Simulation of formation of Copernicus crater
Yue Z., Johnson B. C., et al. Projectile

remnants in central peaks of lunar impact

craters. Nature Geo 6 (2013)

V.A. Yastrebov 17/75

www.MrEclipse.com
maps.google.com


Industrial and natural contact problems

1 Assembled parts, e.g. engines

2 Railroad contacts

3 Gears and bearings

4 Breaking systems

5 Tire-road contact

6 Metal forming

7 Crash tests

8 Biomechanics

9 Granular materials

10 Electric contacts

11 Tectonic motions

12 Deep drilling

13 Impact and fragmentation

14 etc.

Impact crater, Arizona
www.MrEclipse.com et maps.google.com

Simulation of formation of Copernicus crater
Yue Z., Johnson B. C., et al. Projectile

remnants in central peaks of lunar impact

craters. Nature Geo 6 (2013)
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Physical and mathematical complexity

Contact interface is hard to observe in situ

Many things happen in the interface

Strong thermo-mechanical or fluid-solid coupling in sliding

Mathematical formulation is also non-trivial

Interface between two solids in contact

V.A. Yastrebov 19/75



Basics of Contact and Friction



Notations

Vectors and tensors

• a, α scalars • a · b = c scalar (dot) product

• b vectors • a × b = c vector (cross) product

• C
=
,β
=

2nd order tensors • a ⊗ b = C
=

tensor product

•
4
D
=

4th order tensors • A
=

T transposition

• ∇a = B
=

gradient operator • ∇ · a = c divergence operator

• ∇ × a = b curl (rot) operator • I
=
= e

i
⊗ e

i
2nd order identity tensor

Mechanics

• σ
=

Cauchy stress tensor • ε
=

Small strain tensor

• g, gn gap, normal gap • ξ
∼

position vector in parent space

• ǫ penalty parameter • n outward unit normal vector

• λ, λn, λt lagrange multipliers •
∂̺

∂ξ1
,
∂̺

∂ξ2
surface tangent vectors

• σn= (σ
=
·n) ·n contact pressure • f , µ Coefficient of friction

V.A. Yastrebov 21/75



Equilibrium and contact conditions

Balance of momentum




∇ · σ
=
+ fv = 0 in Ω1,2

σ
=
· n = t0 on Γf

u = u0 on Γu

? on Γc

Frictionless contact

conditions (intuitive)

1 No penetration
2 No adhesion
3 No shear transfer

f
u

u

f

1

2

c
1

c
2
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Equilibrium and contact conditions

Balance of momentum




∇ · σ
=
+ fv = 0 in Ω1,2

σ
=
· n = t0 on Γf

u = u0 on Γu

? on Γc

Frictionless contact

conditions (intuitive)
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Gap function

Gap function g
gap = – penetration
asymmetric function
defined for
• separation g > 0
• contact g = 0
• penetration g < 0
governs normal contact

Master and slave split

Gap function is determined for all

slave points with respect to the

master surface

g=0

g<0

g>0

penetration

non-contact

contact

n

n
n

Gap between a slave point and a master surface
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Gap function

Gap function g
gap = – penetration
asymmetric function
defined for
• separation g > 0
• contact g = 0
• penetration g < 0
governs normal contact

Master and slave split

Gap function is determined for all

slave points with respect to the

master surface

Normal gap

gn = n ·
[

r
s
− ρ(ξπ)

]

,

n is a unit normal vector, r
s

slave point, ρ(ξπ) projection

point at master surface

g=0

g<0

g>0

penetration

non-contact

contact

n

n
n

Gap between a slave point and a master surface

n

( (

r
s

Definition of the normal gap

Consider existence and uniqueness

V.A. Yastrebov 28/75



Frictionless or normal contact conditions

No penetration
Always non-negative gap

g ≥ 0

No adhesion
Always non-positive contact pressure

σ∗n ≤ 0

Complementary condition
Either zero gap and non-zero pressure, or
non-zero gap and zero pressure

g σn = 0

No shear transfer (automatically)

σ∗∗
t
= 0

σ∗n = (σ
=
· n) · n = σ

=
: (n ⊗ n)

σ∗∗t = σ=
· n − σnn = n · σ

=
·
(

I
=
− n ⊗ n

)

g

n

0

Scheme explaining normal
contact conditions
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Frictionless or normal contact conditions

No penetration
Always non-negative gap

g ≥ 0

No adhesion
Always non-positive contact pressure

σ∗n ≤ 0

Complementary condition
Either zero gap and non-zero pressure, or
non-zero gap and zero pressure

g σn = 0

No shear transfer (automatically)

σ∗∗
t
= 0

σ∗n = (σ
=
· n) · n = σ

=
: (n ⊗ n)

σ∗∗t = σ=
· n − σnn = n · σ

=
·
(

I
=
− n ⊗ n

)

g
 =
 0
, 
  
n
<
 0

co
n
ta
ct

non-contact

restricted

regions

g

n

g > 0,   n = 0

0

Improved scheme explaining
normal contact conditions
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Frictionless or normal contact conditions

In mechanics:

Normal contact conditions
≡

Frictionless contact conditions
≡

Hertz1 -Signorini [2] conditions
≡

Hertz1 -Signorini [2]-Moreau [3] conditions

also known in optimization theory as

Karush [4]-Kuhn [5]-Tucker [6] conditions

g
 =
 0
, 
  
n
<
 0

co
n
ta
ct

non-contact

restricted

regions

g

n

g > 0,   n = 0

0

Improved scheme explaining
normal contact conditions

g ≥ 0, σn ≤ 0, gσn = 0

1Heinrich Rudolf Hertz (1857–1894) a German physicist who first formulated and solved the frictionless contact
problem between elastic ellipsoidal bodies.
2Antonio Signorini (1888–1963) an Italian mathematical physicist who gave a general and rigorous mathematical
formulation of contact constraints.
3Jean Jacques Moreau (1923) a French mathematician who formulated a non-convex optimization problem based
on these conditions and introduced pseudo-potentials in contact mechanics.
4William Karush (1917–1997), 5Harold William Kuhn (1925) American mathematicians,
6Albert William Tucker (1905–1995) a Canadian mathematician.
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Relative sliding

Recall:
• Convective coordinate in parent
space ξi ∈ (−1; 1)
•Mapping to real space

ρ(ξ1, ξ2, t) =
8∑

i=1

Ni(ξ1, ξ2)ρi(t)
1 5 2

6

374

8

2

3

4

1

5

6

7
8

( )

e
3

e
2 e

1

*

1

*

2
}},

*

1

*

2,

1

2

1-1

-1

1
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Tangential slip velocity v
t

must take into account:

• only tangential component

• relative rigid body motion

•master’s deformation

vt =
∂ρ

∂ξ1
ξ̇1 +

∂ρ

∂ξ2
ξ̇2

where ∂ρ/∂ξi are the tangent vectors

of the local basis and ξi are the convec-
tive coordinates.

Relative slip between a slave point and a
deformable master surface

V.A. Yastrebov 33/75



Relative sliding: example

Consider a one-dimensional example:
P is a projection of A on segment BC.

xP = ξxC + (1 − ξ)xB (1)

Velocity of the projection point

ẋP = ξẋC + (1 − ξ)ẋB
︸             ︷︷             ︸

∂xP
∂t

+ (xC − xB)ξ̇
︸      ︷︷      ︸

∂xP
∂ξ ξ̇

Substract the velocity of point xP for fixed ξ

vt = ẋP −
∂xP

∂t = (xC − xB)ξ̇ = ∂x∂ξ ξ̇

Compute tangential slip increment

∆gn+1
t = ∂x

∂ξ

∣
∣
∣
∣
ξn

(ξn+1 − ξn)

A

B C

x

P

Example of a one-dimensional relative slip
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Relative sliding: example

Consider a one-dimensional example:
P is a projection of A on segment BC.

xP = ξxC + (1 − ξ)xB (1)

Velocity of the projection point

ẋP = ξẋC + (1 − ξ)ẋB
︸             ︷︷             ︸

∂xP
∂t

+ (xC − xB)ξ̇
︸      ︷︷      ︸

∂xP
∂ξ ξ̇

Substract the velocity of point xP for fixed ξ

vt = ẋP −
∂xP

∂t = (xC − xB)ξ̇ = ∂x∂ξ ξ̇

Compute tangential slip increment

∆gn+1
t = ∂x

∂ξ

∣
∣
∣
∣
ξn

(ξn+1 − ξn)

A

B C

x

P

Example of a one-dimensional relative slip

Fisherman’s analogy: observing sea flow around
the boat.

Lie derivative: the change of a vector field along
the change of another vector field
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Amontons-Coulomb’s friction

No contact g > 0, σn = 0

Stick |vt| = 0
Inside slip surface /Coulomb’s cone

f = |σt| − µ|σn| < 0

Slip |vt| > 0
On slip surface / Coulomb’s cone

f = |σt| − µ|σn| = 0

Complementary condition

Either zero velocity and negative

slip criterion, or non-zero velocity

and zero slip criterion

|vt|
(

|σt| − µ|σn|
)

= 0

n

t

t
v

t

n

1

0

0

Scheme explaining frictional contact
conditions
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Amontons-Coulomb’s friction

No contact g > 0, σn = 0

Stick |vt| = 0
Inside slip surface /Coulomb’s cone

f = |σt| − µ|σn| < 0

Slip |vt| > 0
On slip surface / Coulomb’s cone

f = |σt| − µ|σn| = 0

Complementary condition

Either zero velocity and negative

slip criterion, or non-zero velocity

and zero slip criterion

|vt|
(

|σt| − µ|σn|
)

= 0

Scheme of 2D frictional contact

t
2

t1

n

t
v n

n

t
2

t1

stick

slip slip

stick

Scheme of 3D frictional contact

|vt| ≥ 0, |σt| − µ|σn| ≤ 0, |vt|
(

|σt| − µ|σn|
)

= 0
σt

|σt|
= −

vt

|vt|

V.A. Yastrebov 38/75



More friction laws

• Static criteria

stick

t

n
0

stick

t

n
0

slip
slip

stick

t

n
0

slip

tmax

stick

t

n
0

tmax

slip

(a) (b) (c) (d)

(a) Tresca (b) Amontons-Coulomb (c) Coulomb-Orowan (d) Shaw

• Kinetic criteria

st
ic
k

n

slip

t

tv
0

s

k

st
ic
k

n

slip

t

tv
0

s

k

(a) (b)

st
ic
k

n

slip

t

tv
0

s

(c)

st
ic
k

n

slip

t

0

s

k

(d)

log( +v )
0 t

g

(a,b) velocity weakening (c) velocity weakening-strengthening
(d) Linear slip weakening

• µs static and µk kinetic coefficients of friction.
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Rate and state friction and regularization

• Rate and state friction law

Rate vt = |vt
| – relative slip velocity

State θ – ≈ internal time

Dieterich–Ruina–Perrin (1979, 83, 95)

Frictional resistance

σc
t = |σn|

[
µs + bθ + a ln(vt/v0)

]

Evolution of the state variable

θ̇ = − vt

L

[

θ + ln
(

vt

v0

)]

• Prakash-Clifton friction law (1992,2000)

Viscous type evolution of frictional
resistance σt

σ̇t = −
vt

L
(σt + µσn)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

S
lip

 v
e

lo
c
it
y

Slip velocity

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 500  600  700  800  900  1000  1100  1200

F
ri
c
ti
o

n
a

l 
re

s
is

ta
n

c
e

Time

Resistance

Rate and state friction law

 0

 100

 200

 300

 400

 500

C
o

n
ta

c
t 

p
re

s
s
u

re

Contact pressure

 0

 100

 200

 300

 400

 500

 500  600  700  800  900  1000  1100  1200
F

ri
c
ti
o

n
a

l 
re

s
is

ta
n

c
e

Time

Resistance

Prakash-Clifton regularization

V.A. Yastrebov 40/75



Rate and state friction and regularization

• Rate and state friction law

 0

 0.1

 0.2

 0.3

 0.4

 0.5
S

lip
 v

e
lo

c
it
y

Slip velocity

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 500  600  700  800  900  1000  1100  1200

F
ri
c
ti
o

n
a

l 
re

s
is

ta
n

c
e

Time

Resistance

V.A. Yastrebov 41/75



Rate and state friction and regularization
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Rate vt = |vt
| – relative slip velocity

State θ – ≈ internal time

Dieterich–Ruina–Perrin (1979, 83, 95)

Frictional resistance

σc
t = |σn|

[
µs + bθ + a ln(vt/v0)

]

Evolution of the state variable

θ̇ = − vt

L

[

θ + ln
(

vt

v0

)]

• Prakash-Clifton friction law (1992,2000)

Viscous type evolution of frictional
resistance σt

σ̇t = −
vt

L
(σt + µσn)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

S
lip

 v
e

lo
c
it
y

Slip velocity

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 500  600  700  800  900  1000  1100  1200

F
ri
c
ti
o

n
a

l 
re

s
is

ta
n

c
e

Time

Resistance

Rate and state friction law

 0

 100

 200

 300

 400

 500

C
o

n
ta

c
t 

p
re

s
s
u

re

Contact pressure

 0

 100

 200

 300

 400

 500

 500  600  700  800  900  1000  1100  1200
F

ri
c
ti
o

n
a

l 
re

s
is

ta
n

c
e

Time

Resistance

Prakash-Clifton regularization

V.A. Yastrebov 42/75



Rate and state friction and regularization

• Prakash-Clifton friction law (1992,2000)
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Rate and state friction and regularization

• Prakash-Clifton friction law (1992,2000)
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The simplest example

Problem: find the point trajectory for a given force evolution

V.A. Yastrebov 45/75



Towards a weak form



From strong to a weak form

• Balance of momentum and boundary conditions

∇ · σ
=
+ f v = 0 in Ω = Ω1 ∪Ω2 + B.C.

f
u

u

f

1

2

c
1

c
2

Two solids in contact
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From strong to a weak form

• Balance of momentum and boundary conditions

∇ · σ
=
+ f v = 0 in Ω = Ω1 ∪Ω2 + B.C.

• Balance of virtual works

∫

∂Ω

n · σ
=
· δu dΓ +

∫

Ω

[

f v · δu − σ=
·· δ∇u

]

dΩ = 0

f
u

u

f

1

2

c
1

c
2

Two solids in contact
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From strong to a weak form

• Balance of momentum and boundary conditions

∇ · σ
=
+ f v = 0 in Ω = Ω1 ∪Ω2 + B.C.

• Balance of virtual works

∫

∂Ω

n · σ
=
· δu dΓ =

∫

Ω

[

f v · δu − σ=
·· δ∇u

]

dΩ = 0

∫

Γc
1

n · σ
=
· δρ dΓc

1 +

∫

Γc
2

ν · σ
=
· δr dΓc

2 +

∫

Γf

σ0 · δu dΓf

n

v

f
u

u

f

1

2

c
1

c
2

Two solids in contact
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From strong to a weak form

• Balance of momentum and boundary conditions

∇ · σ
=
+ f v = 0 in Ω = Ω1 ∪Ω2 + B.C.

• Balance of virtual works

∫

∂Ω

n · σ
=
· δu dΓ ⇒

∫

Ω

[

f v · δu − σ=
·· δ∇u

]

dΩ = 0

∫

Γc
1

n · σ
=
· δρ dΓc

1 +

∫

Γc
2

ν · σ
=
· δr dΓc

2 =

∫

Γf

σ0 · δu dΓf

=

∫

Γc
1

n · σ
=
· δ(ρ − r) dΓc

1 =

∫

Γc
1

(

σnδgn + σ∼
T
t δξ∼

)

dΓc
1

n

v

f
u

u

f

1

2

c
1

c
2

Two solids in contact
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From strong to a weak form

• Balance of momentum and boundary conditions

∇ · σ
=
+ f v = 0 in Ω = Ω1 ∪Ω2 + B.C.

• Balance of virtual works

∫

∂Ω

n · σ
=
· δu dΓ ⇒

∫

Ω

[

f v · δu − σ=
·· δ∇u

]

dΩ = 0

∫

Γc
1

n · σ
=
· δρ dΓc

1 +

∫

Γc
2

ν · σ
=
· δr dΓc

2 =

∫

Γf

σ0 · δu dΓf

=

∫

Γc
1

n · σ
=
· δ(ρ − r) dΓc

1 =

∫

Γc
1

(

σnδgn + σ∼
T
t δξ∼

)

dΓc
1

n

v

f
u

u

f

1

2

c
1

c
2

Two solids in contact

∫

Ω

σ
=
· ·δ∇u dΩ+

∫

Γc
1

(

σnδgn + σ∼
T
t δξ∼

)

dΓc
1

︸                            ︷︷                            ︸

Contact term

=

∫

Γf

σ0 · δu dΓ +

∫

Ω

f v · δu dΩ

V.A. Yastrebov 51/75



From strong to a weak form

• Balance of momentum and boundary conditions

∇ · σ
=
+ f v = 0 in Ω = Ω1 ∪Ω2 + B.C.

• Balance of virtual works

∫

Ω

σ
=
· ·δ∇u dΩ

︸           ︷︷           ︸

Change of the internal energy

+

∫

Γc
1

(

σnδgn + σ∼
T
t δξ∼

)

dΓc
1

︸                            ︷︷                            ︸

Contact term

=

∫

Γf

σ0 · δu dΓ

︸         ︷︷         ︸

Virtual work of external forces

+

∫

Ω

f v · δu dΩ

︸         ︷︷         ︸

Virtual work of volume forces

n

v

f
u

u

f

1

2

c
1

c
2

Two solids in contact

• Functional space
δu ∈H1(Ω) Hilbert space of the first order
and δu satisfy boundary and contact conditions.
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Towards variational inequality

Contact term
∫

Γc
1

(

σnδgn + σ∼
T
t δξ∼

)

dΓc
1

∫

Γc
1

σnδgn dΓc
1 = 0

Contact configuration σnδgn = 0, σn ≤ 0

∫

Ω

σ
=
· ·δ∇u dΩ+

∫

Γc
1

σ
∼

T
t δξ∼

dΓc
1 ≥

∫

Γf

σ0 · δu dΓ +

∫

Ω

f v · δu dΩ,

K =
{

δu ∈H1(Ω)
∣
∣
∣ δu = 0 on Γu, gn(u + δu) ≥ 0 on Γc

}
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Towards variational inequality

Contact term
∫

Γc
1

(

σnδgn + σ∼
T
t δξ∼

)

dΓc
1

∫

Γc
1

σnδgn dΓc
1 = 0

Virtual change of the configuration

∫

Ω

σ
=
· ·δ∇u dΩ+

∫

Γc
1

σ
∼

T
t δξ∼

dΓc
1 ≥

∫

Γf

σ0 · δu dΓ +

∫

Ω

f v · δu dΩ,

K =
{

δu ∈H1(Ω)
∣
∣
∣ δu = 0 on Γu, gn(u + δu) ≥ 0 on Γc

}
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Towards variational inequality

Contact term
∫

Γc
1

(

σnδgn + σ∼
T
t δξ∼

)

dΓc
1

∫

Γc
1

σnδgn dΓc
1 = 0

Normal term in separation δgn > 0

∫

Ω

σ
=
· ·δ∇u dΩ+

∫

Γc
1

σ
∼

T
t δξ∼

dΓc
1 ≥

∫

Γf

σ0 · δu dΓ +

∫

Ω

f v · δu dΩ,

K =
{

δu ∈H1(Ω)
∣
∣
∣ δu = 0 on Γu, gn(u + δu) ≥ 0 on Γc

}
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Towards variational inequality

Contact term
∫

Γc
1

(

σnδgn + σ∼
T
t δξ∼

)

dΓc
1

∫

Γc
1

σnδgn dΓc
1 = 0

Normal term in sliding δgn = 0

∫

Ω

σ
=
· ·δ∇u dΩ+

∫

Γc
1

σ
∼

T
t δξ∼

dΓc
1 ≥

∫

Γf

σ0 · δu dΓ +

∫

Ω

f v · δu dΩ,

K =
{

δu ∈H1(Ω)
∣
∣
∣ δu = 0 on Γu, gn(u + δu) ≥ 0 on Γc

}
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Back to variational equality (unconstrained)

• Constrained minimization problem

∫

Ω

σ
=
· ·δ∇u dΩ+

∫

Γc
1

σ
∼

T
t δξ∼

dΓc
1 ≥

∫

Γf

σ0 · δu dΓ +

∫

Ω

f v · δu dΩ,

K =
{

δu ∈H1(Ω)
∣
∣
∣ δu = 0 on Γu, gn(u + δu) ≥ 0 on Γc

}

• Use optimization theory to convert to

∫

Ω

σ
=
· ·δ∇u dΩ+

∫

Γ1
c

C(σn, σt, gn, ξ
∼
, δu)

︸                     ︷︷                     ︸

Contact term∗

dΓ1
c =

∫

Γf

σ0 · δu dΓ +

∫

Ω

f v · δu dΩ,

Unconstrained functional spaceK =
{

δu ∈H1(Ω)
∣
∣
∣ δu = 0 on Γu

}

Contact term∗ is defined on the potential contact zone Γ1
c .
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Optimization methods



Optimization methods: recall

Functional to be minimized F(x) under constraint g(x) ≥ 0

Penalty method

Lagrange multipliers method

Augmented Lagrangian method
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Optimization methods: recall

Functional to be minimized F(x) under constraint g(x) ≥ 0

Penalty method

• New functional

Fp(x) = F(x) + ǫ
〈
−g(x)

〉2
= F(x) +





0, if g(x) ≥ 0 non-contact

ǫg2(x), if g(x) < 0 contact

where ǫ is the penalty parameter.

• Stationary point must satisfy

∇Fp(x) = ∇F(x) + 2ǫ
〈
−g(x)

〉
∇g(x) = 0

• Solution tends to the precise solution as ǫ→∞

Lagrange multipliers method

Augmented Lagrangian method

Macaulay brackets 〈x〉 =





x, if x ≥ 0

0, otherwise
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Optimization methods: recall

Functional to be minimized F(x) under constraint g(x) ≥ 0

Penalty method Fp(x) = F(x) + ǫ
〈
−g(x)

〉2

Lagrange multipliers method

• New functional called Lagrangian

L(x, λ) = F(x) + λg(x)

• Saddle point problem

min
x

max
λ
{L(x,λ)} −→ x∗ ←− min

g(x)≥0
{F(x)}

• Stationary point

∇x,λL =

[

∇xF(x) + λ∇xg(x)
g(x)

]

= 0 need to verify λ ≤ 0

Augmented Lagrangian method

Macaulay brackets 〈x〉 =





x, if x ≥ 0

0, otherwise
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Optimization methods: recall

Functional to be minimized F(x) under constraint g(x) ≥ 0

Penalty method Fp(x) = F(x) + ǫ
〈
−g(x)

〉2

Lagrange multipliers method L(x, λ) = F(x) + λg(x)

Augmented Lagrangian method
[Hestnes 1969], [Powell 1969], [Glowinski & Le Tallec 1989], [Alart & Curnier 1991], [Simo & Laursen 1992]

• New functional, augmented Lagrangian

La(x, λ) = F(x) +





λg(x) + ǫg2(x) , if λ + 2ǫg(x) ≥ 0, contact

− 1
4ǫλ

2, if λ + 2ǫg(x) < 0, non-contact
• Stationary point

∇x,λLa =









∇xF(x) + λ∇xg(x) + 2ǫg(x)∇g(x)

g(x)




= 0, if contact





∇xF(x)

− λǫ




= 0, if non-contact

Macaulay brackets 〈x〉 =





x, if x ≥ 0

0, otherwise
Uzawa algorithm
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Optimization methods: example

Functional : f (x) = x2 + 2x + 1
Constrain : g(x) = x ≥ 0

Solution : x∗ = 0
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Optimization methods: example

Functional : f (x) = x2 + 2x + 1
Constrain : g(x) = x ≥ 0

Solution : x∗ = 0
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Penalty method: example

F(x) = x2 + 2x + 1, g(x) = x ≥ 0, x∗ = 0

Penalty method

Fp(x) = F(x) + ǫ
〈
−g(x)

〉2
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Penalty method: example

F(x) = x2 + 2x + 1, g(x) = x ≥ 0, x∗ = 0

Penalty method

Fp(x) = F(x) + ǫ
〈
−g(x)

〉2

ǫ = 0
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Penalty method: example

F(x) = x2 + 2x + 1, g(x) = x ≥ 0, x∗ = 0

Penalty method

Fp(x) = F(x) + ǫ
〈
−g(x)

〉2

ǫ = 1
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Penalty method: example

F(x) = x2 + 2x + 1, g(x) = x ≥ 0, x∗ = 0

Penalty method

Fp(x) = F(x) + ǫ
〈
−g(x)

〉2

ǫ = 10
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Penalty method: example

F(x) = x2 + 2x + 1, g(x) = x ≥ 0, x∗ = 0

Penalty method

Fp(x) = F(x) + ǫ
〈
−g(x)

〉2

ǫ = 50
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Penalty method: example

F(x) = x2 + 2x + 1, g(x) = x ≥ 0, x∗ = 0

Penalty method

Fp(x) = F(x) + ǫ
〈
−g(x)

〉2

Advantages ,

simple physical interpretation

simple implementation

no additional degrees of freedom

“mathematically” smooth
functional

Drawbacks /

practically non-smooth
functional

solution is not exact:

too small penalty→
large penetration
too large penalty→
ill-conditioning of the
tangent matrix

user has to choose penalty ǫ
properly or automatically and/or
adapt during convergence
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Lagrange multipliers method: example

F(x) = x2 + 2x + 1, g(x) = x ≥ 0, x∗ = 0

Lagrange multipliers method

L(x, λ) = F(x) + λg(x) → Saddle point→ min
x

max
λ

L(x, λ)

Need to check that λ ≤ 0

-2
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X
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-2 -1  0  1  2
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-1
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λ

-2 -1  0  1  2
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-1

 0

 1

X

λ
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Lagrange multipliers method: example

F(x) = x2 + 2x + 1, g(x) = x ≥ 0, x∗ = 0

Lagrange multipliers method

L(x, λ) = F(x) + λg(x) → Saddle point→ min
x

max
λ

L(x, λ)

Need to check that λ ≤ 0

Advantages ,

exact solution

no adjustable parameters

Drawbacks /

Lagrangian is not smooth

additional degrees of freedom

not fully unconstrained: λ ≤ 0
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Augmented Lagrangian method: example

F(x) = x2 + 2x + 1, g(x) = x ≥ 0, x∗ = 0

Augmented Lagrangian method

La(x, λ) = F(x) +





λg(x) + ǫg2(x) , if λ + 2ǫg(x) ≥ 0, contact

− 1
4ǫλ

2, if λ + 2ǫg(x) < 0, non-contact
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Yellow line separates contact and non-contact regions
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Augmented Lagrangian method: example

F(x) = x2 + 2x + 1, g(x) = x ≥ 0, x∗ = 0

Augmented Lagrangian method

La(x, λ) = F(x) +





λg(x) + ǫg2(x) , if λ + 2ǫg(x) ≥ 0, contact

− 1
4ǫλ

2, if λ + 2ǫg(x) < 0, non-contact
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Yellow line separates contact and non-contact regions
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Augmented Lagrangian method: example

F(x) = x2 + 2x + 1, g(x) = x ≥ 0, x∗ = 0

Augmented Lagrangian method

La(x, λ) = F(x) +





λg(x) + ǫg2(x) , if λ + 2ǫg(x) ≥ 0, contact

− 1
4ǫλ

2, if λ + 2ǫg(x) < 0, non-contact
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Augmented Lagrangian method: example

F(x) = x2 + 2x + 1, g(x) = x ≥ 0, x∗ = 0

Augmented Lagrangian method

La(x, λ) = F(x) +





λg(x) + ǫg2(x) , if λ + 2ǫg(x) ≥ 0, contact

− 1
4ǫλ

2, if λ + 2ǫg(x) < 0, non-contact

Advantages ,

exact solution

smooth functional (!)

fully unconstrained

Drawbacks /

additional degrees of freedom

quite sensitive to parameter ǫ

need to adjust ǫ during
convergence
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Application to contact problems: weak form

∫

Ω

σ
=
· ·δ∇u dΩ+

∫

Γ1
c

C
︸︷︷︸

Contact term

dΓ1
c =

∫

Γf

σ0 · δu dΓ +

∫

Ω

f v · δu dΩ,

K =
{

δu ∈H1(Ω)
∣
∣
∣ δu = 0 on Γu

}

Penalty method

Pressure: σn = ǫgn, Shear: σ
t
=





ǫg
t
, if stick |σt| < µ|σn|

µǫgnδg
t
/|δg

t
|, if slip |σt| = µ|σn|

Contact term

C = C(gn, g
t
, δgn, δg

t
) = σnδgn + σt

· δg
t
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Application to contact problems: weak form

∫

Ω

σ
=
· ·δ∇u dΩ+

∫

Γ1
c

C
︸︷︷︸

Contact term

dΓ1
c =

∫

Γf

σ0 · δu dΓ +

∫

Ω

f v · δu dΩ,

K =
{

δu ∈H1(Ω)
∣
∣
∣ δu = 0 on Γu

}

Augmented Lagrangian method

Contact term

C = C(gn, g
t
, λn,λt, δgn, δg

t
, δλn, δλt)

C =





− 1
ǫ

(

λnδλn − λt · δλt

)

, if non-contact λn + ǫgn ≥ 0

λ̂nδgn + gnδλn + λ̂t · δg
t
+ g

t
· δλ̂t , if stick |λ̂t| ≤ µ|σ̂n|

λ̂nδgn + gnδλn + µσ̂n − µσ̂n

λ̂t

|λ̂t |
· δg

t
− 1
ǫ




λt + µσ̂n

λ̂t

|λ̂t |




· δλt, if slip |λ̂t| ≥ µ|σ̂n|

where λ̂n = λn + ǫgn and λ̂t = λt + ǫgt
.
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Example

Use penalty method to enforce Dirichlet BC

Use penalty method to enforce contact constraints

First, detect contact elements

Second, construct updated residual vector and tangent matrix

Contact between two elements
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Detection



Introduction

Important and time
consuming part

With which master
segment the slave node
can/will come in contact?

Need to know it in
advance

To reduce time:

Bounding boxes for the
global search
Maximal distance of
detection

Slave and master
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Introduction

Important and time
consuming part

With which master
segment the slave node
can/will come in contact?

Need to know it in
advance

To reduce time:

Bounding boxes for the
global search
Maximal distance of
detection

Slave in close zone
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Introduction

Important and time
consuming part

With which master
segment the slave node
can/will come in contact?

Need to know it in
advance

To reduce time:

Bounding boxes for the
global search
Maximal distance of
detection

NTS contact element
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Introduction

Important and time
consuming part

With which master
segment the slave node
can/will come in contact?

Need to know it in
advance

To reduce time:

Bounding boxes for the
global search
Maximal distance of
detection

Contact occurs
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Introduction

Important and time
consuming part

With which master
segment the slave node
can/will come in contact?

Need to know it in
advance

To reduce time:

Bounding boxes for the
global search
Maximal distance of
detection

Multi-plate contact
Zset/Zébulon
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Introduction

Important and time
consuming part

With which master
segment the slave node
can/will come in contact?

Need to know it in
advance

To reduce time:

Bounding boxes for the
global search
Maximal distance of
detection

Multi-plate contact
Zset/Zébulon
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Introduction

Important and time
consuming part

With which master
segment the slave node
can/will come in contact?

Need to know it in
advance

To reduce time:

Bounding boxes for the
global search
Maximal distance of
detection

Multi-plate contact
Zset/Zébulon
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Introduction

Important and time
consuming part

With which master
segment the slave node
can/will come in contact?

Need to know it in
advance

To reduce time:

Bounding boxes for the
global search
Maximal distance of
detection

Multi-plate contact
Zset/Zébulon
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Introduction

Important and time
consuming part

With which master
segment the slave node
can/will come in contact?

Need to know it in
advance

To reduce time:

Bounding boxes for the
global search
Maximal distance of
detection

Multi-plate contact
Zset/Zébulon
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Introduction

Important and time
consuming part

With which master
segment the slave node
can/will come in contact?

Need to know it in
advance

To reduce time:

Bounding boxes for the
global search
Maximal distance of
detection

Multi-plate contact
Zset/Zébulon

V.A. Yastrebov 90/75



Introduction

Important and time
consuming part

With which master
segment the slave node
can/will come in contact?

Need to know it in
advance

To reduce time:

Bounding boxes for the
global search
Maximal distance of
detection
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All-to-all approach

Growth rate O(N ×M)

Not robust

Blind spots

Slow

master projection zone

?

?

normals to master

blind spots

external

?
internal

due to symmetry

s

s

s

s symmetry
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Closest node approach

Node-to-segment
detection⇒ iterative
solution
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Closest node approach

Node-to-segment
detection⇒ iterative
solution

Detection based on the
closest node:

1 find the closest master
node;

2 find a projection on
segments adjacent to
this node.

Widely accepted
simplification

Simple treatment of blind
spots
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Closest node approach

Node-to-segment
detection⇒ iterative
solution

Detection based on the
closest node:

1 find the closest master
node;

2 find a projection on
segments adjacent to
this node.

Widely accepted
simplification

Simple treatment of blind
spots
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Closest node approach

Node-to-segment
detection⇒ iterative
solution

Detection based on the
closest node:

1 find the closest master
node;

2 find a projection on
segments adjacent to
this node.

Widely accepted
simplification

Simple treatment of blind
spots

V.A. Yastrebov 96/75



Acceleration of detection

“Blind” algorithm⇒
one-by-one
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Acceleration of detection

“Blind” algorithm⇒
one-by-one

Reduce the number of
elements to check:

Detection bounding box
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Acceleration of detection

“Blind” algorithm⇒
one-by-one

Reduce the number of
elements to check:

Detection bounding box
- intersection of master
and slave bounding
boxes
Distribute nodes in
buckets (cells)⇒ Bucket
sort method [1]
For each slave node
check only in several
buckets

[1] Benson, Hallquist, 1991
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Acceleration of detection

Strong connection
between:

finite element mesh L,
maximal detection
distance L,
bucket’s size 2L.

User friendly algorithm

Complexity O(N)
Relations between the master mesh, maximal
detection distance and bucket’s dimensions

Meshes for numerical tests
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Unknown master-slave

Master-slave may be
unknown in advance:

complex geometry;
large sliding;
self-contact.

Nickel foam microstructure

Microstructure of gecko’s adhesive toe
(adapted from Autumn Lab, Lewis& Clark Colledge, Portland, Oregon)
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Unknown master-slave

Unknown master-slave

The same algorithm

Account of the nodal
normals

n1
r1r2

r3
n2 n3
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Unknown master-slave

Finite Element Analyses of post-buckling behavior of thin-walled structures
(self-contact, finite strain plasticity) Zset/Zébulon
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Parallelization

Distributed memory
computer architecture

⇒ Distributed contact
surface

No information about the
entire contact surface
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Detection by a single CPU

SDMR
Single Detection,
Multiple Resolution

Not optimal

Simple data
exchange
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Detection by a single CPU
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Single Detection,
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Distributed detection

MDMR
Multiple Detection,
Multiple Resolution

More optimal

Complex data
exchange
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Distributed detection II

Global detection bounding
box

Split into N equal
overlapping parts

One bucket overlap

Test
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Global detection bounding
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One bucket overlap
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When simple detection fails. . .

Methods based on the closest node detection are not robust

Idea:

find the closest master
node
find a projection on the
adjacent segments

Counterexample

Closest segment is not
always attached to the
closest node

not regular mesh
triangular mesh

Carefull use or
improvement
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Example I

Tyre-road problem

Tyre – 100 000 slave nodes
Road – 200 000 master segments
Detection 1.5-2 seconds

Contact elements for different loads
Zset/Zébulon FE mesh of a tire

550 000 nodes, 105 000 slave nodes
Zset/Mesher
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Example II

Two curved surfaces in contact

106 against 106 contact nodes
All-to-all Tall-to-all >180 hours
Bucket sort performance depends on geometry:

FE mesh of one of the contacting surfaces
Zset/Mesher
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Example II

Two curved surfaces in contact

106 against 106 contact nodes
All-to-all Tall-to-all >180 hours
Bucket sort performance depends on geometry:

Geometry Nodes in
bounding box

CPU time Gain,
Tall-to-all/Tbucket

2 100 000 35 minutes >300 times

340 000 1 minute >10 500 times

50 000 4 seconds >160 000 times
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Friction . . . . . .
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Friction . . . . . .

”The scream“
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Friction: methods

Optimization methods: penalty or augmented Lagrangian method

Note that the method of Lagrange multipliers cannot be employed here

Return mapping algorithm for penalty

Analogy with elasto-plastic formulation problem[1]

[1] Curnier “A theory of friction” Int J Solids Struct 20 (1984)
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Friction: Return mapping algorithm

Return mapping algorithm in 2D for the penalty method
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As in plasticity[1]

[1] Simo J.C. and Hughes T.J.. Computational inelasticity. Springer (2006)
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Friction: Return mapping algorithm

Return mapping algorithm in 2D for the penalty method
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Analogy with non-associated plastic flow[2]

[2] Curnier A. A theory of friction. International Journal of Solids and Structures 20 (1984)
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Application to contact problems: linearization

• Non-linear equation
R(u, f ) = 0

• Contains δgn, δg
t

• Use Newton-Raphson method
• Initial state at step i

R(ui, f i) = 0

• Should be also satisfied at step i + 1

R(ui+1, f i+1) = R(ui + δu, f i+1) = 0

• Linearize

R(ui + δu, f i+1) = R(ui, f i+1) +
∂R(u)

∂u
δu = 0

• Finally

δu = −

[
∂R(u)

∂u

]−1

︸      ︷︷      ︸

contains ∆δgn,∆δg
t

R(ui)

• NB: Contact problem does not satisfy conditions of Kantorovich theorem
on the convergence of Newton’s method.
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Variation of geometrical quantities

Normal gap

First variation enters in the residual vector:

Second variation enters in the tangent matrix:
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Variation of geometrical quantities

Convective coordinate of the projection

First variation enters in the residual vector:

Second variation enters in the tangent matrix:
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Particularities: mesh and convergence

Strong mesh refinement is required

• especially at unknown edges of contact zones

Typical mesh for fretting analysis [L. Sun, H. Proudhon, G. Cailletaud, 2011]

2D ∼ 30 000 DoFs, 3D ∼ 5 000 000 DoFs
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Particularities: mesh and convergence

Strong mesh refinement is required

• especially at unknown edges of contact zones

Infinite contact pressure and/or its derivative
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Particularities: mesh and convergence

Strong mesh refinement is required

• especially at unknown edges of contact zones

Slow change of boundary conditions:

• strong non-linearities of contact / friction problems
• non-uniqueness of solution for frictional problems

Infinite looping

Initial guess R(x0, f0) = 0
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Particularities: mesh and convergence

Strong mesh refinement is required
• especially at unknown edges of contact zones

Slow change of boundary conditions:
• strong non-linearities of contact / friction problems
• non-uniqueness of solution for frictional problems

Infinite looping

Iterations of Newton-Raphson method

R(x0, f1) + ∂R
∂x

∣
∣
∣
x0
δx = 0→ δx = − ∂R∂x

∣
∣
∣
−1

x0
R(x0, f1)→ x1 = x0 + δx
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Particularities: mesh and convergence
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Particularities: mesh and convergence

Strong mesh refinement is required

• especially at unknown edges of contact zones

Slow change of boundary conditions:

• strong non-linearities of contact / friction problems
• non-uniqueness of solution for frictional problems

Convergence to a “false” solution

Convergence, but is it a “true” solution ?
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Convergence problems: examples

Infinite looping, e.g.

active master segment master node slave node

Change of the contact state (contact/non-contact, stick/slip)

Interplay between stiffness, friction and augmented Lagrangian
coefficients[1]

Combination of non-linearities (e.g., plasticity+contact)

Alart P., Journal de Mathématiques Pures et Appliqués 76 (1997)
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Convergence problems: examples

Simulation of a deep drawing problem

Dinite strain plasticity + frictional contact

h

pp

d

R

w

L

R
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Convergence problems: examples

Simulation of a deep drawing problem
Dinite strain plasticity + frictional contact
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Cylinder-plane frictional contact

Non-conservative problem, history of loading is crucial
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Cylinder-plane frictional contact

Non-conservative problem, history of loading is crucial

Press in 100 increments, uz ∼ t2
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Cylinder-plane frictional contact

Non-conservative problem, history of loading is crucial

Shift in 100 increments, uz ∼ t
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Cylinder-plane frictional contact

Non-conservative problem, history of loading is crucial

Comparison with: press in 1 increment, shift in 2 increments

Before stick every point of the contact interface has to pass through the
slip zone. It is impossible when loaded too fast.
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Sphere-plane frictional contact: cycling
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Sphere-plane frictional contact: cycling
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Sphere-plane frictional contact: cycling
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Shallow ironing test

Deformable-on-
deformable frictional
sliding

Results obtained by
different groups1,2,3,4,5,6

differ significantly

Local and global friction
coefficients may differ

rh
1

h
2

a1

a
2

d1 d
2

d
3

master

slave

E , v* *

E,v

[1] Fischer K. A., Wriggers P., “Mortar based frictional contact formulation for higher order interpolations using the
moving friction cone”, Computer Methods in Applied Mechanics and Engineering, vol. 195, p. 5020-5036, 2006.

[2] Hartmann S., Oliver J., Cante J. C., Weyler R., Hernández J. A., “A contact domain method for large deformation
frictional contact problems. Part 2: Numerical aspects”, Computer Methods in Applied Mechanics and Engineering,
vol. 198, p. 2607-2631, 2009.

[3] Yastrebov V. A., “Computational contact mechanics: geometry, detection and numerical techniques”, Thèse CdM
& Onera, 2011.

[4] Kudawoo A. D., ”Problèmes industriels de grande dimension en mécanique numérique du contact :
performance, fiabilité et robustesse“, Thse @ LMA & LAMSID, 2012.

[5] Poulios K., Renard Y., ”A non-symmetric integral approximation of large sliding frictional contact problems of
deformable bodies based on ray-tracing“, soumis, 2014.

[6] Zhou Lei’s blog, http://kt2008plus.blogspot.de
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Shallow ironing test
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Shallow ironing test

No agreement between authors

Dif. authors used dif. meshes (quadrilateral lin./sq., triangular lin.)

Dif. authors used either finite or infinitesimal strain formulation

V.A. Yastrebov 165/75



Shallow ironing test

No agreement between authors

Dif. authors used dif. meshes (quadrilateral lin./sq., triangular lin.)

Dif. authors used either finite or infinitesimal strain formulation

Local coefficient of friction µl = 0.3
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Examples of contact problems

With analytical solution

∗ ∗ ⋆ linear elasticity
∗ ∗ ⋆with/without friction

From literature

∗ ∗ ⋆ post-buckling 2D
∗ ∗ ⋆ finite strains
∗ ∗ ⋆ elasticity / plasticity
∗ ∗ ⋆with/without friction

New

∗ ∗ ⋆multi-contacts
∗ ∗ ⋆ post-buckling 3D
∗ ∗ ⋆ finite strains
∗ ∗ ⋆ elasticity / plasticity
∗ ∗ ⋆with/without friction
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Self-contact problem

Finite element analysis of a post-buckling behavior of a thin walled tube

Collection of non-linearities: buckling instability, self-contact, finite strain plasticity
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Reading

It’s just a tip of the “Computational
Contact Mechanics” iceberg

Contact detection

Contact discretization and
integration

Smoothing techniques

Energy conservative methods for
dynamics

Contact discretization techniques
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Reading

It’s just a tip of the “Computational
Contact Mechanics” iceberg

Contact detection

Contact discretization and
integration

Smoothing techniques

Energy conservative methods for
dynamics

Several advanced topics
see Yastrebov CEMEF.pdf, page 18.
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La(x, λ) Thank you for your attention!

In October 2 PhD positions open in
(computational) contact mechanics.

www.yastrebov.fr


