
Multiscale Simulations of Materials and Structures

Practical work on Molecular Dynamics: Phase Transition

Master program DMS

February 13, 2018

1 Introduction

In this practical work we will simulate phase transitions in argon (Ar), “terrestrially the most abundant
and industrially the most frequently used of the noble gases”1 (since it is noble, the gas is mono-atomic).
The phase diagram for Ar is given in Fig. 1.

Figure 1: Phase diagram of Argon

To study the phase transformation, we will use 2D molecular dynamics simulations (see input data
format in Appendix) for a constant volume V = L×L with periodic boundaries and study macroscopical
quantities such as temperature, pressure and energies of the system of particles. The objective is to
investigate this model system and verify if molecular dynamics simulation provides us with qualitatively
reasonable results.

2 Provided files

To download all necessary files, go to www.yastrebov.fr/TPMD2018.zip.

1. md sim.inp: input file for MD simulations (see Appendix A for details).
1www.britannica.com

1

2. Make initial config.py: a draft script to construct the initial distribution of particles.

3. plot configuration.gpl: a gnuplot script to plot a particular particle configuration.

4. anim.py, aplot.gpl: files needed to make animation, run anim.py with an integer number n as
an argument, so that only n-th data will be plotted. For example _anim.py 10

5. Folder CODE. To make the MD code working on your PC, copy this folder somewhere, enter the
folder CODE, compile the code Zmake and copy the library *.so into the directory where you plan to
run your MD simulations.

3 Initial configuration. First simulations.

Argon data: σ = 3.4 Å, ε = 0.0343 eV, m = 39.95 u. Convert to SI.

• Write a small script to distribute N particles randomly in the simulation box (see data format in
Appendix A). Example of a python script (TP Scripts/Make initial config.py) is given. A
reasonable number of particles would be N < 1000 for a square box of side a ≤ 10 nm. If you
think it would be too difficult to code this routine within a reasonable time, please use directly
**configuration gas (see Appendix A).

• Use **configuration *file your file without temperature control γ = 0 to run the first simu-
lation Zrun md sim.inp.

• Check what happens with macroscopic physical quantities: kinetic and potential energy, pressure,
temperature (these data are stored in file “energy.md”).

• Find the equilibrium distance between particles for 0K. Based on this result ensure that initial
distribution does not result in huge pressure and temperatures.

• If you succeeded to create your generation file then use it; if you did not then download
www.yastrebov.fr/ready script.py and work with it. Prescribe initial velocities of particles
in any way (see data format in Appendix A). Check how the probability distribution of particle
velocities varies with time at constant temperature.

4 How to analyze the simulation results

• The simulation writes two files energy.md and frames.md, the first contains all integrated quanti-
ties (potential and kinetic energies, temperature, and pressure) the second contains instantaneous
configurations of the system (particle coordinates and velocities).

• To plot data you can use gnuplot in the following way: run gnuplot by typing gnuplot in terminal,
next execute
plot ‘‘energy.md’’ using 1:4’

which will plot you column 4 (temperature) as a function of column 1 (time).

• To plot the configuration at increment i×Nb, where Nb is the frequency of data output, in gnuplot
execute
plot ’’frames.md’’ u 2:3 every :::i::i with points pointtype 7 pointsize 1.
You can also used the proposed scriptplot configuration.gpl, to execute it run./plot configuration.gpl,
if it does not execute, make it executable by typing chmod +x plot configuration.gpl.

• Equivalently, you can use matplotlib scripts to plot the results: ./plot.py to plot the potential
energy as a function of temperature and ./plot configuration.py N to plot configuration at
increment N. Here too, if it does not execute, make it executable by typing chmod +x plot.py and
chmod +x plot configuration.py.

• To construct an animation execute ./anim.py.

2

5 Computation

• Start the simulation using your generated file or “gas” option indicated in the input file.

• Control the temperature using **set temperature,
**temperature adjustment coefficient γ, **adjust temperature every

• Equilibrate the system at T = 300K and next cool it down. Follow changes in macroscopical
quantities. Remember that if the number of particles is small, you need to consider time averages.
Identify the phase transition.

• Verify what happens with the particle arrangement.

3

6 Questions for the evaluation

Right and complete answer for each question adds you one point, thus your note for this part will be
∈ [0,5]. Written answers should be submitted by 16h30.

0. Your name2:

1. How do the particle velocities are distributed in your simulations? How should they be distributed
according to the theory?

2. For the gas: which thermodynamic characteristics would change if for a given number of particles
the size of the box is increased by a factor of two? Explain.

3. What does determine the cooling rate, which you used in your simulations? Illustrate.

2Sorry, for this question you do not get any points ,.

4

4. How to determine the heat capacity of your system in gas state and solid state?

5. Does this heat capacity is measured under constant volume or constant pressure?

5

A Appendix. Input file structure

• **configuration *file filename

Name of the input file containing initial configuration of atoms (positions and velocities).
The format of this file is the following:
***particles

dim N

id1 x1 y1 vx1 vy1 color1
id2 x2 y2 vx2 vy2 color2
...

Where dim is the system dimension, N is the number of particles, id is the particle id (int type), x,y
are its Cartesian coordinates (double type), vx,vy are its velocities (double type), color is a color
associated with this particular particle (int type).

If the time seems to be too short for you to code a routine to properly distribute atoms, please use
**configuration gas and define the appropriate **box.

• **box size (a,b)

Size of the simulation box (vector type). For example: **box size (1e-9, 1e-9)3 creates a
simulation box of size 1nm× 1nm with the left lower corner coordinates (0,0) and the right top
coordinates (1e−9,1e−9). Pay attention that coordinates of particles provided in **configuration
*file are compatible with the simulation box.

• **num timesteps Nt

Number of simulation time steps (int type).

• **cut off c

Cut-off distance used in MD simulations, the double number is a multiplier c for the equilibrium
distance computed for given parameters of Lennard-Jones 6-12 potential, so that rcutoff = cσ21/6. The
standard number used in simulations c = 2.5.

• **dim d

Problem dimension, here d = 2.

• **set temperature t0 T0 t1 T1 ...tn Tn
A table which prescribes the needed temperature in the simulation. Time points ti and associated
temperature points Ti are provided. A linear interpolation is used in between, i.e.

∀t ∈ [ti, ti+1] : T(t) = Ti +
t− ti

ti+1− ti
(Ti+1−Ti)

Note that if simulation time t < t0, then temperature T0 is used, equivalently if t > tn, then
temperature Tn will be used. By construction the number of double numbers to be provided
should be even.
Example: **set temperature 0. 300. 1.e-12 300. 10.e-12 100.

• **temperature adjustment coefficient γ Provides the coefficient 0 ≤ γ ≤ 1 used to scale the
temperature using the following rule:

β =

√
1 +γ

(Tt

T
−1

)
,

where β is the coefficient used to scale the velocity of particles, Tt is the target temperature, T is
the current system temperature.

• **adjust temperature every na

Provides the number of integration time steps between consecutive temperature scaling, i.e. if
na = 100, the temperature is scaled on every 100-th time step.

3Do not forget brackets.

6

• **dt dt

Provides the integration time step. It should be big enough to go as fast as possible and small
enough to be accurate and converge at all. If dt is chosen too high, an error message will appear.

• **integrator StormerVerlet

Integration method: Velocity Störmer-Verlet is used.

• **md output increment Nb TYPE

Outputs energy (file “energy.md”) and particle configuration (file “frames.md”). Integer value Nb
controls the frequency of output, i.e. Nb = 100 means that energy and configuration is saved every
100 time steps. TYPE can be either particle coord velocity or energy, in the former case, both
configuration and macroscopic quantities are saved, in the latter case only macroscopic quantities
are saved. The data is saved in adimensional units:

x′ = x/x̃, v′ = v/ṽ, E′ = E/Ẽ, t′ = t/t̃

The normalization parameters for length x̃, time t̃, velocity ṽ and energy Ẽ are provide in file
“energy.md”.
The data format for the particle configuration is the following:
...

time ti inc/every: inci
color1 x1 y1 vx1 vy1
color2 x2 y2 vx2 vy2
...

colorn xn yn vxn vyn
empty line

time ti+1 inc/every: inci+1
color1 x1 y1 vx1 vy1
color2 x2 y2 vx2 vy2
...

colorn xn yn vxn vyn
empty line

...

• **potential LJ *powers 6. 12.

Lennard-Jones 6-12 potential is used.

• **MD material LJ 1

*mass m

*epsilon ε
*sigma σ
**return

Input data to determine particle characteristics and parameters of the Lennard-Jones potential:
mass m, distance σ and energy ε parameters are given in SI units.

7

